Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1999 Feb;60(2):330-5.
doi: 10.1095/biolreprod60.2.330.

Expression of 11beta-hydroxysteroid dehydrogenase, glucocorticoid receptor, and mineralocorticoid receptor genes in rat ovary

Affiliations

Expression of 11beta-hydroxysteroid dehydrogenase, glucocorticoid receptor, and mineralocorticoid receptor genes in rat ovary

M Tetsuka et al. Biol Reprod. 1999 Feb.

Abstract

A new concept in reproductive endocrinology is that the status of the ovary as a glucocorticoid _target organ alters with follicular development. Evidence for a physiological role of glucocorticoids in the regulation of ovarian folliculogenesis has been strengthened by the discovery that 11beta-hydroxysteroid dehydrogenase (11betaHSD) mRNA expression in human granulosa cells is developmentally regulated. In this study, we quantified the pattern of expression and investigated the cellular location of 11betaHSD type 1 (11betaHSD1), 11betaHSD type 2 (11betaHSD2), glucocorticoid receptor (GR), and mineralocorticoid receptor (MR) mRNAs during follicular maturation in rat ovary. Immature female rats received treatment with eCG to induce preovulatory follicular development or eCG followed by hCG to induce luteinization. 11betaHSD1, 11betaHSD2, GR, and MR mRNAs were all detectable by ribonuclease protection assay in ovarian total RNA. Treatment with eCG alone caused an approximately 8-fold increase in the ovarian level of 11betaHSD1 mRNA, which rose to approximately 30-fold after additional treatment with hCG. Equine CG alone did not measurably affect the ovarian 11betaHSD2 mRNA level, but additional treatment with hCG reduced it to 34% of the control level. Expression of GR mRNA was unchanged by any gonadotropin treatment, while MR mRNA was down-regulated. A similar pattern of 11betaHSD1, 11betaHSD2, GR, and MR mRNA expression was observed in isolated granulosa cells. These results provide direct experimental evidence that 11betaHSD genes are gonadotropically regulated in the rat ovary, including granulosa cells, and are consistent with a shift in glucocorticoid metabolism from inactivation (due to oxidation by 11betaHSD2) to activation (reduction by 11betaHSD1) during hCG-induced granulosa cell luteinization.

PubMed Disclaimer

Similar articles

Cited by

Publication types

Substances

LinkOut - more resources

  NODES
twitter 2