Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1998 Jan;82(1):63-81.
doi: 10.1161/01.res.82.1.63.

Mathematical model of an adult human atrial cell: the role of K+ currents in repolarization

Affiliations

Mathematical model of an adult human atrial cell: the role of K+ currents in repolarization

A Nygren et al. Circ Res. 1998 Jan.

Abstract

We have developed a mathematical model of the human atria myocyte based on averaged voltage-clamp data recorded from isolated single myocytes. Our model consists of a Hodgkin-Huxley-type equivalent circuit for the sarcolemma, coupled with a fluid compartment model, which accounts for changes in ionic concentrations in the cytoplasm as well as in the sarcoplasmic reticulum. This formulation can reconstruct action potential data that are representative of recordings from a majority of human atrial cells in our laboratory and therefore provides a biophysically based account of the underlying ionic currents. This work is based in part on a previous model of the rabbit atrial myocyte published by our group and was motivated by differences in some of the repolarizing currents between human and rabbit atrium. We have therefore given particular attention to the sustained outward K+ current (I[sus]), which putatively has a prominent role in determining the duration of the human atrial action potential. Our results demonstrate that the action potential shape during the peak and plateau phases is determined primarily by transient outward K+ current, I(sus) and L-type Ca2+ current (I[Ca,L]) and that the role of I(sus) in the human atrial action potential can be modulated by the baseline sizes of I(Ca,L), I(sus) and the rapid delayed rectifier K+ current. As a result, our simulations suggest that the functional role of I(sus) can depend on the physiological/disease state of the cell.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources

  NODES
twitter 2