Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1998 Sep 10;395(6698):194-8.
doi: 10.1038/26034.

The p35/Cdk5 kinase is a neuron-specific Rac effector that inhibits Pak1 activity

Affiliations

The p35/Cdk5 kinase is a neuron-specific Rac effector that inhibits Pak1 activity

M Nikolic et al. Nature. .

Abstract

Cyclin-dependent kinase 5 (Cdk5) and its neuron-specific regulator p35 are essential for neuronal migration and for the laminar configuration of the cerebral cortex. In addition, p35/Cdk5 kinase concentrates at the leading edges of axonal growth cones and regulates neurite outgrowth in cortical neurons in culture. The Rho family of small GTPases is implicated in a range of cellular functions, including cell migration and neurite outgrowth. Here we show that the p35/Cdk5 kinase co-localizes with Rac in neuronal growth cones. Furthermore, p35 associates directly with Rac in a GTP-dependent manner. Another Rac effector, Pak1 kinase, is also present in the Rac-p35/Cdk5 complexes and co-localizes with p35/Cdk5 and Rac at neuronal peripheries. The active p35/Cdk5 kinase causes Pak1 hyperphosphorylation in a Rac-dependent manner, which results in down-regulation of Pak1 kinase activity. Because the Rho family of GTPases and the Pak kinases are implicated in actin polymerization, the modification of Pak1, imposed by the p35/Cdk5 kinase, is likely to have an impact on the dynamics of the reorganization of the actin cytoskeleton in neurons, thus promoting neuronal migration and neurite outgrowth.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

  NODES
twitter 2