A comparison of computer based classification methods applied to the detection of microaneurysms in ophthalmic fluorescein angiograms
- PMID: 9784961
- DOI: 10.1016/s0010-4825(98)00011-0
A comparison of computer based classification methods applied to the detection of microaneurysms in ophthalmic fluorescein angiograms
Abstract
We compared the performance of three computer based classification methods when applied to the problem of detecting microaneurysms on digitised angiographic images of the retina. An automated image processing system segmented 'candidate' objects (microaneurysms or spurious objects), and produced a list of features on each candidate for use by the classifiers. We compared an empirically derived rule based system with two automated methods, linear discriminant analysis and a learning vector quantiser artificial neural network, to classify the objects as microaneurysms or otherwise. ROC analysis shows that the rule based system gave a higher performance than the other methods (p = 0.92) although a much greater development time is required.
Similar articles
-
An image-processing strategy for the segmentation and quantification of microaneurysms in fluorescein angiograms of the ocular fundus.Comput Biomed Res. 1996 Aug;29(4):284-302. doi: 10.1006/cbmr.1996.0021. Comput Biomed Res. 1996. PMID: 8812075
-
Automated detection and quantification of microaneurysms in fluorescein angiograms.Graefes Arch Clin Exp Ophthalmol. 1992;230(1):36-41. doi: 10.1007/BF00166760. Graefes Arch Clin Exp Ophthalmol. 1992. PMID: 1547965
-
A fully automated comparative microaneurysm digital detection system.Eye (Lond). 1997;11 ( Pt 5):622-8. doi: 10.1038/eye.1997.166. Eye (Lond). 1997. PMID: 9474307
-
Algorithms for the automated detection of diabetic retinopathy using digital fundus images: a review.J Med Syst. 2012 Feb;36(1):145-57. doi: 10.1007/s10916-010-9454-7. Epub 2010 Apr 6. J Med Syst. 2012. PMID: 20703740 Review.
-
From magnetic resonance spectroscopy to classification of tumors. A review of pattern recognition methods.NMR Biomed. 1998 Jun-Aug;11(4-5):148-56. doi: 10.1002/(sici)1099-1492(199806/08)11:4/5<148::aid-nbm511>3.0.co;2-4. NMR Biomed. 1998. PMID: 9719569 Review.
Cited by
-
A lightweight deep learning model for automatic segmentation and analysis of ophthalmic images.Sci Rep. 2022 May 20;12(1):8508. doi: 10.1038/s41598-022-12486-w. Sci Rep. 2022. PMID: 35595784 Free PMC article.
-
Multi-label classification of retinal lesions in diabetic retinopathy for automatic analysis of fundus fluorescein angiography based on deep learning.Graefes Arch Clin Exp Ophthalmol. 2020 Apr;258(4):779-785. doi: 10.1007/s00417-019-04575-w. Epub 2020 Jan 14. Graefes Arch Clin Exp Ophthalmol. 2020. PMID: 31932886
-
Fully automatic segmentation of fluorescein leakage in subjects with diabetic macular edema.Invest Ophthalmol Vis Sci. 2015 Jan 29;56(3):1482-92. doi: 10.1167/iovs.14-15457. Invest Ophthalmol Vis Sci. 2015. PMID: 25634978 Free PMC article.
-
A Random Forest classifier-based approach in the detection of abnormalities in the retina.Med Biol Eng Comput. 2019 Jan;57(1):193-203. doi: 10.1007/s11517-018-1878-0. Epub 2018 Aug 4. Med Biol Eng Comput. 2019. PMID: 30076537
-
Entropy Rate Superpixel Classification for Automatic Red Lesion Detection in Fundus Images.Entropy (Basel). 2019 Apr 19;21(4):417. doi: 10.3390/e21040417. Entropy (Basel). 2019. PMID: 33267131 Free PMC article.
Publication types
MeSH terms
LinkOut - more resources
Full Text Sources
Other Literature Sources
Medical