

Trajectory planning and feedforward design for
electromechanical motion systems
Citation for published version (APA):
Lambrechts, P. F. (2003). Trajectory planning and feedforward design for electromechanical motion systems.
(DCT rapporten; Vol. 2003.008). Technische Universiteit Eindhoven.

Document status and date:
Published: 01/01/2003

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 10. Jan. 2025

https://research.tue.nl/en/publications/17ec0482-23e5-4bc5-9543-37f02f87adae

technische universiteit eindhoven

I

Trajectory planning and
feedforward design for

electromechanical motion systems

Report nr. DCT 2003-08

Paul Lambrechts
Email: P.F.Lambrechts @tue.d

17th February 2003

Abstract

This report considers trajectory planning with given design constraints and design of an ap-
propriate feedforward controller for single axis motion control. A motivation is given for
using fourth order feedfonvard with fourth order trajectories. An algorithm is given for cal-
culating hqjher order trajectories with bounds on all considered derivatives for point to point
moves. It is shown that these trajectories are time-optimal in the most relevant cases. All
required eqmtions for third and fourth order trajectory planning are explicitly derived. Im-
plementation, discretization and quantization effects are considered. Simulation results show
the effectiveness of fourth order feedfonvard in comparison with lower order feedforward.

Contents

rn
Introduction

Mass feedforward

Higher order feedforward

Higher order trajectory planning

Third order trajectory planning

Fourth order trajectory planning

Implementation aspects
7.1 Switching times
7.2 Synchronization of profiles
7.3 lmplementation of first order filter
7.4 Calculation of reference trajectory

Simulation results

Conclusions

1 Introduction

Feedforward control is a well known technique for high performance motion control problems
as found in industry. It is, for instance, widely applied in robots, pick-and-place units and po-
sitioning systems. These systems are often embedded in a factory automation scheme, which
provides desired motion tasks to the considered system. Such a motion task can be to perform
a motion from a position A to a position B, starbing at a time t. Usually this task is transferred
to computer hardware dedicated to the control of the system, leaving the details of planning and
execution of the motion to this dedicated motion control computer. The tasks of this dedicated
motion controller will then consist of:

0 trajectory planning: the determination of an allowable trajectory for all degrees of freedom,
separately or as a multidimensional trajectory, and the calculation of an allowable trajectory
for each actuation device;

feedforward control: the representation of the desired trajectory in appropriate form and
the calculation of a feedforward control signal for each actuation device, with the intention
to obtain the desired trajectory;

0 system compensation: to reduce or remove unwanted behavior like known or measured
disturbances and non-linearities;

feedback controk the processing of available measurements and calculation of a feedback
control signal for each actuation device to compensate for unknown disturbances and un-
modelled behavior,

internal checks, diagnostics, safety issues, communication, etc.

To simplify the tasks of the motion controller, the trajectory planning and feedforward control
are usually done for each actuating device separately, relying on system compensation and feed-
back control to deal with interactions and non-linearities. In that case, each actuating device is
considered to be acting on a simple object, usually a single mass, moving along a single degree
of freedom. The feedforward control problem is then to generate the force required to perform
the acceleration of the mass in accordance with the desired trajectory. Conversely, the desired
trajectory should be such that the required force is allowable (in the sense of mechanical load on
the system) and can be generated by the actuating device. For obvious reasons this approach is of-
ten referred to as 'mass feedforward' or 'rigid-body feedforward'. It allows a simple and practical
implementation of both trajectory planning and feedforward control, as the required calculations
are straightforward. The disadvantage of this approach is its dependence on system compensa-
tion and feedback control to deal with unmodelled behavior as mentioned before. The resulting
problem formulation can be split in two.

I. During execution of the trajectory the position errors are large, such that feedback con-
trol actions are considerable. Actual velocity and acceleration (hence: actuator force) may
therefore be much larger than planned. This may lead to undesired and even dangerous
deviations from the planned trajectory and damage to actuator and system.

2. When arriving at the desired endpoint, the positioning error is large and the dynarnical
state of the controlled system is not settled. Although the trajectory has finished, it is
often necessary to wait for a considerable time before the position error is settled within

some given accuracy bounds before subsequent actions or motions are allowed. A practical
consequence is the need for of a complex test to determine whether settling has sufficiently
occurred. Furthermore, it is a source of time uncertainty that may be undesirable on the
factory automation level.

To improve on this, many academic and practical approaches are possible. These can roughly be
categorized in three.

I. Trajectory smoothing or shaping: This can be done by simply reducing the acceleration
and velocity bounds used for trajectory planning, but also by smoothing or shaping the
trajectory and/or application of force (higher order trajectories, S-curves, input shaping,
filtering). The result of this can be very good, especially if the dynamical behavior of the
motion system is explicitly taken into account. However, it may also lead to a considerable
increase in execution time of the trajectory, often without a clear mechanism for finding a
time optimal solution. Various examples of this approach can be found in [3,6,7,8,12,5].

2. Feedforward control based on plant inversion: This attempts to take the effect of unmod-
elled behavior into account by either using a more detailed model of the motion system
or by learning its behavior based on measurements. An important practical disadvantage
is that they do not provide an approach for designing an appropriate trajectory. Various
examples of this approach can be found in [2, 4, g, IO,II, 14,15,16].

3. Feedback control optimization (possibly aided by system compensation improvement): By
improving the feedback controller, the positioning errors can be kept smaller during and at
the end of the trajectory. Furthermore, settling will occur in a shorter time. Also in this case
the design of an appropriate trajectory is not considered. Obviously, any feedback control
design method can be used for this. Some references given above also include a discussion
on the effect of feedback control on trajectory following; e.g. see [IO, 11,161.

This report will provide a method for higher order trajectory planning that can be used with
all of the approaches given above. It is attempted to give a better understanding of the effect
of smoothing, especially when considering a more optimal balancing between time optimality,
physical bounds (actuator device and motion system limits) and accuracy. 'Fourth order feedfor-
ward' wdl be presented as a clear and well implementable extension of 'mass feedforward', with
also a clear strategy for obtaining the aforementioned optimal balance. The implementation of
a fourth order trajectory planner will be set up as a natural extension of second and third order
planners to show the potential for practical application. Furthermore, the calculation of the op-
timal feedforward control signal will be shown. Next the effect of discrete time implementation
will be considered: this includes the planning of a fourth order trajectory in discrete time and the
optimal compensation of time delays in the feedforward control signal. Finally, some simulation
results are given to further motivate the use of fourth order feedforward.

The next chapter will review mass feedforward, mostly with the purpose of introducing some
notation. Next, chapter 3 will consider the extension of mass feedforward to fourth order feedfor-
ward, based on an extended model of the motion system. A general algorithm for higher order
trajectory planning will be considered in chapter 4, after which the relevant equations are derived
for third order trajectory planning in chapter 5 and for fourth order trajectory planning in chap-
ter 6. Next, implementation aspects are considered in chapter 7, followed by some simulation
results in chapter 8, and conclusions in chapter g.

2 Mass feedforward

The specifics of planning a trajectory and calculating a feedforward signal based on mass feed-
forward are fairly simple and can be found in many commercially available electromechanical
motion control systems. In this chapter a short review is given as an introduction to a standard-
ized approach to third and fourth order feedforward calculations.

Comider the configuration of figure I with m denoting the mass of the motion system-, F
the force supplied by the actuating device, x the position and k a viscous damping term. The

Figure I: Simple motion system: a single mass.

equation of motion for this simple configuration is of course

Now suppose we have a given bound on acceleration G (i-e. a bound on F), and we want to
perform a motion from the current position A to a position B over a distance we will denote as
3. Then the shortest time within which the motion can be performed is calculated as:

with tzi denoting the constant acceleration phase duration and t , denoting the total trajectory
execution time. Hence, this gives rise to a trajectory consisting of a constant maximal acceler-
ation phase followed directly by a constant maximal deceleration phase. Clearly if a bound on
velocity, denoted as u, is taken into account, t, can only become larger. We can test whether the
velocity bound @ is violated by calculating the maximal velocity obtained using the minimal time
trajectory:

A - v := a.t6 (3)

Now if 6 <= 8 we are finished: t , = 2t2 and no constant velocity phase is required. If 6 > B we
calculate: -

v 1
tC = : .j zc := 2 x -3t: < z

a 2 (4)

From this, the constant velocity phase duration t , is calculated:

and we now have: t , = 2tG + t,.

This implies that given a desired position displacement 3, a bound on velocity v and a bound
on acceleration a, it is a straightforward calculation to obtain t, and tB (the latter reverting to
zero if the velocity bound is not obtained). The desired trajectory can then be determined by con-
structing the acceleration profile, integrating it once to obtain the velocity profile, and integrating
it twice to obtain the position profile; see figure 2. As the position profile thus establishes the

Second order trajectory profiles

.

m

0 0.2 0.4 0.6 0.8 1
time [s]

Figure 2: Second order trajectory determination.

trajectory as a sequence of polynomials in time with a degree of at most two, mass feedforward
is often also referred to as second order feedforward. The actual implementation of the trajectory
planner and feedforward controller is indicated in %re 3. Note that the the feedforward force F

Clock Acceleration
Profile

Figure 3: Mass feedforward implementation.

is simply calculated fi-om equation I and the profiles in figure z.

1
PD -

m.s2

X

+

Velocity Position Controller
Plant

3 Higher order feedforward

The previous chapter shows that mass feedforward is based on a simple single mass model of
the motion system. This implies that the performance of mass feedforward is determined by
how much the actual motion system deviates from this single mass model. On the other hand,
the performance of the motion system as a whole is also determined by the quality of system
compensation and/or feedback control. It can be stated that the success of feedback control is
such that in many cases the mass feedforward approach is considered sufficient, given that an
appropriate feedback controller is required anyway for disturbance reduction and stabilization.

However, when considering hrther improvement of motion control system performance, the
use of hgher order feedforward is often a very effective approach in comparison with improved
feedback control. The first effect is that higher order trajectories inherently have a lower energy
content at higher frequencies, which results in a lower high frequency content of the error signal,
which in turn enables the feedback controller to be more effective. The second effect is that
h&er order trajectories have less chance of demanding a motion which is physically impossible
to perform by the given motion system: e.g. most power amplifiers exhibit a 'rise time' effect,
such that it is impossible to produce a step-like change in force.

These effects are commonly referred to as 'smoothing' and result in a decrease of positioning
errors during execution of the trajectory and a reduced settling time. The disadvantage of higher
order trajectories, i.e. the increase in trajectory execution time, is usually more than compensated
by the reduced settling time. Because of this, many high performance motion systems are already
equipped with a third order trajectory planner as a direct extension of mass feedforward. In this
chapter it will be determined that a fourth order trajectory planner and feedforward calculation
gives a significant further improvement.

The main argument for this is that an electromechanical motion control system will usually
have some compliance between actuator and load, and that both actuator and load will have a
relevant mass. For this reason it is natural to extend the single mass model of figure I to the
double mass model of figure 4. Here ml denotes the mass of the actuator, m2 the mass of the
load, F the force supplied by the actuating device, xl the actuator position, x2 the load position,
c the stiffness between the two masses, k12 the viscous damping between the two masses, kl the
viscous damping of the actuator towards ground and k2 the viscous damping of the load towards
ground, The equations of motion for this configuration are:

Figure 4: Extended motion system: double mass.

Laplace transformation and substitution then results in the following expression:

with:

This implies that if we have planned some fourth order trajectory for x2, from which we can
derive the correspondmg profiles for velocity v, acceleration a, jerk 2 and derivative of jerk d, the
feedforward force F can be calculated as:

Analogous to the implementation given in figure 3, this feedforward scheme can readily be irn-
plemented as given in figwe 5. Note that it is convenient to specify the trajectory by means of the

Figure 5: Fourth order feedforward implementation.

djerk

derivative of jerk profile d, such that all other profiles can easily be obtained by integration. An
algorithm for obtaining d will be the subject of the next chapters.

d -

Dwivatiie of jerk
profile generator

4 Higher order trajectory planning

Planners for second and third order trajectories are fairly well known in industry and academia
and there are many approaches for obtaining a valid solution. Extension to fourth order trajectory
planning is however not trivial. In this chapter we will review the main objectives of trajectory
planning in general and set up an algorithm for obtaining these objectives more or less irrespec-
tive of the order of the resdting trajectory.

As mentioned before, a trajectory is usually planned for a motion from the current position
A to some desired end position B under some boundary constraints. This will also be the basis
for the discussion given here, although the resulting algorithm can be adjusted for relevant alter-
native objectives like for instance speed control instead of position control, scanning motions or
speed change operations. Several fwther objectives that are of importance for applicability of a
trajectory planning algorithm ar given below.

e Timing. In principle we should strive for time optimality; at least it must be clear what the
consequences are for the trajectory execution time when considering the effect of boundary
conditions.

Actuator effort. This is usually the basis for the selection of bounds for velocity, acceleration
and jerk, although they may also be related to bounds on mechanics or safety issues.

Accuracy. For point to point moves, the planned end position of the trajectory must be
equal to the desired end position (within measurement accuracy).

Complexity. Usually trajectory planning is thought of as being done off-line. In practice
however, the desired end position often becomes available at the moment the trajectory
should start. Hence, the time required for planning the trajectory is lost and should be
minimized.

Reliability. The planning algorithm should always come up with a valid solution.

Implementation. Trajectory planning is done in computer hardware, and is therefore sub-
ject to discretization and dgttization.

Now we argue that these objectives, except the final one, are all met by the simple algorithm given
in chapter 2 (slightly adjusted):

I. calculate t , from equation 2,

2. calculate .fi from equation 3,

3. test 6 > G:

if true calculate t, from equation 4,

iffalse set t, = it,,

4. calculate x, from equation 4,

5. calculate t, from equation 5, and

6. finished: t, and to completely determine the trajectory.

First consider timing; obviously timing is minimal if the bound on v is discarded as is done in
step I. If introducing this bound leads to a reduction oft, (verify that equation 4 always leads to a
reduction) the result will be that v = is obtained in the shortest possible time, and is continued
for as long as possible. Hence the trajectory execution time is always minimal, given the bounds
a and @. Next, actuator effort is immediately taken into account by means of the given bounds,
accaacy is precise, complexity is very low and reliability is high (no iteration loops thzt can hang
up, algorithm only fails if a non-positive bound is specified). The implementation problem is
considered later.

Given the advantages of this algorithm, it is desirable to generalize it for planning higher
order trajectories. The position displacement 3 and bounds on all derivatives of the trajectory up
to the highest order derivative d (indicated as d) are assumed to be given. Furthermore we will
require that all derivatives are equal to zero at the start and end positions.

I. Determine a symmetrical trajectory that has d equal to either d or -d at all times and
obtains displacement 3.

2. Determine td: the shortest time that d remains constant (always the first period).

3. Calculate the maximal value of velocity 5 obtained during this trajectory.

a if true re-calculate td based on v (td decreases),

a if false continue.

5. Calculate the maximal value of acceleration ti obtained during this trajectory.

6. Test ti > a:

a iftrue re-calculate td based on a (td decreases),

if false continue.

7. Continue these tests and possible recalculations until d; the last test is performed on j,
defined as the h&est derivative before d. The resulting td will not be changed anymore.

8. Extend the trajectory symmetrically with periods of constant j whenever j reaches the value
3 or -j? this must be done such that the required displacement 3 is obtained.

g. Determine t,-: the shortest time that j remains constant.

10. Starting with velocity and ending with the derivative before j, calculate the maximal value
and re-calculate t,- if the appropriate bound is violated (each re-calculation can only decrease
t?).

11. The resulting t,- will not be Changed anymore.

12. Extend the trajectory symmetrically with periods of constant next lower derivative; again
such that the required displacement 3 is obtained. Determine the associated time interval
and do the tests and recalculations resulting in a h a 1 value for it.

13. Continue until v: the constant speed phase duration t , is calculated such that the required
displacement 3 is obtained (i.e. the displacement 'left to go' divided by v).

14. Finished: t ~ , t3, etc. until tv completely determine the trajectory.

The properties of the resulting trajectories (in the sense of the objectives given above) appear
to depend partly on the order of the trajectory planner. Obviously, the required calculations be-
come more complex with increasing order. Time-optimality is still automatically obtained with
third order trajectories, but not necessarily for fourth order trajectories (this can be obtained but
costs much complexity at a small gain with respect to a good sub-optimal solution). In principle,
higher than fourth order trajectories can also be planned by means of this algorithm, but this is
considered impractical due to the large increase in complexity. It is noted here that all calculations
for third and fourth order planning can be done analytically with fairly basic mathematical func-
tions, except one calculation for fourth order planning. For this case a simple and numerically
stable search algorithm can be used.

The next chapter will provide the calculations for third order trajectory planning; after that
fourth order trajectory planning will be considered.

5 Third order trajectory planning

Although chapter 3 shows that fourth order trajectory planning and feedfonvard is strongly mo-
tivated by a model based approach, it may still be useful to apply third order trajectory planning.
This chapter will provide the derivations and calculations necessary to 'fill in' the algorithm de-
veloped in chapter 4 for third order trajectory planning. We will assume that a trajectory must
be planned over a distance 3, that bounds are given on velocity (a), acceleration (8) and jerk (2,
and that the trajectory must be time optimal within these bounds. The bound on jerk can for
instance be related to 'rise time7 behavior as commonly found in electromechanical actuation sys-
tems with a non-ideal power amplser for generating the actuation force. This results in a bound
on the maximal current change per second, which translates to a maximal actuation force change
per second and a maximal acceleration change per second: hence a bound on jerk.

The trajectory planning algorithm will be based on the construction of an appropriate jerk
profile (instead of the acceleration profile as in mass feedfonvard) that can be integrated three
times to obtain the third order position trajectory. A symmetrical trajectory is completely deter-
mined by three time intervals: the constant jerk interval t,-, the constant acceleration interval ti,
and the constant velocity interval t,. The resulting profiles are given in figure 6. Including the
starting time of the trajectory at to, there are eight time instances at which the jerk changes. The
following relations are dear:

For step I of the algorithm, we will discard the bounds on acceleration and velocity, and only
consider the bound on jerk. This implies t, = 0 and t6 = 0 and it is dear that this will provide
us with a lower bound for the trajectory execution time t , = 4 x t,-.

To obtain t,- (step 21, we need the relation between t,- and Z with given 3: For this we make
use of the constant value of jerk of +? or -J during each interval. If we set the time instance of
jerk change to o, it is easily verified that for any time t during the constant jerk interval the third
order profiles for acceleration, velocity and position can be expressed as follows:

Because we assume that the bounds on acceleration and velocity are not violated, we have ti, = 0
and t, = 0, and consequently from figure 6: t2 = tl = t,- and t4 = t3. Hence:

and for the next period in which 3 = -3

Third order trajectory profiles

time [s]

Figure 6: Third order trajectory planning.

Substitution gives:

and due to symmetry of the profile: x(t7) = 2x(t3) = 23%;. From this we can calculate the
minimal required time to execute the trajectory for a distance 2 given the bound on jerk j as:

As mentioned before, the result of equation 15 does not take into account whether or not the
bounds on acceleration and/or veloaty are violated. However, if this would be the case, it is
obvious that t, must increase, but also that t,- must decrease.

Step 3 of the algorithm follows from equation 14; the maximum velocity ocms at t3, such
that:

6 = jt; (16)

If 6 > ij the bound is violated and we must recalculate t,- as follows:

Note that the resulting t,- will always be smaller than the result from equation 15, and that conse-
q~ently also the acceleration (from equation 12) will become smaller. This establishes step 4 of
the algorithm.

Step 5 follows from equation 12; the maximum acceleration occurs at tl, such that:

If 6 > a the bound is violated and we must recalculate t,- as follows:

Again t,- can only be smaller than previously calculated, such that we now have the guarantee that
t,- is the maximal value for which none of the bounds is violated. At the same time we have that
a maximal value oft,- will lead to a minimal value oft, and will therefore be (part of) the time-
optimal solution. This establishes step G of the algorithm and because a is the highest derivative
before j, also step 7.

The next thing to do is to calculate t,: also this value should be maximal for time-optimal
performance, while at the same time it must be such that no bounds are violated. To do the
necessary calculations, assume that tG > 0, such that we now have t2 > tl (from figure 6).
Equation 12 can then be extended with the help of equation 11 and the fact that 3 = 0 during the
period from tl to t2:

a(t2) = a(tl) + Ot, = Jt?
v(t2) = v(t1) + a(tl)t, = ijt; + jt,-ta
x(t2) = x(t1) + v(tl)t, + ia(t1)t; (20)

- - ;jt; + I-& + l-t-t2 2 - 1 9 ~ 2 - 1 2 ,

Again using equation 11 we can then calculate:

Now we assume that the velocity bound is not violated, such that t4 = ts. Then due to symmetry
of the profile we have:

3 2 x (t7) = 2x (t3) = 2Jtf + 3jt;ta + s t , (22)

By setting z = z(t7) we can then solve tZ from the following:

As t , must be positive to make sense, the solution is:

Note that t , >= 0 follows immediately from 17: >= 2Jt;. Hence, we now have determined t ,
under the assumption that the velocity bound will not be violated: equation 24 establishes steps
8 and g of the algorithm.

Step 10 introduces the velocity bound again; the maximal velocity is obtained at t3 (see 21):

If 6 > ij the bound is violated and we can recalculate ta as follows:

Now we have determined t7 and t, to be the time-optimal solution under the restriction of the
given bounds (step 11).

As the next lower derivative is already v, we can skip step 12 and continue with step 13: the
determination of the constant velocity time interval t, such that the required total displacement
3 is obtained. From the previous calculations follows that ts = 0 if t, is according to equation w.
But if t , is reduced accordmg to equation 26, we will have x(t7) < 17: and we must add a constant
velocity phase to the trajectory such that x(t4) - x(t3) = 17: - 22 (t3). With equation 21 this implies
that we can calculate t , as:

17: - 27t; - 37t;t, - Jt&
t, = -

v
This completes the calculation of the characteristics of the time-optimal third order profile for a
given distance 3 and given bounds ij, ii and 7. The total displacement 3 can be expressed as a
function of 7 and the times t,-, t , and t6:

6 Fourth order trajectory planning

This chapter will provide the derivations and calculations necessary to 'fill in' the algorithm devel-
oped in chapter 4 for fourth order trajectory planning. Again we will assume that a symmetrical
trajectory must be planned for a point to point move over a &stance Z. We have bounds on veloc-
ity (v), acceleration (ii), jerk (3 and derivative of jerk (d). The trajectory planning algorithm will
now be based on the constmction of a derivative of jerk profile that can be integrated four times
to obtain the fowth order position trajectory. A symmetrical trajectory is completely determined
by four time intervals: the constant derivative of jerk interval t d ; the constant jerk interval tJ,
the constant acceleration interval t, and the constant velocity interval tG. The resulting profiles
are given in figure 7. Including the starting time of the trajectory at to, there are sixteen time

Fourth order trajectory profiles

.

. 1 : ,

: I .
. . - 0 ; J . . . :

0 0.2 0.4 0.6 0.8 1 1.2
time [s]

Figure 7: Fourth order trajeciory planning.

instances at which the derivative of jerk changes.
For step I of the algorithm, we will discard the bounds on jerk, acceleration and velocity, and

only consider the bound on the derivative of jerk. This implies tG = 0, t , = 0 and t,- = 0 and it is
clear that this will provide us with a lower bound for the trajectory execution time t, = 8 x t&

To obtain t d (step 2), we need the relation between t d and z with given d. For this we make
use of the constant value of derivative of jerk of +d or -d during each interval. If we set the
time instance oI' derivative of jerk change to o, it is easily ve~;fied that for any b e t during the
constant derivative of jerk interval the fourth order profiles for acceleration, velocity and position
can be expressed as follows:

3 (t) = d o t + jo
a (t) = $dot2 + j o t + a0

v (t) = i d o t 3 + ; jot2 + a o t + v o
(29)

x (t) = &dot4 + i 3 0 t 3 + a o t 2 + v o t + x o

Because we assume that the bounds on jerk, acceleration and velocity are not violated, we have
t,- = 0, t, = 0 and t, = 0, and consequently from figure 7: t2 = tl = td; t 4 = t3 = 2td,
t6 = t5 = 3td and t s = t7 = 4t,-. Hence:

and for the next period in which d = -2:

Substitution gives:
j (t 3) = 0

Again using equation 29, we can calculate the results of the subsequent periods as:

and:

and due to symmetry of the profile: x(t 15) = 22 (t7) = 8dt$ From this we can calculate td as
required by steps I and 2 of the trajectory planning algorithm as:

To continue with step 3 we have that the maximal velocity is obtained at time instance t7. Hence,
from equation 34 follows:

- 3 8 = ~ (t 7) = 2dtd

If 6 > E we must recalculate td as:
r

which establishes step 4. Next, step 5 follows from the calculation of maximal acceleration ob-
tained at time instance t3. From equation 32 we have:

and if 6 > a we must recalculate td as:

t d = g
which establishes step 6. In this case we have one further test (step 7) to do on the maximal jerk
obtained at t 1 : -

j = 3(tl) = dtd (40)

and if j > 3 we must recalculate td as: -
3

t" 2
Hence, we now have a value for t l that complies with all of the bounds 3 a and G.

The next thing to do is to calculate t,- under the assumption that bounds a and 8 are not
violated (steps 8 and 9). To do the necessary calculations, assume that t,- > 0, such that we now
have t2 > tl and t6 > t5 (from figure 7). Equation 29 and the fact that d = 0 during the period
from tl to t2 now enables us to calculate:

Again using equation 29 we can then calculate:

Now with t8 = t7 and due to symmetry of the profile we have:

By setting I = x(t15) we can then solve tT from the following:

As this is a third order polynomial in t,- there is no analytical solution available. However, we are
looking for a positive real solution of a polynomial with positive coefficients except the final one.
This implies that we can set up a simple and well-defined numerical search to find the solution.

After this, step 10 introduces the velocity and acceleration bounds again; the maximal velocity
is obtained at t7 (see 46):

6 = v(t7) = 2dti + + dt& (49)

If 6 > . the bound is violated and we can recalculate t,- from the second order polynomial:

The positive real solution for this is:

Next, the maximal acceleration is obtained at t~ (see 43):

If li > G we can recalculate t,- as: -
a t - - - - t -

J - J d (53)

and we arrive at step 11 of the planning algorithm.
In accordance with step 12 there is one further extension of the trajedory required for the

calculation oft,. To do the necessary calculations, assume that tC > 0, such that we now have

t4 > t3 (from figure 7). Equation 29 and the fact that d = 0 and j = 0 during the period from t3
to t4 now enables us to calculate:

Now, given that td and t7 are already determined and the planned trajectory is symmetrical, we
can solve t , such that x (t = 2x (t7) = 3 from the following polynomial equation:

Clearly t, must be the positive root of this second order polynomial (compare with equation 24).
Now we can introduce the velocity bound again; the maximal velocity is obtained at t7 (see

If 6 > the bound is violated and we can recalculate t , as:

Now we have determined td; t,- and tT, under the restriction of the given bounds and, as the next
derivative is v, this establishes step 12 of the algorithm.

Finally, step 13 will determine the constant velocity time interval t, such that the required total
displacement 3 is obtained. From the previous calculations follows that tG = 0 if t, is according
to equation 58. But if tT, is reduced according to equation 60, we will have x(t I5) < 3 and we
must add a constant velocity phase to the trajectory such that x(t4) - x(tg) = J: - 2x(t7). With
equation 57 this -hplies that we cafi calculate tG as:

This completes the calculation of the characteristics of the symmetrical fourth order profile for a
given distance and given bounds v, zi, and d. We can M e r state that if the trajectory contains
a constant velocity phase (i.e. t, > O), the trajectory is time-optimal. The total displacement J: can
be expressed as a function of d and the times ta tJ, t6 and t,:

7 Implementation aspects

7.1 Switching times

From the previous chapters it is clear that the derivations for especially fourth order trajectory
planning are quite elaborate. However, the calculations actually required for implementation of
this planner are relatively straightforward. The algorithm of chapter 4 consists of a combination
of polynomial calculations with simple if-then-else tests for which most state-of-the-art motion
control hardware has standard algorithms.

When considering implementation of the planned trajectory into a feedforward control scheme,
it is important to consider the effect of discretization. This implies that the integrators and the
feedforward filter as given in the diagram of figure 5 will all have to be implemented in discrete
time at some given sampling time interval Ts. This also implies that the switching time instances
of the planned trajectory must be synchronized with the sampling time instances: i.e. the time
intervals t,, th, etc. must be multiples of Ts-

To obtain this, it must be accepted that time-optimality as resulting from the continuous time
calculations in the previous chapters is lost. The calculated time intervals must be rounded-off
towards a multiple of T,. This must be done such that the given bounds are not violated, but at
the same time approximated as closely as possible. The approach proposed here is to extend the
algorithm of chapter 4. After each calculation or re-calculation of a time interval, the result is
rounded-off upward to the next multiple of Ts- Next the maximal value of the highest derivative
is calculated accordingly.

As an example consider the first calculation of td for a fourth order trajectory (equation 35).
The rounded-off value for td can be calculated as:

with ceil(.) denoting the rounding off towards the next higher integer, From equation 35 we can
then calculate a new value for d -

Note that with t i 2 ta we must have d 5 l.
It can be verified that this same approach is valid for the calculation or re-calculation of all

time intervals. It is important to note that with each new calculation of d its value must reduce.
This guarantees that none of the bounds that were checked in earlier steps of the algorithm will
be violated.

State-of-the-art motion controllers are equipped with a high resolution floating point calculation
unit, such that quantization effects are usually negligible. To check this, we can make use of equa-
tion 62 to calculate the obtained position in case a quantized 2 is used. The difference between
desired position and calculated position can be accounted for by means of a correction signal on
the position trajectory. Typically in a digital system, the position signal is also quantized (usually
in encoder increments). The correction signal can then be implemented by adding some incre-
ments to the position reference at each sampling instance during the trajectory. In relevant cases
only one or two correction increments at each sampling instance should be sufficient (to prevent
deterioration of the feedforward control). In case larger corrections are necessary, the accuracy
and/or sampling rate of the motion control hardware should be increased.

A complete algorithm for fourth order trajectory planning is given in the appendix. This algo-
rithm is given as a Matlab .M function, which calculates the times td t?, t, and t,. It also includes
the possibility to specify a sampling time interval. It then uses equations 63 and 64 to synchro-
nize the switching time instances with the sampling time instances and to calculate 2''. Finally, it
allows compensation for the effect of quantization by specifjmg a number of significant decimals
for 2 and calculating the required amount of correction increments for the position reference sig-
nal.

7.2 Synchronization of profiles

Consider the continuous time implementation of the feedforward signal calculation as given in
figure 5. Now, the generation of the derivative of jerk profile and the four integrators to obtain jerk,
acceleration, velocity and position must be implemented in digital hardware. A straightforward
approach is to replace the continuous time integrators by forward Euler discrete time integrators
as indicated in figure 8. Clearly, all required profiles are thus calculated. However, due to the zero

I djerk

jerk acceleration velocity position

1 -
Derivaf~e of jerk
profile generator

Figure 8: Discrete time planner using forward Euler integrators.

order hold effect, each of the four integrators introduces a specific delay time. This can be seen
in figure g, in which the discrete time profiles are compared with the corresponding continuous
time profiles. Note that the chosen sampling time is 0.05 seconds, which is large in relation with
the required trajectory to show the discretization effect more clearly. To fix this effect, the higher
order profiles can be delayed individually such that the symmetry of the complete set of profiles
is restored. Figure 10 shows the effect of this in comparison with the continuous time profiles.
The latter are delayed with 0.1 seconds (or 2 times the sample time interval), to show that the
results are now perfectly synchronized. Note that the derivative of jerk profile must be delayed
with 2 x T,, the jerk profile with 1.5 x Ts? the acceleration profile with 1 x T, and finally the
velocity profile with 0.5 x Ts. To obtain a delay of 0.5 x Ts when sampling with Ts the average
value is taken from the current and previous amplitude of the considered profile. This operation
appears to work very well, although the associated smoothing effect is undesirable.

T -

7.3 Implementation of first order filter

-,
z-1

All required profiles for calculation of the feedforward signal are now available. The multiplica-
tion with factors ql to q4 followed by summation as indicated in figure 5; is straighi50rward. The
first order filtering is less trivial, as it must also be transferred to the discrete time domain. A
possible implementation that prevents problems with unwanted time delays and gives good re-
sults is to make use of the trapezoidal integration method. Figure 11 shows the equivalence of the
first order filter in figure 5 with several possible implementations using the trapezoidal integra-
tion method. Note that the inherent disadvantage of using the trapezoidal integration method in

z-1

T - T

Normalized Discrete time fourth order profiles: not synchronized
compared with continuous time profiles

" 0 0.2 0.4 0.6 0.8 1 1.2
time [s]

Figure g: Discrete time profiles using forward Euler integrators, compared with continuous time
profiles.

a first order filter-the occurrence of an algebraic loop-can be prevented by re-calculating the
loop. This can be checked by verifjmg that the discrete implementations all have the following
transfer function: -

7.4 Calculation of reference trajectory

A final point on synchronization must be made with respect to the calculation of the reference
trajectory that is used for feedback control. When applying the feedforward signal as calculated
above, based on the synchronized profiles as illustrated in figure 10, the actual plant's response
will be close to the ideal continuous time response with a delay of 2 x T,. However, in order
to compare this signal with the reference trajectory it must be sampled with the same sampling
frequency as is used for generation of the reference trajectory. The sample and hold device used
for this will then introduce an average delay of exactly 0.5 x T,.

Hence, to compensate for this further delay, it is necessary to also delay the reference tra-
jectory with this same value. This additional delay can be implemented in the same manner as
mentioned before: by taking the average between the current and previous reference trajectory
value. The result of this will be that the control error will not be affected by sampling. The con-
troller will only act on the effects of &sturbances and on discrepancies between the actual plant
and the modelled fourth order behavior.

Obviously, this is only true if the sampling frequency is sufficiently high: otherwise the mo-
mentary control error may deviate significantly from the average value. If this is the case, an
increase in sampling frequency must be considered. Usually however, the sampling frequency

Normalized Discrete time fourth order profiles: synchronized
continuous time profiles delayed by 0.1 s

time [s]

Figure 10: Synchronized discrete time profiles using forward Euler integrators, compared with
coniinuous time profiles delayed with 0.1 seconds.

is more significantly determined by the demands on stability and performance of the (digital)
feedback controller.

Continuous time

Integrator:
Trapezoidal I

Algebraic loop !! -

Algebraic loop !! I I

,

NO alaebralc looo !!

T(z+l)
2(Z-1) -

Figure 11: Discrete implementation of first order filter using the trapezoidal integration method.

Discrete-Time

8 Simulation results

A theoretical motivation for the application of fourth order feedforward as an extension of rigid
body feedforward was already given in chapter 3. Next, subsequent chapters have shown that
fourth order feedforward is feasible in the sense of trajectory planning and (digital) feedforward
implementation. This chapter will give fwther motivation for application of fourth order feedfor-
ward by considering some simulation results.

The main concern when considering model based feedforward control is the occurrence of
discrepancies between the behavior of the actual motion system and the used model. This often
motivates the use of rigid body feedforward, as the total mass of the motion system is usually
known within tight boundaries. Furthermore, a well designed motion system will have limited
friction and damping: especially dry friction must be minimized as it leads to classical problems
in both feedforward and feedback. Linear viscous damping can more easily be dealt with, but
often shows time dependent behavior: if damping has a reasonably constant value, it can be com-
pensated as shown in chapter 2. Now, fourth order feedforward introduces several additional

Table I: Simulation parameters

Variation
ml E (15.. .25),
m2 = 30-ml
k l ~ { 5 . - . 1 5) ,
k2 = 20 - kl

=t 33%
=tIOO%

Parameter
ml
m2
h
k2

c!

k12

Table 2: Trajectory definition parameters

physical parameters that may, or may not be constant: a mass ratio (division of mass in ml and
m2), a damping ratio (division of damping in kl and k2), a spring stiffness c and an internal
damping k12 (see figures I and 4). The simulation results in this chapter will show that fourth
order feedforward will give a significant improvement of performance (in the sense of servo er-
rors during or after trajectory execution) in comparison with rigid body feedback, even if these
additional parameters have relatively large uncertainties.

All simulations will be performed using the configuration of figure 5. The motion system
parameters and their variations used in the simulations are given in table I The trajectory pa-
rameters are defined in table 2. When comparing with rigid body feedforward, the fourth order
trajectory will be used, such that the smoothing effect of using a high order trajectory is not
accountable for the difference. In that case, it can easily be verified that optimal rigid body feed-
forward is obtained by setting ml = 30, mg = 0, kl = 20, k2 = 0 and k12 = 0. From
equation 8 we then have ql = qg = 0, q3 = mlc and qq = klc. Furthermore, the first order
filter reverts to a constant gain of $ (see also equation 65) and equation g reverts to equation I.
Note that the value of c becomes unimportant as it drops out of the calculations. To remove the
effect of feedback control from the results, most simulations are performed in open loop.

Figure 12 shows the performance of the continuous time fourth order feedforward control
for a fourth order motion system model with perturbations according to table I. For comparison,
the response of the nominal motion system model with the optimal rigid body feedforward con-
troller is given. Note that in spite of the significant plant variations, the fourth order feedforward
controller performs at least twice as good.

The approach of choosing the parameters such that fourth order feedforward reverts to rigid
body feedforward suggests the use of third order feedforward as an intermediate form. This
can be done by setting ml = 30 and m2 = 0, while leaving the viscous damping parameters
unchanged: now only ql reverts to zero. This would allow to implement the simpler third order
trajectory planner, with jerk being the highest bounded derivative. However, figure 13 shows
that the addition of a jerk feedforward term (i-e. q2) does not have a significant effect: it is the
derivative of jerk term ql that makes the difference. The fact that in practice it appears that third

Value
20

10

10

10

6 . 1 0 ~
~ o o

Unit
m/s4
m/s3
m/s2
m/s
m

Parameter
derivative of jerk
jerk
acceleration
velocity
displacement

Unit
Kg
I@

Ns/m
Ns/m
~ / m
Ns/m

Symbol
d

7
-
a
-
v
- x

Value
1000

50

5
I

I

-6l I I I I
I I

0 0.5 1 1.5 2 2.5 3
time [s]

Open loop fourth order feedforward response of servo error with plant vanations
x 1 o - ~ Dashed line gives nominal rigid body FF response

Figure 12: Open loop simulation results of fourth order feedforward controller with plant varia-
tions, in comparison with optimally tuned rigid body feedforward.

8

6

4

order trajectory planning may lead to strong improvement of performance is therefore almost
exclusively due to smoothing.

Figure 14 shows that the servo error responses will not significantly deteriorate if fourth order
feedforward is implemented in discrete time. As an example, the motion system with minimal
spring-stifhess is considered. Both open loop and closed loop results are given: the feedback
controller is tuned for a bandwidth of about 10 Hz, whereas the motion system's first resonance
mode is at 50 Hz. The digital feedforward controller is combined with a discrete time feedback
controller, both with a sampling rate of 200 Hz. Note that this is a low sampling rate for a high
performance servo system: this is chosen to demonstrate the discretization effects more clearly.

4 I I I I

- * \
/

I I
I

-
1 1

"0 0.5 1 1.5 2 2.5 3
time [s]

Open loop feedforward response of servo error
x lo'= Opt~rnal second, thrd and fourth order feedforward

Figure 13: Open loop simulation results of optimal second, third and fourth order feedforward
controller with nominal plant

8

6

9 Conclusions

I I I I I

- . second order FF - - third order FF - fourth order FF
- . *. -

I \

For high performance motion control, especially for electromechanical motion systems, the use-
fulness of feedforward control is well known and often implemented. This report shows that
the popular simple feedforward scheme known as 'mass-feedforward', 'rigid-body feedforward'
or 'second-order feedforward' can be extended to higher order feedforward while still maintain-
ing important practical properties like time-optimality, actuator effort limitation, reliability, im-
plementability and accuracy. Furthermore, it is argumented that the increase in complexity is
manageable in state-of-the-art motion control hardware.

Third order feedforward, which is increasingly applied in practice, appears to be mainly ef-
fective due to 'smoothing' of the trajectory, i.e. reduction of the high frequency content of the
trajectory, such that feedback control can be more effective. The use of fourth order feedforward
for high performance electromechanical motion systems is motivated by considering an appro-
priate model and supported by simulation results. Apart from the mentioned smoothing effect,
the feedforward of the derivative of jerk profile appears to result in a significant performance
improvement. This is even more remarkable when considering that, for relevant cases, the cal-
culated feedforward force is hardly affected.

A high level algorithm is given to calculate higher order trajectories for point-to-point moves;
other motion commands, like speed change operations, can be derived from this. For third and
fourth order trajectory planning, the details of the algorithm are worked out, resulting in practical,

Digital feedforward response of servo error: Ts=5e-3

x lo-5 Optimal fourth order feedforward with minimal spring-stiffness
4 I I

I X l O ' I I I

-31 I I I I I I
0 0.5 1 1.5 2 2.5 3

time [s]

Figure 14: Simulation results of open loop and closed loop discrete time fourth order feedforward
controller with minimal stiffness plant. Thick lines: discrete, thin lines: continuous time.

reliable and accurate algorithms.
Further implementation issues, like discrete time calculations, quantization effects and syn-

chronization, are explicitly addressed. The trajectory planning algorithms can be implemented
such that switching times are exactly synchronized with sampling instances. A digital implemen-
tation is suggested that takes care of the synchronization of the various profiles with each other
and the position trajectory, and also with the measured position. It is shown that deterioration
of the continuous time results due to sampling are small when applying a sufficient sampling
rate. Experience shows that a sampling rate that is required for stable feedback control is also
sufficient for feedforward control.

Simulation results show that the improvement obtained with fourth order feedforward is not
overly sensitive to variations in the parameters that are additional to the 'dassic' parameters of
rigid-body feedforward (i.e. mass and viscous damping). Obviously, the feedforward performance
will improve if the dynarnical behavior of the actual motion system is closer to that of the fourth
order model and said parameters are known within W t e r bounds. An important advantage of
the suggested implementation is the possibility to manually fine-tune the feedforward amplifica-
tion factor for each profile (the q factors). This can be seen as a simple, direct extension of the
well known practice of fine-tuning rigid-body feedforward.

References

[I] M. Boerlage, M. Steinbuch, P. Larnbrechts, M. van de Wal, 'Model based feedforward for
motion systems'. Submitted, 2003.

[2] S. Devasia, 'Robust inversionbased feedforward controllers for output tracking under plant
uncertainty'. Proc. of the American Control Conference, 2000, pp.qg7-502.

[3] B.G. Dijkstra, N.J. Rambaratsingh, C. Scherer, O.H. Bosgra, M. Steinbuch, S. Kerssemakers,
'Input design for optimal discrete-time point-to-point motion of an industrial XY positioning
table', in Proc. 39th IEEE Conference on Decision and Control, 2000, pp.901-906.

[4] L. Hunt, G. Meyer, 'Noncausal inverses for linear systems'. IEEE Trans. on Automatic Control,
1996, Vol. 41(4), pp.608-GII.

[5] P.H. Meckl, 'Discussion on: comparison of filtering methods for reducing residual vibra-
tion'. European Journal of Control, 1999, Vol. 5, pp.219-221.

[GI P.H. Meckl, P.B. Arestides, M.C. Woods, 'Optimized S-curve motion profiles for minimum
residual vibration7. Proc. ofthe American Control Conference, 1998, pp.2627-2631.

[7] B.R. Murphy, I. Watanaabe, 'Digital shaping filters for reducing machine vibration7. IEEE
Trans. on Robotics and Automation, 1992, Vol. 8(2), pp.285-289.

[8] F. Paganini, A. Giusto, 'Robust synthesis of dynamic prefilters', Proc. ofthe American Control
Conference, 1997, pp.1314-1318.

[g] H. S. Park, P.H. Chang, D.Y. Lee, 'Concurrent design of continuous zero phase error track-
ing controller and sinusoidal trajectory for improved tracking control'. J. Dynumic Systems,
Measurement, and Control, 2001, Vol. 5, pp.3554-3558.

[IO] D. Roover, 'Motion control for a wafer stage', Delft University Press, The Netherlands, 1997.

[II] D. Roover, F. Sperling, 'Point-to-point control of a high accuracy positioning mechanism',
Proc. ofthe American Control Conference, 1997, pp.1350-1354.

[~ z] N. Singer, W. Singhose, W. Seering, 'Comparison of filtering methods for reducing residual
vibration'. EuropeanJouml of Control, 1999, V01.5, pp.208-218.

[13] M. Steinbuch, M.L. Norg, 'Advanced motion control: an industrial perspective7, European
Journal of Control, 1998, pp.278-293.

[q] M. Tomizuka, 'Zero phase error tracking algorithm for digital control'. J. Dynamic Systems,
Measurement, and Control, 1987, Val-109, pp.65-68.

[IS] D.E. Torfs, J. Swevers, J. De Schutter, 'Quasi-perfect tracking control of non-minimal phase
systems'. Proc. of the 30th Conference on Decision and Control, 1991, pp.241-244.

[16] D.E. Torfs, R. Vuerinckx, J. Swevers, J. Schoukens, 'Comparison of two feedforward design
methods aiming at accurate trajectory tracking of the end point of a flexible robot arm', IEEE
Trans. on Control Systems Technology, 1998, Vol.6(1), pp.1-14.

THE MATLAB FUNCTION M A K E ~ . M

rn
[t, dd] = make4 (p,v, a, j ,d,Ts, r, s)

Calculate timing for symmetrical 4th order profiles.

inputs :
p = desired path [ml
v = velocity bound [m/sl
a = acceleration bound [m/s21
j = jerk bound [m/s3]
d = derivative of jerk bound [m/s4]
Ts = sampling time [s]
r = position resolution [ml
s = number of decimals for digitized

derivative of jerk bound

(optional, if not specified or 0: continuous time)
(optional, if not specified: lO*eps)

(optional, if not specified: 15)

outputs :
t (1) = constant djerk phase duration
t(2) = constant jerk phase duration
t(3) = constant acceleration phase duration
t(4) = constant velocity phase duration

In case of discrete time, derivative of jerk bound d is reduced to dd and
quantized to ddq using position resolution r and number of significant decimals s
Two position correction terms are calculated to 'repair' the position error
resulting from using ddq instead of dd:
corl gives the number of position increments that can equally be divided

over the entire trajectory duration
cor2 gives the remaining number of position increments

The result is given as:
dd = [ddq corl cor2 dd I

Paul Lambrechts, TUE fac. WTB, last modified: Jan. 13, 2003.

Checking validity of inputs
if nargin c 5

help make4
return

elseif nargin ==5
Ts=O; r=eps; s=15;

elseif nargin ==6
r=lO*eps; s=15;

elseif nargin ==7
S=15;

end

if length(p) ==0 I length(v) ==0 I length(a) ==0 I length(j) ==0 I length(d) ==0 I . . .
length (Ts) ==0 I length(r) ==0 I length(s) ==0
disp('ERR0R: empty entries are not allowed')
return

end

to1 = eps; % tolerance required for continuous time calculations
dd = d; % required for discrete time calculations

% Calculation constant djerk phase duration: tl
tl = (1/8*p/d)"(1/4) ; % largest tl with bound on derivative of jerk
if Ts>O

tl = ceil (tl/Ts) *Ts;
dd = 1/8*p/(tlA4);

end
% velocity test
if v < 2*dd*tlA3 % v bound violated ?

tl = (1/2*v/d)^(1/3) ; % tl with bound on velocity not violated
if TszO

tl = ceil (tl/Ts) *Ts;
dd = l/2*v/(tlA3);

end
end
% acceleration test
if a < dd*tlA2 % a bound violated ?

tl = (a/d)^(1/2) ; % tl with bound on acceleration not violated
if Ts>O

tl = ceil (tl/Ts) *Ts;
dd = a/ (tlA2) ;

end
end
% jerk test
if j c dd*tl % j bound violated ?

tl = j/d ; % tl with bound on jerk not violated
if Ts>O

tl = ceil (tl/Ts) *Ts;
dd = j/tl;

end
end
d = dd; % as tl is now fixed, dd is the new bound on derivative of jerk

% Calculation constant jerk phase duration: t2
t2=solve3(p,d,tl,tol); % largest t2 with bound on jerk (see function below)
if Ts>O

t2 = ceil (t2/Ts) *Ts;
dd = p/(8*tlA4 + 16*tlA3*t2 + 10*tl*2*t2~2 + 2*tl*t2"3) ;

end
if abs(t2)ctol t2=0; end % for continuous time case
% velocity test
if v c (2*dd*tlA3 + 3*dd*tlA2*t2 + dd*tl*t2*2) % v bound violated ?

t2 = (tlA2/4 + v/d/tl lA(1/2) - 3/2*tl ; % t2 with bound on velocity not violated
if Ts>O

t2 = ceil (t2/Ts) *Ts;
dd = v/(2*tlA3 + 3*tlA2*t2 + tl*t2A2) ;

end
end
if abs(t2)<tol t2=0; end % for continuous time case
% acceleration test
if a c (dd*tlA2 + dd*tl*t2) % a bound violated ?

t2 = a/(d*tl) - tl ; % t2 with bound on acceleration not violated
if Ts>O

t2 = ceil (t2/Ts) *Ts;
dd = a/(tlA2 + tl*t2) ;

end
end
if abs(t2)<tol t2=0; end % for continuous time case
d = dd; % as t2 is now fixed, dd is the new bound on derivative of jerk

% Calculation constant acceleration phase duration: t3
Cl = tlA2+tl*t2 ; 9

c2 = 6*tlA3 + 9*tlA2*t2 + 3*tl*t2A2 ; 9

c3 = 8*tlA4 + 16*tlA3*t2 + 10*t1~2*t2~2 + 2*tl*t2A3 ; %
t3 = (-c2 + sqrt (~2~2-4*cl* (c3-p/d))) / (2*cl) ; % largest t3 with bound on acceleration
if Ts>O

t3 = ceil (t3/Ts) *Ts;
dd = p / (cl*t3^2 + c2*t3 + c3) ;

end
if abs(t3)ctol t3=0; end % for continuous time case
% velocity test
if v < dd*(2*tlA3 + 3*tlA2*t2 + i~l*t2~2 + tlA2*t3 + tl*t2*t3) % v bound violated ?

t3 = -(2*tlA3 + 3*tlA2*t2 + tl*t2A2 - v/d)/(tlA2 + tl*t2); % t3, bound on velocity not violated
if Ts>O

t3 = ceil(t3/Ts)*Ts;
dd = v/(2*tlA3 + 3*tlA2*t2 + tl*t2A2 + tlA2*t3 + tl*t2*t3) ;

end
end
if abs(t3)ctol t3=0; end % for continuous time case
d = dd; % as t3 is now fixed, dd is the new bound on derivative of jerk

% Calculation constant velocity phase duration: t4
t4 = (p - d* (cl*t3^2 + c2*t3 + c3)) /v ; % t4 with bound on velocity
if Ts>O

t4 = ceil (t4/Ts) *Ts;
dd = p / (cl*t3^2 + c2*t3 + c3 + t4*(2*tlA3 + 3*tlA2*t2 + '~l*t2~2 + tlA2*t3 + tl*t2*t3)) ;

end
if abs(t4)ctol t4=0; end % for continuous time case

% All time intervals are now calculated
t=[tl t2 t3 t41 ;

% This error should never occur ! !
if min (t) c0

disp('ERR0R: negative values found')
end

% Quantization of dd and calculation of required position correction (decimal scaling)
if Ts>O

x=ceil (log10 (dd)) ; % determine exponent of dd
ddq=dd/lOAx; % scale to 0-1
ddq=round(ddq*l~~s)/lO^s; % round to s decimals
ddq=ddq*loAx;
% actual displacement obtained with quantized dd
pp = ddq*(cl*t3^2 + c2*t3 + c3 + t4*(2*tlA3 + 3*tlA2*t2 + '~l*t2~2 + tlA2*t3 + tl*t2*t3)) ;

dif =p-pp; % position error due to quantization of dd
cnt=round(dif/r); % divided by resolution gives 'number of increments'

% of required position correction
% smooth correction obtained by dividing over entire trajectory duration
tt = 8*t(1)+4*t(2)+2*t(3)+t (4) ;
ti = tt/Ts; % should be integer number of samples
corl=sign(cnt)*floor(abs(cnt/ti))*ti; % we need corl/ti increments correction at each

% . . . sample during trajectory
cor2=cnt-corl; % remaining correction: 1 increment per sample

% ... during first part of trajectory
dd= [ddq corl cor2 ddl ;

else
dd=[dd 0 0 dd]; % continuous time result in same format

end

%
% inputs:
% p = desired path
% d = derivative of jerk bound
% tl = derivative of jerk time interval

% to1 = tolerance for t2
%
% outputs:
% t2 = constant jerk time interval
%

a = 4*tlA3 - p/(2*d*tl) ; % must be <= 0
b = 8*tlA2 ; % must be > 0
c = 5*tl ; % must be > 0
if a>eps % if a>O tl is calculated wrongly (eps for numerical accuracy)

disp (' ERROR: wrong input')
keyboard
return

end
if abs (a) ceps

a=O;
end

ok=0;
tlow = 0; % lower bound
ylow = a; % . . . because ylow negative

thig = [-a/b sqrt(-a/c) (-a)^(1/3) I ; % all >= 0 and result >= 0
thig = min (thigf ; % upper bound
yhig = thigA3 + c*thigA2 + b*thig + a; % . . . because yhig positive

if thig > 0
i=O; % counter to prevent infinite loop
while ok -= 1

tnew = tlow + (tlow-thig) / (yhig-ylow) *ylow;
% tnew = (tlow + thig)/2;

ynew = tnewA3 + c*tnewA2 + b*tnew + a;
if abs (ynew) >to1 & i<100

i=i+l;
tlow=tnew;ylow=ynew; % ynew always CO due to b,c positive

% (monotonously increasing derivatives)
else

ok=l ;
if i==100

disp('WARN1NG: accuracy not reached in maximal number of iterations');
else

disp(sprintf('Third order polynomial equation solved for positive real value'));
disp(sprintf (' in %i iterations, with accuracy %g' , i,abs (ynew))) ;

end
end

end
else

tnew=O ;
end

