

Enumerative combinatorial problems concerning structures

Citation for published version (APA):

Bruijn, de, N. G. (1963). Enumerative combinatorial problems concerning structures. *Nieuw Archief voor Wiskunde*, *3/11*, 142-161.

Document status and date:

Published: 01/01/1963

Document Version:

Publisher's PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

- A submitted manuscript is the version of the article upon submission and before peer-review. There can be important differences between the submitted version and the official published version of record. People interested in the research are advised to contact the author for the final version of the publication, or visit the DOI to the publisher's website.
- The final author version and the galley proof are versions of the publication after peer review.
- The final published version features the final layout of the paper including the volume, issue and page numbers.

Link to publication

General rights

Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

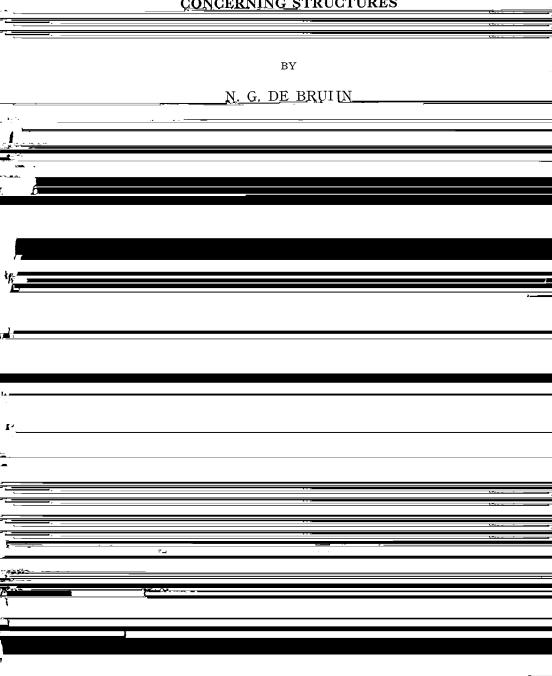
- · Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
- You may not further distribute the material or use it for any profit-making activity or commercial gain
 You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the "Taverne" license above, please follow below link for the End User Agreement

www.tue.nl/taverne

Take down policy

If you believe that this document breaches copyright please contact us at


openaccess@ tue.nl

providing details and we will investigate your claim.

Download date: 14. Dec. 2024

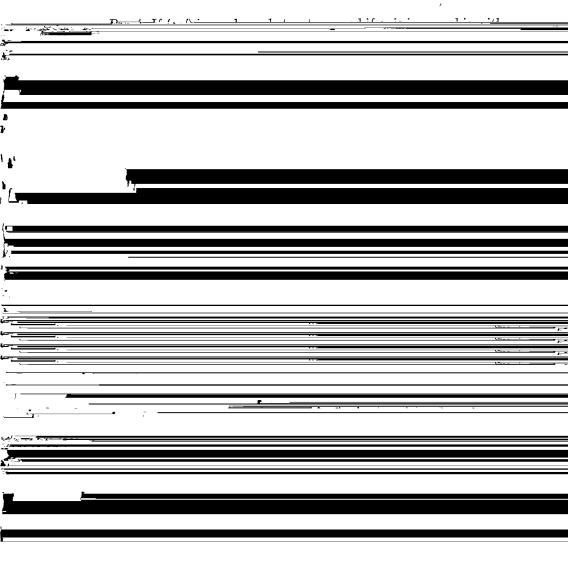
Nieuw Archief voor Wiskunde (3), XI, 142-161 (1963)

ENUMERATIVE COMBINATORIAL PROBLEMS <u>CONCERNING STRUCTURES</u>

account wa	s made to do son	iething with	<u>a whole clas</u>	s of groups	
			****		(~
<u> </u>			112		(**** - / =
— -					(
-			112		(
_			1		(
— .			1		(===
			A 7 2		(2 / _
—: —:					(2,
 .					(•· -
This is conn	ected with the fa	ct that there	e ar <u>e not m</u> ar	nv_classes of	÷.
		-			(/ =
- -					(=:
<u> </u>	*=* · · · · -			-	
-					
·					
•					
		r., .)	_		
					(
			100		Cia :

D, R, S, T are sets, if $f \in R^D$, $g \in S^T$, and if $R \subset T$, then the compo-

sition gf is the mapping of D into S, defined as follows: (gf)(d) =


 $= g\{\underline{t(d)}\}$ for all $d \in D$. If A and B are sets, then $A \times B$ is the

is a finite set, then |D| represents the number of elements of D.

2. Structures on a tinite set. We shall not define here explicitly

what we mean by the word "structure". We shall only assume that

	ploured structures (although it is the base set D that is coloured	
	nd not the structure).	
	id not the structurer.	
	· · · · · · · · · · · · · · · · · · ·	
	160	
	· · · · · · · · · · · · · · · · · · ·	
		_ ,
		. ,
	(2)	
_		
_		-

In other words, $Z_K = |G|^{-1} \sum_s \sum_g \psi(g)$, where the summation runs over all pairs is σ with $s \in K$, $\sigma \in G$, $\sigma(\sigma)_s = s$. Carrying out sum-

mation with respect to K, we obtain that

$$U = \sum_K Z_K = |G|^{-1} \sum_g \sum_s \psi(g);$$

where the summation is now restricted by $s \in S$, $g \in G$, $\sigma(g)s = s$.

If g is fixed, the number of possible s equals V(g), so our proof is complete.

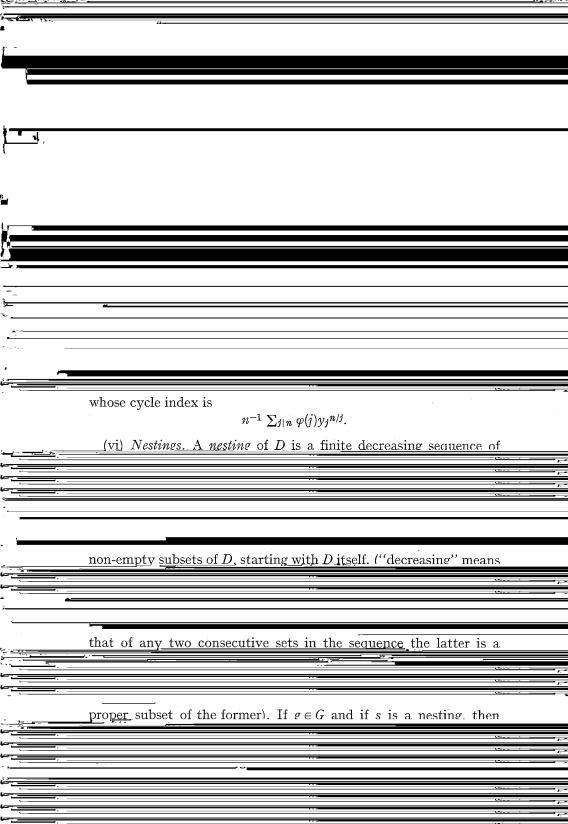
We close this section by indicating an application of the polynomial U that is not a direct consequence of Pólya's theorem. We take a set of two colours. A structure s is said to be symmetrically

bicoloured if there is an automorphism of the structure that inter-

3. Examples with symmetric group G. In each example we take for S the set of all structures of a given type, and G is always the full symmetric group of D. The number of elements of D is called

n. In all examples of this section the U-polynomial will depend on n, and will be interpreted as the coefficient of w^n in a generating

function

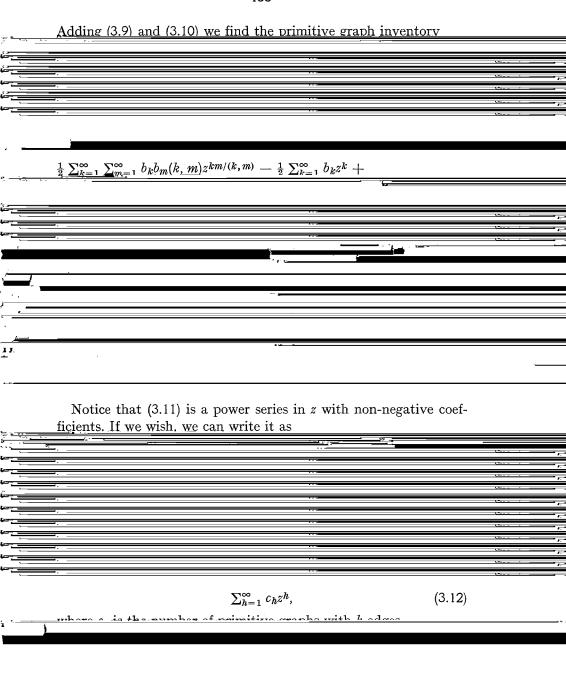

$$U(w; y_1, y_2, ...) = \sum_{0}^{\infty} w^n U_n(y_1, y_2, ...).$$
 (3.1)


(i) "Trivial" structures. Having the trivial structure on D means

that D is considered as just a set. Or, rather, the set S consists of

only one element, and the representation σ can be only the trivial one. So there is only one structure class, and the automorphism group of the one element in that class is G itself. So $U(y_1, y_2, ...) = P_G(y_1, y_2, ...)$. As G is the symmetric group of degree n, we know (see [7, 2]) that (3.1) equals

-	but we again suppress the proof. as (3.3) does not lead to new re-
=	
	sults. For colouring an ordered couple with colours taken from the
-	colour set R , can also be described as colouring the first component
	of the couple with a colour taken from the set $R \times R$.
	or the count with a colour taken from the set N ∧ N.
	To shift of the control of the contr
	,
	(
_	
	$s \in S$, $g \in G$, we define $\sigma(g)s = gsg^{-1}$ (so if s carries d into d', then


(mondlage to com It . _ Ofwar a contain i answard on the munition of

edges cannot exceed
$$\frac{1}{2}(n^2 - n)$$
.

Using the notation (k, m) for the greatest common divisor of k and m, we shall show that

$$V(z; b_1, b_2, ...) = \prod_{k=1}^{\infty} \prod_{m=1}^{\infty} (1 + z^{km(k, m)})^{\frac{1}{2}(k, m)b_k b_m} \times \underbrace{\Pi^{\infty} \quad (1 + z^k)^{-\frac{1}{2}b_k} \Pi^{\infty}} \left\{ \underbrace{(1 + z^r)^2}_{2} \right\}^{\frac{1}{2}b_{2r}}$$

In order to prove this, we take a special permutation g of G, with $b_1(g) = b_1$, $b_2(g) = b_2$, etc. We want to count the number of graphs (with D as the set of nodes) which are invariant under $\sigma(g)$, or

4. Examples with a general group G. We again take a finite set D.

and a permutation group G of D, which is, in contrast to the previous section, not necessarily the symmetric group.

(viii) TH-structures. Let T be another finite set, and let H be a group of permutations of T. If both f_1 and f_2 are mappings of T into D, then they are called equivalent if and only if $f_1 = f_2h$ for some $h \in H$. The equivalence classes defined by this equivalence

will be called TH-structures. If $f \in D^T$, then the TH-structure to

f with gf = fh can be shown to be (see [2])

$$b_1^{c_1}(b_1 + 2b_2)^{c_2}(b_1 + 3b_3)^{c_3}(b_1 + 2b_2 + 4b_4)^{c_4} \dots =$$

$$= \left(\frac{\partial}{\partial z_1}\right)^{c_1} \left(\frac{\partial}{\partial z_2}\right)^{c_2} \dots \exp\left\{\sum_{j=1}^{\infty} j b_j (z_j + z_{2j} + z_{3j} + \dots)\right\}, \quad (4.3)$$

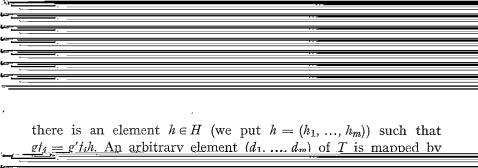
evaluated at $z_1 = z_2 = \dots = 0$. Taking the sum over all $h \in H$, and

dividing by
$$|H|$$
, we get $V(g)$. In order to get $U(v_1, v_2, ...)$ we apply

theorem 2, and that produces (4.1).

The special case $v_1 = v_2 = ... = 1$ in (4.2) reproduces a result of

[1, 2]. For, U(1, 1, 1, ...) is nothing but the number of structure


be interchanged without altering the colour scheme essentially. In required number is $P_H(1, 3, 1, 3,) = 9$. These nine solutions are easily obtained experimentally: one is all-white; two have one red		
required number is $P_H(1, 3, 1, 3,) = 9$. These nine solutions are easily obtained experimentally: one is all-white; two have one red		
be interchanged without altering the colour scheme essentially. In	easily obtained experimentally: one is all-white; two have one r	ed
be interchanged without altering the colour scheme essentially. In		
be interchanged without altering the colour scheme essentially. In		
be interchanged without altering the colour scheme essentially. In		
be interchanged without altering the colour scheme essentially. In	E	
be interchanged without altering the colour scheme essentially. In		
be interchanged without altering the colour scheme essentially. In		
be interchanged without altering the colour scheme essentially. In		
	be interchanged without altering the colour scheme essentially.	In
	17.56 17.56	, c
	112 112	- C-
		(

a class tH, then it contains the class gtH, for each $g \in G$. We shall

define the mapping ψ of S_1 onto S by

$$\psi(gf_jH) = \sigma_0(g)s_j, \tag{4.5}$$

but we have to show first that this definition is unambiguous. As-

(ix) Colourings. We take a set R of colours, and the structures

·	102	(= ₁ ·
		(
	112	(
-	62	(
	17.2	(/
<u> </u>	112	(=- , ,
	112	(
	172	(
<u> </u>	172	(-, - ,
<u> </u>	112	(
<u> </u>	1.2	(=, _ ,
	172	(=, ·
	112	(
	102	(=, ,
	r can	(
· .	100	(=,
	to be considered in this example are just the colourings of D wi	th
-	100	(
-	112	(=,
	102	(=,
-	112	(
<u> </u>	172	(= ·
	112	(=, _ ,
	172	(~
	112	(=r ·
	colours from R , i.e. $S = R^D$. And, for $g \in G$, we define $\sigma(g) = \sigma(g)t = tg^{-1}$ ($t \in R^D$). This is the same situation as in example	
	112	(-,
		(
	172	(·
-	rra-	(
~ 5		
	(sec. 3), this time without restriction to the symmetric group as	nd
\$	11/2	(=
-	CO	(
		(*****
	172	(5, ,

Denoting $b_i(g)$ by b_i , $b_i(l)$ by c_i , the number of t with $tg^{-1} = lt$

$$\left(\frac{\partial}{\partial z_1}\right)^{b_1} \left(\frac{\partial}{\partial z_2}\right)^{b_2} \dots \exp\left\{\sum_{j=1}^{\infty} j c_j (z_j + z_{2j} + z_{3j} + \dots)\right\},$$

evaluated at $z_1 = z_2 = ... = 0$. In order to get $U(y_1, y_2, ...)$, we have to take the average over all $l \in L$, to multiply by $y_1^{b_1}y_2^{b_2}...$,

and to take the average over all
$$e \in G$$
. That leads to (4.6).

If the group L consists of the identity only,
$$P_L(x_1, x_2, ...)$$
 reduces

Similar simple results can always be obtained in situations where

·	•	(=, _ ,
~	1	(

* <u> </u>	** -	(=t t
 ,	***	
·		I,
		(/ F
	1.2	(-t t
'	X+-2-	(*

~		1,
		(
4		
•		
· · · · · · · · · · · · · · · · · · ·	_	

F		
* 		
`		
<u> </u>		
		1
-		
		<u> </u>
	-	
	-	
of nestings (see sec.	. 3. example vi), we obtain	
of nestings (see sec.	3_example vi). we obtain	
of nestings (see sec.	3. example vi), we obtain	
of nestings (see sec.	3_example vi), we obtain	
		. Co
		Citizen I
		Circ. I
		City City City City City City City City
<i>b b c c c c c c c c c c</i>		
<i>b b c c c c c c c c c c</i>		

theorem (see [8, 9]). That theorem is obtained from the above result by taking each structure set to consist of a single structure

class only (whence the U's become cycle indexes), and putting

 $y_1 = y_2 = \dots = 1$ in the final result.

(Received October 7, 1963)

Technological University Eindhoven, Netherlands

REFERENCES

[1] DE Bruijn, N. G., Generalization of Pólva's fundamental theorem in enumer-

- ative combinatorial analysis, Nederl. Akad. Wetensch. Proc. Ser. A, vol. 62 = Indag. Math., vol. 21, pp. 59–69, 1959.
 - [2] DE BRUIIN, N. G., Pólya's theory of counting to appear as a chapter in