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ENUMERATIVE COMBINATORIAL PROBLEMS
CONCERNING STRUCTURES

N. G, DE BRUIN

].. Imfmduc;ti on. Before we state the main theme of this paper,

we nresent. the definition of the cvcle index of a permutation eroup

theorem connected with it.
Let D be. a finite set with = elements. If ¢ is any permutation

of D then g splits into cycles; let b;(g) be the number of cycles of
_leneth 7 (whence »'1bi(e) = 7). Let G be a group of permutations |

— —

of D; |G| denotes the order of the group. Let y1, y2, y3, ... be vari-
ables. To each element ¢ € G we associate a product y1010) 0@

¥

Y
(we do not bother to write down the last factor in the product, for

- DY I R U R, AR 7. S it PRI PSR DN ¢ AP i |
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~attempt was made to do somethine with a_whole class of sronns

LS.
-]

are cases where we have a sequence of eroups Gui. .... Gw. where the

T — =

A —— e ———————————————————— .

— — =

N~ T ——— —————

S - =
sum

¥ Py (m, m,m, ...) (1.3)

has a combinatorial significance, and where the sum.
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D.R.S. T are sets,if fe RP. g ST _and if R C T, then the compo-

Y —
Fee —

, , sition ¢f is the mapping of D into S, defined as follows: (gfi(d) =

_ ,. = gifld)}t for all deD. If 4 and B are sets. then 4 X B is the

e
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_coloured structyres (althoueh it is the base set 1 that is colonred

= _—— s =
—,

and not the structure).

— ——
—

T

o*(g) (s, /) = (o(g)s, fg))  (se€S,feRD).
- For example, if S is the set of a_ll npossible graphs whose set of nades




if s1 is not isomorphic with s, there is no such f;. So in order to
eniimerate all F it suffices to select a single s from each structure
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In other words, Zg = |G|t X5 X ¥(g), where the summation runs
) nyerall naire (¢ oY with e e K o7 ~lole = ¢_Carrving ont siim-

mation with respect to K, we obtain that

U=73k ZK = |G| 3y Zs #(g);

where the summation is now restricted bv s S. ¢ € G, olgls = 5.

If g is fixed, the number of possible s equals V(g), so our proof is
complete. :

We close this section by indicating an application of the poly-
nomial U that is not a direct consequence of Pélya’s theorem. We
take a set of two colours. A structure s is said to be svmmetrically

I
L

m
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3. Examples with symmetric group G. In each example we take
for S the set of all structures of a given type, and G is always the
. full svmmetric group of D. The nun}ber of elements of D is called

— v e—
—

#. In all examples of this section the U-polynomial will depend on
n, and will be interpreted as the coefficient of w” in a generating

function
/ Uw; y1, y2, ...) = 25 wUnp(y1, ve, ...)- (3.1)
(D_“Trivigl’ structures. Having tl_le,trivial structure on D means
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but we again suppress the proof. as (3.3) does not lead to new re-

sults. For colouring an ordered couple with colours taken from the
coloul set K, .can also be described as colouring the first component .

Q_‘chg couple with. a colour taken from the set R X R._

{ '

(iv) Permutations. Let S be the set of all permutations of D. If
s€ S, ge G, we define a(g)s == gsg~! (so if s carries 4 into d’, then

Ulw; y1,y2, ...) = {(1 — y1@)(1 — y20)(1 — yawd)..}71. (3.4
Notice that the number of structure classes on D is equal to the

number of partitions of #, and, indeed, (3.4) produces the well-
~ known generating function for these partition numbers bv setting

o 7 We prove (3.4) bv_application of theorem 2. According to the

“definition of ¢, the number V(g) (see (2.4)) equals the number of s

with gs = sg. The permutatlons commuting with g map cycles of g

LD T Y e . o g1 Tr 1 7T P DY A Y & T 1 T o
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-

B that of any_two consecutive sets in the sequence the latter is a_
s — - :
g s —_— - '
e —r—— f-—————— :
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Irondlace 4 caxr T7. oo D fvnsn n anwdnitn & psvernwed  acdlod wnawennloa.. _F
T

-

i
—

. edges cannot exceed #(n2 — #)),

T
T

m

Using the notation (%, m) for the greatest common divisor of %
and m, we shall show that

V(z; b1, ba, ...) = TI12., TISo_; (1 + zkme,m))¥te,mibibm

1b
v JT® (1 L ok\—3be JTo° I-(_lj-zr)zl i 2 QY.

In order to prove this, we take a special permutation g of G, with
b1(g) = b1, ba(g) == ba, etc. We want to count the number of graphs
(with D as the set of nodes) which are invariant under afo). or.

—
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_Adding (3.9) and (3.10) we find the primitive graph inventorv

§ 21 T (R, m)zFm Ut — § 34 bk

Notice that (3.11) is a power series in z with non-negative coei-
ficients, If we wish. we can write it as

m

ﬁ—zﬁl cnilt, 3.12)

P D VR & I NPT LT JE-D S TR NPVRONORS g 5 PO NP PR

.- Returning to the question of al/ eravhs invariant under g. we.

notice that an arbitrary graph of that type is obtained by taking
anyv _sybset of the set of primitive graphs, and constructing the

—_— =
superposition of the primitive graphs belonging to that subset. It
follows that the inventorv of the set of all graphs invariant under ¢
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4. Examples with a general erowd G. We acain take afinite set D.

= g;._ j =
T p— -

and a permutation group G of D, which is, in contrast to the
previous section, not necessarily the symmetric group.

(viii) TH-structures. Let T be another finite set, and let H be a
group of permutations of 7. If both /1 and fo are mappings of T
into D, then they are called equivalent if and only if /; = foh for
some_h e H. The equivalence classes defined bwv this equivalence
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_f with gf = #A can be shown to be (see [2])

blcl(bl + 2[)2)02(51 -+ 363)83(61 -+ 2bs + 4[)4)04
a \01 a \62 - .
== 3_41 ) Aéz_g) ... €Xp {27-=1 ﬂ)j(Zj -+ 225 + Z3j + )}, (4.3)

evaluated at 21_= 2o = ... == Q. Takine the sum. over all ,.e H_ and - _
—_— —
. _dividing bv_LH|. we eget V(o). In order to eet Ulv: vo ) we annly .
i e e _—_— —
T — ————
—

theorem 2, and that produces (4.1).
— _The Sp'ecriffl case Vi = Vo = .. = 1 in (4.2) renrodiices a resnlt of

H 21 For U(l,1,.1 ) is nothing but th(Lnumber of structure

-
- - — — e
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A further question is, in how many ways we can colour the six
faces with red. white and blue in such a wav that red and blue can

required number is Pg(l, 3, 1, 3, ...) = 9. These nine solutions are
easily_obtained experimentally: one is all-white; two have one red

- o frm
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.. aclass fH ..then it contains the class gfH, for each ¢ € G. We shall

define the mapping ¢ of S1 onto S by

$(gliH) = oo(g)ss, (4.5)
but we have to show first that this dehmtmn is unambiguous._As-

there is an element Ae H (we put % = (b, ..., hy)) such that
_gli=¢'fih_Ap arbitrarv element (4i. ....dw) of T is mapoed bv
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(ix) Colourings. We take a set R of colours. and the structures

S p—

3

e |

B T ~ —

5 = - — = —

e

ta T —————
—————————————————————

colours from R, ie. S = RD. And, for ge G, we define o(g) by
. ole)f.=fo ! (e RP). This is the same situation as in examole ii

sy p— .-

- e - — —

S— (sec. 3). this time without restriction to_the svrgmﬁrm group and

without summation with respect to #, It is not difficult to obtain_
e T e A

— — —
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Similar simple results can alwavs be,obta_ined in sitrations where

S rp—— = e — -

T : . = A S——eH i A —i——itiiiiiiiiiis-¢ i
7 T L A R W e _
—h —————————————————————————————————————

L‘ﬁr{,—
- -

And if Sy is the set of permutations (see sec. 3. examnle iv). it turns







