Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1998 Feb;274(2):E377-80.
doi: 10.1152/ajpendo.1998.274.2.E377.

Muscle acetyl group availability is a major determinant of oxygen deficit in humans during submaximal exercise

Affiliations

Muscle acetyl group availability is a major determinant of oxygen deficit in humans during submaximal exercise

J A Timmons et al. Am J Physiol. 1998 Feb.

Abstract

The delay in skeletal muscle mitochondrial ATP production at the onset of exercise is thought to be a function of a limited oxygen supply. The delay, termed the oxygen deficit, can be quantified by assessing the above baseline oxygen consumption during the first few minutes of recovery from exercise. During submaximal exercise, the oxygen deficit is reflected by the extent of muscle phosphocreatine (PCr) breakdown. In the present study, nine male subjects performed 8 min of submaximal, single leg knee extension exercise after saline (Control) and dichloroacetate (DCA) infusion on two separate occasions. Administration of DCA increased resting skeletal muscle pyruvate dehydrogenase complex activation status threefold (Control = 0.4 +/- 0.1 vs. DCA = 1.3 +/- 0.1 mmol acetyl-CoA.min-1.kg wet muscle-1 at 37 degrees C, P < 0.01) and elevated acetylcarnitine concentration fivefold (Control = 2.2 +/- 0.5 vs. DCA = 10.9 +/- 1.2 mmol/kg dry mass, P < 0.01). During exercise, PCr degradation was reduced by approximately 50% after DCA (Control = 33.2 +/- 7.1 vs. DCA = 18.4 +/- 7.1 mmol/kg dry mass, P < 0.05). It would appear, therefore, that in humans acetyl group availability is a major determinant of the rate of increase in mitochondrial respiration at the onset of exercise and hence the oxygen deficit.

PubMed Disclaimer

Similar articles

Cited by

Publication types

  NODES
admin 1
twitter 2