Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1998 Jul 31;273(31):19797-801.
doi: 10.1074/jbc.273.31.19797.

An apical PDZ protein anchors the cystic fibrosis transmembrane conductance regulator to the cytoskeleton

Affiliations
Free article

An apical PDZ protein anchors the cystic fibrosis transmembrane conductance regulator to the cytoskeleton

D B Short et al. J Biol Chem. .
Free article

Abstract

The function of the cystic fibrosis transmembrane conductance regulator (CFTR) as a Cl- channel in the apical membrane of epithelial cells is extensively documented. However, less is known about the molecular determinants of CFTR residence in the apical membrane, basal regulation of its Cl- channel activity, and its reported effects on the function of other transporters. These aspects of CFTR function likely require specific interactions between CFTR and unknown proteins in the apical compartment of epithelial cells. Here we report that CFTR interacts with the recently discovered protein, EBP50 (ERM-binding phosphoprotein 50). EBP50 is concentrated at the apical membrane in human airway epithelial cells, in vivo, and CFTR and EBP50 associate in in vitro binding assays. The CFTR-EBP50 interaction requires the COOH-terminal DTRL sequence of CFTR and utilizes either PDZ1 or PDZ2 of EBP50, although binding to PDZ1 is of greater affinity. Through formation of a complex, the interaction between CFTR and EBP50 may influence the stability and/or regulation of CFTR Cl- channel function in the cell membrane and provides a potential mechanism through which CFTR can affect the activity of other apical membrane proteins.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources

  NODES
Association 2
twitter 2