A comparison of computer based classification methods applied to the detection of microaneurysms in ophthalmic fluorescein angiograms
- PMID: 9784961
- DOI: 10.1016/s0010-4825(98)00011-0
A comparison of computer based classification methods applied to the detection of microaneurysms in ophthalmic fluorescein angiograms
Abstract
We compared the performance of three computer based classification methods when applied to the problem of detecting microaneurysms on digitised angiographic images of the retina. An automated image processing system segmented 'candidate' objects (microaneurysms or spurious objects), and produced a list of features on each candidate for use by the classifiers. We compared an empirically derived rule based system with two automated methods, linear discriminant analysis and a learning vector quantiser artificial neural network, to classify the objects as microaneurysms or otherwise. ROC analysis shows that the rule based system gave a higher performance than the other methods (p = 0.92) although a much greater development time is required.
Similar articles
-
An image-processing strategy for the segmentation and quantification of microaneurysms in fluorescein angiograms of the ocular fundus.Comput Biomed Res. 1996 Aug;29(4):284-302. doi: 10.1006/cbmr.1996.0021. Comput Biomed Res. 1996. PMID: 8812075
-
Automated detection and quantification of microaneurysms in fluorescein angiograms.Graefes Arch Clin Exp Ophthalmol. 1992;230(1):36-41. doi: 10.1007/BF00166760. Graefes Arch Clin Exp Ophthalmol. 1992. PMID: 1547965
-
A fully automated comparative microaneurysm digital detection system.Eye (Lond). 1997;11 ( Pt 5):622-8. doi: 10.1038/eye.1997.166. Eye (Lond). 1997. PMID: 9474307
-
Algorithms for the automated detection of diabetic retinopathy using digital fundus images: a review.J Med Syst. 2012 Feb;36(1):145-57. doi: 10.1007/s10916-010-9454-7. Epub 2010 Apr 6. J Med Syst. 2012. PMID: 20703740 Review.
-
From magnetic resonance spectroscopy to classification of tumors. A review of pattern recognition methods.NMR Biomed. 1998 Jun-Aug;11(4-5):148-56. doi: 10.1002/(sici)1099-1492(199806/08)11:4/5<148::aid-nbm511>3.0.co;2-4. NMR Biomed. 1998. PMID: 9719569 Review.
Cited by
-
Retinal imaging and image analysis.IEEE Rev Biomed Eng. 2010;3:169-208. doi: 10.1109/RBME.2010.2084567. IEEE Rev Biomed Eng. 2010. PMID: 22275207 Free PMC article. Review.
-
Automated identification of exudates and optic disc based on inverse surface thresholding.J Med Syst. 2012 Jun;36(3):1997-2004. doi: 10.1007/s10916-011-9659-4. Epub 2011 Feb 12. J Med Syst. 2012. PMID: 21318328
-
Automated detection of diabetic retinopathy: barriers to translation into clinical practice.Expert Rev Med Devices. 2010 Mar;7(2):287-96. doi: 10.1586/erd.09.76. Expert Rev Med Devices. 2010. PMID: 20214432 Free PMC article.
-
Multiscale AM-FM methods for diabetic retinopathy lesion detection.IEEE Trans Med Imaging. 2010 Feb;29(2):502-12. doi: 10.1109/TMI.2009.2037146. IEEE Trans Med Imaging. 2010. PMID: 20129850 Free PMC article.
-
Hemorrhage Detection Based on 3D CNN Deep Learning Framework and Feature Fusion for Evaluating Retinal Abnormality in Diabetic Patients.Sensors (Basel). 2021 Jun 3;21(11):3865. doi: 10.3390/s21113865. Sensors (Basel). 2021. PMID: 34205120 Free PMC article.
Publication types
MeSH terms
LinkOut - more resources
Full Text Sources
Other Literature Sources
Medical