Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 1996 Oct;36(1):3-15.
doi: 10.1016/S1011-1344(96)07397-6.

Energy transfer reactions involving carotenoids: quenching of chlorophyll fluorescence

Affiliations
Review

Energy transfer reactions involving carotenoids: quenching of chlorophyll fluorescence

A J Young et al. J Photochem Photobiol B. 1996 Oct.

Abstract

Carotenoids have a key role in photosynthesis in photosynthetic systems, transferring excitation energy to chlorophyll (Chl) during light harvesting. These pigments also protect the photosynthetic apparatus from photodamage by quenching the Chl triplet state and singlet oxygen. In addition, in higher plants and some algae, a number of xanthophylls also have the ability to deactivate excited Chl under conditions of excess excitation via the operation of the xanthophyll cycle (violaxanthin<-->antheraxanthin<-->zeaxanthin or diadinoxanthin<-->diatoxanthin). The formation of zexanthin (or diatoxanthin) can be clearly correlated with the non-photochemical quenching of Chl fluorescence, and is now recognized as a major photoprotective process in higher plants and a number of algal genera. The interconversion of these xanthophylls in response to a changing light environment alters the extent of their carbon-carbon double bond conjugation, which, in turn, affects the excited state energies and lifetimes of the carotenoids and may also alter their structure/conformation and hydrophobicity. The possible roles of these photophysical and physicochemical changes in the mechanism(s) of xanthophyll-mediated energy dissipation via quenching of Chl fluorescence are discussed.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources

  NODES
twitter 2