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Review of Optimization Strategies for System-Level
Design in Hybrid Electric Vehicles

Emilia Silvas, Theo Hofman, Nikolce Murgovski, L. F. Pascal Etman, and Maarten Steinbuch, Senior Member, IEEE

Abstract—The optimal design of a hybrid electric vehicle (HEV)
can be formulated as a multiobjective optimization problem that
spreads over multiple levels (technology, topology, size, and con-
trol). In the last decade, studies have shown that by integrating
these optimization levels, fuel benefits are obtained, which go
beyond the results achieved with solely optimal control for a given
topology. Due to the large number of variables for optimization,
their diversity, and the nonlinear and multiobjective nature of the
problem, a variety of methodologies have been developed. This
paper presents a comprehensive analysis of the various method-
ologies developed and identifies challenges for future research.
Starting from a general description of the problem, with examples
found in the literature, we categorize the types of optimization
problems and methods used. To offer a complete analysis, we
broaden the scope of the search to several sectors of transport,
such as naval or ground.

Index Terms—Coordination methods, driving cycle, hybrid
electric vehicles (HEVs), multilevel optimal design, optimization
methods, powertrain design.

I. INTRODUCTION

CURRENT challenges for newly developed vehicles, as
strict legislations on CO2 or the foreseen future lack

of oil, are addressed in various transportation sectors, with
hybrid powertrains, as viable solutions. Having more than one
source of power, hybrid powertrains give birth to a large design
space for the physical system and increase the complexity
of the control algorithm. The coupling (dependence) between
the parameters of the physical system (e.g., topology) and the
parameters of the control algorithm transforms the problem
into a multilevel problem (as depicted in Fig. 1) that, if solved
sequentially, is by definition suboptimal [1]. Therefore, the
physical system and the control algorithm should be designed
in an integrated manner to obtain an optimal system design.
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Fig. 1. Hybrid electric vehicle (HEV) system-level design (SLD) and its
multilayers.

Because of the large dimensions of the design space, com-
puter simulations of dynamical systems, e.g., for different ar-
chitectures and component sizes, have become more important
as a preliminary step to building prototypes [2]. Computer sim-
ulations significantly speed up the control synthesis of a given
design and topology. However, even with computer systems, the
problem of finding the optimal vehicle design that provides the
best control performance is typically intractable. Obviously, it
is not feasible (costwise or timewise), given a design space, to
build all possible vehicles and evaluate which configuration and
parameters provide the best performance for control. Moreover,
even when designing the control algorithm, due to the nonlin-
ear, mixed-integer, and multidimensional (several states) char-
acteristics of HEVs control problem, the simulations require
large computational times. Ergo, it is not timewise feasible
to simulate all combinations (i.e., brute force searches) of the
design variables [3]. Instead, optimization-based frameworks
for plant and control synthesis of HEVs are being developed.
Starting from the optimal control and continuing to the optimal
sizing, different optimization algorithms were used to obtain
the maximum powertrain energy efficiency and/or the minimum
total cost of vehicle ownership.

Based on examples from recent literature, in this paper, we
introduce the general problem of optimally designing an HEV.
Then, we summarize the common challenges in this design
problem and present the different methods and frameworks that
have been developed to improve the design of HEVs. The focus
of this overview is on frameworks that include the codesign of
HEVs, i.e., concurrent plant (as topology or size) and control
optimization.

The remaining sections of this paper are organized as
follows. After a description of HEV topologies is given in
Section II, the system-wide optimization problem is described
in Section III. Section IV discusses existent methodologies
used for integrating the plant and control optimization, together
with the used optimization algorithms. In Section V, these
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Fig. 2. Main topology classes in vehicles: conventional (solely fuel driven) and
hybrid electric [series, parallel, and series–parallel (with one or more planetary
gear systems)]. Here, dotted lines represent electrical links, and solid lines
represent mechanical links.

algorithms are discussed and compared, and in Section VI, the
conclusions are drawn.

II. HYBRID ELECTRIC VEHICLES

Conventional vehicles run on internal combustion engines,
consuming fuel to deliver the required power. In addition to
providing a useful work, conventional vehicles are encountered
with dissipative energy, such as the braking energy, aerody-
namic drag losses, tire friction losses, and engine idling losses.
In this topology, emission reduction possibilities exist, such as
lighter materials and more improved designs, but are limited.
For instance, while reducing further the aerodynamic drag or
the tire losses is possible, braking and idling losses will always
be significant in conventional vehicles. Nevertheless, the sizing
of the combustion engine will always be decided by the power it
needs to provide. To circumvent this limitation, various hybrid
architectures have been developed, where each architecture has
its advantages and disadvantages.

Hybrid vehicles combine two or more technology principles
to produce, store, and deliver power. Current market hybrid
vehicles typically combine a combustion engine and an electric
machine (EM), as power converters, and they are referred to as
HEV’s. This hybridization allows a wide variety of topologies
for the configuration of the powertrain.

Three categories of topologies may be distinguished: series,
parallel, and series–parallel, as illustrated in Fig. 2. These
topologies, as well as their applicability to various transporta-
tion sectors, have been researched intensively in recent years
and are described in detail in survey papers such as [4]–[9] and
books [10]–[13]. In an HEV, depending on its topology and

component technologies, an EM can function as a tractor
(delivering positive torque and speed to propel the vehicle) or as
a generator (producing energy, from either the engine or from
regenerative braking, to charge the battery).

Series HEVs perform best in stop-and-go driving since there
is no mechanical link between the combustion engine and the
wheels. This way, the engine can be run at its most efficient
point also in varying vehicle speeds. Moreover, because there
is no mechanical connection between the combustion engine
and the wheels, this configuration is rather flexible with regard
to the physical location of the various components in the
powertrain. This makes the series topology highly suitable for
application with restricted (re)design space.

When a series HEV is used in highway or interurban driving,
high powers need to be transmitted to the wheels from the EM.
Hence, large electrical machines are needed to achieve high ve-
hicle speeds. In addition, this topology requires a double energy
conversion for delivering the required power, which induces
efficiency losses. In this configuration, the size of the traction
EM is deducted from the vehicle’s required performance (such
as the acceleration requirement). Thus, the sizing of the power-
train reduces to finding the optimal sizing of the battery and the
power generating group (combustion engine/generator).

In parallel HEVs, the combustion engine and the EM are both
connected to a mechanical transmission, and they can generate
power independently of each other. The EM can be connected
before or after the transmission, as shown in Fig. 2 with (a)
and (b). Moreover, the HEV can switch between the power
sources given the driving conditions. In this configuration, there
is no separate generator. Whenever generating power is possible
and needed (e.g., energy recuperated from braking), the EM
functions as a generator.

Parallel HEVs have a direct mechanical connection between
the engine and the wheels. This leads to smaller energy losses
(as they do not require the dual energy conversion as the
series topology) but less flexibility in the mutual positioning
of the powertrain components compared with the series HEV
drivetrain as well.

Series–parallel HEVs have an extra direct mechanical con-
nection between the generator and the traction motor via the
transmission. These architectures combine the benefits from
both series and parallel HEVs. They are usually constructed
with one or more planetary gear sets (PGSs) and require at
least two EMs. PGSs are transmission elements with three
connectivity points (ring, sun, and carrier). These transmission
elements eliminate the need of a traditional stepped (manual or
automatic) gearbox and other transmission components.

Due to their increased flexibility in operating the components
(as in series HEVs) and the presence of mechanical links (as in
parallel HEVs), series–parallel HEVs can lead to a reduced fuel
consumption for a wide variety of applications [14]. However,
at the same time, they come at a higher price and require more
complex control strategies.

Except these three HEVs categories, others can be also found
in literature or practice, e.g., the dual-mode hybrid and the four-
quadrant transducer. These mostly vary in the construction of
the transmission components and will not be addressed here.
See [15]–[19] for more information.
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The efficiency of hybrid topologies varies according to the
conditions under which they are driven. The design choice
for one or other architecture depends on the (intended) mis-
sion of the vehicle and the tradeoff between cost and perfor-
mance. Given the pros and cons of the serial, parallel, and
series–parallel topologies, these are each predominantly used
in certain transportation sectors. Serial topologies are currently
most often found in buses [20]–[24], battery electric vehicles
[25] with range extenders, boats [26], heavy vehicles (military),
locomotives [27]–[30], and other in-urban vehicles, such as
taxis or passenger vehicles [31]–[33], whereas parallel topolo-
gies and series–parallel are very common in passenger vehicles
[34]–[38].

Due to the high cost and complexity of series–parallel
topologies, the parallel topologies are, at the moment, the most
commonly produced type of HEVs. Consequently, the parallel
hybrids dominate the literature on supervisory control strategies
for HEVs [36], [39], [40].

For different applications, dedicated research has been con-
ducted on technologies for hybrid components and storage
devices (as batteries, supercapacitors, or flywheels). Overviews
of electric motor drives and storage devices are well presented
in [5] and [41]–[46]. The requirements of each application
determine the suitability of a certain technology, as well as
the required dimensions of the respective hybrid component.
In fact, determining the technology and dimension of a partic-
ular powertrain component represents also a discrete choice.
This makes the optimal design of the powertrain of a hybrid
electrical vehicle a discrete programming problem in terms of
topological connectivity, technologies, and dimensions of the
HEV powertrain components.

In the first research effort on HEV development, the various
options (topology, type, size) were investigated for a restricted
set of discrete design choices (e.g., a battery versus fuel cells
or three dimensions for the same Li-ion battery). The limited
search space already provided novel hybrid powertrain con-
figurations with a lower fuel consumption than conventional
vehicles. Recent research papers on HEV development increase
the scale of the optimization problem, in an effort to further
improve the HEV performance. Typically, one seeks to formu-
late and solve a system-wide optimization problem covering
the various components and disciplinary aspects involved in the
HEV powertrain design.

In the following, these approaches for design and control
of HEVs will be presented and analyzed, with their pros and
cons. We address the design of HEVs alone, without consid-
ering their effect on infrastructures (charging, traffic/transport,
communication). For details on cooptimization of both HEVs
and infrastructure, see [47]–[50].

III. PROBLEM STATEMENT FOR SYSTEM-WIDE

OPTIMAL DESIGN

A hybrid vehicle contains multiple interconnected subsys-
tems, which, themselves, consist of several subsystems. When
an HEV is built, it is desired to minimize both operational and
component/design costs.

A. Driving Cycle

To evaluate the fuel consumption of an HEV, a drive cycle Λ
is necessary. This is a series of data points, i.e.,

Λ(t) =

[
v(t)
s(t)

]
, with t ∈ [t0, tf ] (1)

with v(t) representing the speed of a vehicle over time, s(t)
representing the slope (gradient) of the road, and [t0, tf ] repre-
senting the driving cycle length. The drive cycle represents the
type of driving conditions in which the HEV is used. It is the
main determinant for the fuel consumption and the design (such
as dimensioning of components) of the vehicle.

Driving cycles, which can be either measured or artificially
created, vary across applications, countries, and organizations.
Driving cycles are used to assess the performance of HEVs in
different ways, as, for example, fuel consumption and pollu-
tion emissions [51]–[53]. In the literature, most driving cycles
assume s(t) = 0. This is an important assumption for heavier
vehicles, where the contribution in the total power demand, for
s(t) �= 0, becomes significant.

B. Plant and Control Optimization Problem

The HEV efficiency and cost are dependent not only on
the components (their connections, technologies, and sizes) but
also on the control algorithm used. The varying parameters
defining topology, sizing, and control inputs constitute the
design variables (denoted by x) in the optimal design problem,
for both the plant and the control of an HEV, i.e.,

min
xc,xp(t)

J (xp,xc(t),Λ)

s.t. gj (xp,xc(t)) ≤ 0, j = 1, 2, . . . ,m

hl (xp,xc(t)) = 0, l = 1, 2, . . . , e

ξ̇(t) = f (ξ(t),xp,xc(t), t)

ξ(t0) = ξ0

ξ(tf ) = ξf . (2)

Here, xp ∈ R
n and xc(t) ∈ R

z denote the design variable
vectors with n independent plant variables and z independent
control variables, respectively; m is the number of inequality
constraints; e is the number of equality constraints; J is the cost
function; and ξ are the states of the dynamical system, e.g., the
state of charge (SOC) of the electric buffer.

Note that, for ease of understanding, vectors are marked
in bold, i.e., x is a vector of design variables, where each
variable is denoted by x. Moreover, (·)p represents a plant-
related variable (such as battery sizing), whereas (·)c represents
a control-related variable (such as engine torque).

In cases where ξ denotes the battery SOC, the final state
conditions

ξf = ξ0 (3)

ξf = ξmin (4)
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Fig. 3. SLD layers and interlinks in HEVs.
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c o n s t r a i n t h e c h a r g e s u s t a i n i n g , i . e . , ( 3 ) , o r d e p l e t i n g , i . e . , ( 4 ) ,

b e h a v i o r o f t h e e n e r g y s t o r a g e p a c k a t t h e e n d o f t h e d r i v i n g

c y c l e . T h u s , ( 3 ) i s u s e d f o r c h a r g e - s u s t a i n i n g h y b r i d s , a n d ( 4 )

i s u s e d f o r p l u g - i n H E V s . C o n s t r a i n t s g

ja n dhlc o n t a i n p e r -

c o m p o n e n t o p e r a t i o n a l b o u n d a r i e s , s u c h a s t h e e n g i n e t o r q u e

T

es u b j e c t t o t h e s p e e d - d e p e n d e n t c o n s t r a i n t , i . e . , Te, m i n( ωe) ≤

T

e( t ) ≤ Te, m a x( ωe) , c o m p o n e n t s i z i n g b o u n d a r i e s , s u c h a s t h e

e n g i n e p o w e rP

e, Pe, m i n≤ Pe≤ Pe, m a x, o r o t h e r b o u n d a r i e s

r e l a t e d t o t h e H E V t o p o l o g y ( c o n n e c t i v i t y o f c o m p o n e n t s ) .

T h e i n t e r l i n k s b e t w e e n d i f f e r e n t l e v e l s o f v e h i c l e d e s i g n

a r e i l l u s t r a t e d i n F i g . 3 . W e d i s t i n g u i s h t h r e e d e s i g n l e v e l s :

( a ) d e t e r m i n i n g t h e t o p o l o g y T

f

k

, ( b ) d e t e r m i n i n g c o m p o n e n t

d i m e n s i o n s , a n d ( c ) d e s i g n i n g t h e c o n t r o l a l g o r i t h m .

T h e c o u p l i n g b e t w e e n t h e t h r e e d e s i g n l e v e l s p r e s e n t s a

multileveloptimizationproblemwithdiscretedesignvariables

( s u c h a s b a t t e r y s i z e , t r a n s m i s s i o n g e a r , a n d p o w e r t r a i n m o d e )

a n d c o n t i n u o u s d e s i g n v a r i a b l e s ( s u c h a s e n g i n e t o r q u e a n d b a t -

t e r y p o w e r ) . F u r t h e r m o r e , t h e c o m p o n e n t m o d e l s a n d t h e o p t i -

m i z a t i o n f u n c t i o n s a r e g e n e r a l l y n o n l i n e a r a n d n o n c o n v e x [ 1 0 ] .

1 ) D e s i g n S p a c e S e l e c t i o n : Toillustratetheuseof x

pa n d

x

ci n ( 2 ) , c o n s i d e r t h e o p t i m a l s i z i n g a n d c o n t r o l p r o b l e m f o r a

o n e - m o t o r p a r a l l e l H E V d e p i c t e d i n F i g . 4 .

F o r t h e p o w e r t r a i n t o p o l o g y a n d c o m p o n e n t s i n F i g . 4 ( c o m -

b u s t i o n e n g i n e , E M s , b a t t e r y , a n d t r a n s m i s s i o n ) , x

pa n d xcb e c o m e

x

p r
p
= [PePmC rm]Txp r
c
(t) = [up s(t) γ(t)] T. ( 5 )

H e r e i n P

e

i s t h e m a x i m u m p o w e r o f t h e e n g i n e ,P

m

isthe

e l e c t r i c m o t o r m ax i m u m p e a k p o w e r , C i s t h e b a t t e r y c a p a c i t y ,

r

m

is th e m ax im u m g ear r a tio , u

p s

isthepower-splitratiothat

d e fi n e s t h e p o r t i o n o f p o w e r d e l i v e r e d b y t h e e n g i n e a n d t h e

E M ,γ i s t h e g e a r n u m b e r , a n d t h e s u p e r s c r i p t (·)

p r

i n d i c a t e s t h e

p a r a l l e l t y p e o f t o p o l o g y . N e x t , (·)

s

i n d i c a t e s a s e r i e s t o p o l o g y ,

a n d (·)

p s

i n d i c a t e s a s e r i e s – p a r a l l e l t o p o l o g y .

F o r a s e r i e s t o p o l o g y , x

p

a n d x

c

b e c o m e

x

s

p

= [PePm 1C]T

x

s

c

(t) = [Te(t) ωe(t)]

T

( 6 )

with T

ea n dωeb e i n g t h e t o r q u e a n d t h e s p e e d o f t h e c o m -

b u s t i o n e n g i n e , r e s p e c t i v e l y ; f o r t h e i n p u t - s p l i t s e r i e s – p a r a l l e l

t o p o l o g y ,x

pa n d xcb e c o m e

x

p s

p

= [PePm 1Pm 2C Z ]Txp s

c

(t) = [ω
e
(t) T
m 2
(t)] T( 7 )

with T

m 2b e i n g t h e t o r q u e o f t h e s e c o n d E M a n d Z theepicyclic

g e a r r a t i o o f t h e P G S . F o r a l t e r n a t i v e t o p o l o g i e s , o n e m a y w i s h

toincludeadditionaldesignvariablesrelatedtoclutches,more

E M s , m o r e b a t t e r y p a c k s , o r a l t e r n a t i v e c o m p o n e n t s .

W h e n t h e t o p o l o g y o r t h e t e c h n o l o g y i s a s s u m e d a v a r i a b l e ,

t o o ( i n a d d i t i o n t o t h e s i z e s o f c o m p o n e n t s ) , t h e n m o r e v a r i a b l e s

a r e i n c l u d e d i n t h e p l a n t d e s i g n v a r i a b l e v e c t o r x

p.Assume

t h a t x

pc o n s i s t s o f d e s i g n v a r i a b l e s f r o m t h r e e p l a n t d e s i g n

l a y e r s , i . e . ,

x

p=
[
xt o p

p

,xt e c h

p

,xsize

p

]
( 8 )

with x

t o p

p

, xt e c h

p

, and xsize

p

bein g the plant d esig n variables

r e p r e s e n t i n g t h e t o p o l o g y , t e c h n o l o g y , a n d s i z e l a y e r s , r e s p e c -

t i v e l y . E a c h i n s t a n c e o f x

t o p

p

willinfluencethesizeof xt e c h

p

a n d xsize

p

, a s w e l l a s t h e i r c o r r e s p o n d i n g c o n t r o l v a r i a b l e s ,

w h i c h i s e x e m p l i fi e d i n ( 5 ) – ( 7 ) . F u r t h e r m o r e , t h e s e l e c t i o n o f

c o m p o n e n t s s i z i n g w i l l , p a r t i a l l y , d e t e r m i n e t h e c o n s t r a i n t s f o r

t h e c o n t r o l a l g o r i t h m .

Explicitderivationsofthecouplingbetweenthesizingand

t h e c o n t r o l l a y e r , f o r d i f f e r e n t a p p l i c a t i o n s , a s w e l l a s h o w t h e y

i n fl u e n c e t h e o v e r a l l d e s i g n , a r e f o u n d i n [ 1 ] a n d [ 5 4 ] .

T h e r e f o r e , fi n d i n g t h e v e c t o r x

pt h a t m i n i m i z e s t h e c o s t

f u n c t i o n J isachallengeforthechosenmultileveloptimization

m e t h o d s , a s w e l l a s f o r t h e o p t i m i z a t i o n a l g o r i t h m s u s e d f o r

e a c h i n d i v i d u a l l e v e l .

2)OptimizationTargetsSelection: J ∈ R

k i n ( 2 ) r e p r e s e n t s

t h e v e c t o r o f o b j e c t i v e f u n c t i o n s , w h i c h c o m p r i s e s t h e S L D o b -

j e c t i v e s . A s a f o r e m e n t i o n e d , a n H E V i s g e n e r a l l y b u i l t s u c h t h a t

b o t h o p e r a t i o n a l a n d c o m p o n e n t / d e s i g n c o s t s a r e m i n i m i z e d .

N o n e t h e l e s s , o t h e r o b j e c t i v e s , s u c h a s m i n i m i z i n g e m i s s i o n s o r

m a x i m i z i n g t h e p a y l o a d o f t h e v e h i c l e , h a v e b e e n a l s o u s e d .
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The most commonly employed objective functions Ji(x) :
R

k → R
1 are

J1 =

tf∫
t0

ṁf (t)dt J4 =

tf∫
t0

NOx(t)dt

J2 =Ψm +Ψi +Ψb J5 =

tf∫
t0

HC(t)dt

J3 = −m0 +mb J6 =

tf∫
t0

CO(t)dt. (9)

Herein, J1 represents the CO2 reduction, or the overall fuel
consumption; J2 is the hybridization cost, i.e., the summed
cost of the motor Ψm, cost of the inverter Ψi, and cost of the
battery Ψb. J3 is the payload weight of the vehicle (on-board
passengers or cargo) m0 plus the weight of the battery mb. J4,
J5, and J6 are the nitrogen oxide (NO), hydrocarbon (HC), and
carbon monoxide (CO) emissions.

The multiobjective character of the HEV SLD problem
(fuel, costs, etc.) requires dedicated multiobjective optimization
algorithms/solvers, or reformulation of the problem into a sin-
gle objective formulation. The latter, which is referred to also as
scalarization of the cost function, is often used and represents
a choice of the designer.

There are multiple methods for objective function scalariza-
tion [55]. The weighted sum formulation is equal to

f(J,w) = w1J1 + w2J2 + · · ·+ wkJk (10)

with w being a vector of weight parameters, with

w1 + w2 + · · ·+ wk = 1. (11)

The weights are adjusted such that a certain preference for the
optimization targets is imposed. This scalarization is used, for
example, in [56, Ch. 3], where

f(J,w) = (w − 1)Ĵ1 + wĴ2 (12)

is proposed (with Ĵ representing the normalized1 value of J) or
in [57], where

f(J,w) = w1Ĵ1 + w2Ĵ5 + w3Ĵ6 + w4Ĵ4 (13)

is used.
As aforementioned, when an HEV is built, it is desired to

minimize both operational and component/design costs. The
SLD problem is a challenge given that different optimization
functions depend on different system levels. For example,
minimizing the cost of electrification, J2 is typically used for
powertrain component sizing (since J2 does not depend on the
control algorithm). On the other hand, J1 is always used as
objective for the control algorithm design, but it also depends on
the component sizing. What the possible optimization schemes

1The authors define a normalized value Ĵ = (J/JN ) ∈ [0, 1], where JN is
estimated as the largest possible value of J within the search space.

Fig. 5. Coordination architectures for SLD in HEVs.

are and how the HEV design problem has been addressed so far
are discussed next.

IV. PUBLISHED HYBRID ELECTRIC VEHICLE

DESIGN FRAMEWORKS

In the context of HEV prototyping, a design framework
is a methodology that uses existing optimization algorithms
combined on multilevels to find the best design for given targets
and constraints. This describes how and in which order the
coupled optimization problems at the various levels are solved
in an effort to solve the overall SLD problem. This relates to
coordination methods in distributed multidisciplinary optimiza-
tion (see, for instance, [58] and [59]), where the coordination
method defines how the coupled disciplinary subproblems are
solved to arrive at the system optimal solution.

For the plant and control design problem, there are basically
three coordination architectures, as shown in Fig. 5.

1) alternating plant and control design, i.e., first, the plant is
optimally designed. Using this outcome, the controller is
optimally designed. Subsequently, the plant is optimized
again, etc. The coordinator alternates between optimizing
the plant and optimizing the control until the coupled
variables have converged;

2) control design nested within plant design, i.e., every
evaluation of a plant requires the full optimization of the
controller design;

3) simultaneous plant and controller design (i.e., solving (2)
all in one).

In the mid-1990s, when the hybrid vehicle market emerged,
the plant design problem and the control design problem were
treated completely independently [60]. Nowadays, in most lit-
erature and practice, a clear distinction is made between the
plant and the control design variables and objectives, where (2)
becomes the following codesign problem:

min
xp,xc(t)

J(x) = {Jp (xp,xc(t),Λ) , Jc (xp,xc(t),Λ)}

s.t. constraints as in (2). (14)

The plant cost function Jp and the control cost function Jc may
contain any combination of the objectives from (9).

For the plant design problem, in the literature also, distinc-
tion is made between topology design and component sizing
optimization. Usually, the component sizing problem is solved
for a fixed topology. The choice of topologies to be ana-
lyzed has, so far, been mainly dictated by practical experience
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rather than by a topology optimization procedure. A computa-
tional tractable method for combined topology and component
sizing optimization of the plant design is an open research
question.

In the following, we give an overview of the currently
employed methods for topology optimization of the HEV plant.
Most of these methods aim at finding feasible topologies, not
necessarily optimal topologies. Subsequently, in the forthcom-
ing subsections, we survey methods for alternating, nested, and
simultaneous plant and control design of HEV vehicles.

A. HEV Topology Generation or Selection

In practice, an HEV topology is often selected on the basis
of criteria that derive from expert knowledge. In this approach,
the set of rules forming the criteria can be derived from expert
knowledge, availability of components on the market, other
HEVs, and so on. The selected topology is very likely not
optimal. Recent studies show that very small changes in known
topologies, such as Toyota Prius or Chevrolet Volt, can lead to
more efficient HEVs (with respect to cost or fuel) [61].

Another approach for arriving at a suitable topology is to
evaluate at all possible topologies that can be constructed from a
predefined fixed set of components. This is sometimes referred
to as topology generation.

Usually, topology generation means the search for all feasible
topologies Tf within a (large) set of possible topologies Tp,
given design constraints c, i.e.,

find all Tf ⊆ Tp

s.t. c(T f ) ≤ 0. (15)

A method to solve (15) was proposed in [62], where c con-
sists of functionality (i.e., power delivery, hybrid functions, and
feasibility) and cost constraints. Each topology is modeled as an
undirected connected finite graph, where each component is a
node of the graph. Based on these nodes, a set of constraints are
defined, and (15) is solved as a constraint satisfaction problem
over finite domains [63]. In [62], this method is applied on
a set of 16 powertrain components (including two PGSs, two
EMs, and three clutches), searching for feasible series, parallel,
and series–parallel HEV topologies. They show that the initial
search space of 5.7 · 1045 possible topologies is reduced to
4779 feasible topologies.

Another recent method by [64] to solve (15) aims at devel-
oping series–parallel topologies with one or multiple PGSs.
This method models a topology as a bond graph and, similar
to the previous method, uses constraints to arrive at feasible
topologies. Using this method, in [65], the topology generation
and optimization of a midsize passenger car is discussed. When
series–parallel topologies with double planetary gears are used,
in [66], a method to automatically model and exhaustively
search for optimal topologies is proposed. The authors show,
using Toyota Prius as a study case, that improved configurations
(offering reduced fuel consumption) are found.

These studies show how the initial set of candidate topologies
can be reduced in a systematic and complete way. At the same

Fig. 6. Classification of energy management strategy categories: opti-
mality, control horizon, and real-time implementation. RB : rule based,
MPC : model predictive control, (S)DP : (stochastic) dynamic programming,
and ECMS : equivalent consumption minimization strategy.

time, they highlight new challenges in defining and solving this
kind of problems.

Once a topology has been decided on, codesign problem
(14) is to be solved. Next, we distinguish sequential, alternat-
ing, nested, and simultaneous methods. Sequential is a special
instance of the alternating coordination strategy (plant and
control subproblems are solved only once, sequentially) and is
also referred to as a design-first-then-control methodology.

B. Design-First-Then-Control Strategy for HEV Design

The design-first-then-control strategy is the simplest strat-
egy one can envision; the coupling between the plant design
and control design problems is neglected. Mainly due to its
decentralized manner, this strategy has been a pioneer when
approaching HEV design. The control problem is approached
for a fixed plant, i.e., fixed (a)–(c) layers in Fig. 3.

The development of the control algorithm, i.e., the energy
management system (EMS) of an HEV powertrain, consists of
finding the set points of the power converters that can deliver
the driver’s required power in an “optimal” way. Optimality is
defined in terms of fuel consumption [J1 from (9)], but may also
include pollutant emissions [J4 and J5 from (9)], drivability, or
performance criteria related to the battery (e.g., life degradation
or charge). This optimal control problem, which is given by

min
xc(t)

Jc (xp,xc(t),Λ)

s.t. constraints as in (2) (16)

has been approached by two main categories of methods as
depicted in Fig. 6: optimization-based and rule-based (RB)
methods.

The strategies based on rules, either heuristics [67] or fuzzy
logic [39], [68], [69] are based on expert knowledge translated
into Boolean rules, to make the power sources work in their
most efficient regions. These algorithms are easy to implement,
and they do not require high computation times. However, they
cannot offer any proof of optimality of the solution found.
They may require significant tuning effort and may change sig-
nificantly for each topology. This disadvantage has motivated
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Fig. 7. Design space exploration using (light gray dots) exhaustive search, an
(dark gray points) optimization algorithm, and the interpolation contour lines
of the cost function.

the investigation and the applicability of rigorous optimization
algorithms.

There exist a wide variety of optimization algorithms for
controller design. Two categories may be distinguished: real-
time-implementable [70] or offline algorithms [71]. Dynamic
programming (DP) is widely used for offline optimization,
and DP typically serves as a benchmark for evaluating other
(real-time) algorithms [72]–[77]. There exist also optimization-
based algorithms that can be online implementable. These
are mostly based on the equivalent consumption minimization
strategy (ECMS) [40], [78]–[83], stochastic DP (SDP) strate-
gies [84]–[88], or model predictive control (MPC) strategies
[89], [90]. Reviews of EMS can be found in review papers such
as [91]–[97]. Benchmark comparisons are given in [98] and
[99], where several algorithms are implemented and compared
for controlling the plug-in Chevrolet Volt HEV. Note again that
all these energy/power control algorithms are derived for an
a priori defined HEV. Therefore, the dependence between the
system design and the control algorithm design is not taken
into account. However, this coupling exists, e.g., the dimension
of the battery will influence the optimal control problem. To
overcome this limitation, attempts to design better systems
have been developed using design-and-control methodologies
(in either an alternating, nested, or simultaneous fashion).

C. Alternating, Nested, and Simultaneous Coordination
Schemes

For each topology, to find the set of optimal x∗
p with a

nested coordination scheme, various authors [98], [100]–[106]
have used exhaustive search in the plant design optimization
problem, combined with a rule based or DP for control design.
With exhaustive search, also referred to as brute force search,
the design space is gridded, and for each grid point, the cost
function is evaluated [107]. This is depicted in Fig. 7 for the
parallel topology in Fig. 4, where the hybridization potential is
analyzed in terms of fuel consumption for xpr

p = [Pm C]T .
Using the values of the cost function at each point, the

shape of this function can be interpolated, and a design can
be chosen. For the sake of clarity, we depict this for two plant
design variables only. If more design variables are included,

the visualization and interpretation of results will be difficult.
Then, Latin hypercube sampling can be used to explore the cost
function in all the feasible design spaces [108].

In [100], such a nested exhaustive search framework is used
to compare four topologies (a conventional HEV, a start–stop
HEV, a full-parallel HEV, and a power-split HEV), for a
passenger car application given different driving cycles. Due
to hybridization and engine downsizing, the authors present
more than 33% CO2 decrease for the full-parallel and power-
split (similar to Toyota Prius) HEVs. In [104], focusing on
the transmission selection, three full-parallel hybrid electric
drivetrain topologies are investigated. In [102], one-variable-
at-a-time exhaustive search is used for the component sizing
optimization loop, and DP is used for the control algorithm.
Considering a series-hybrid microbus, xs

p = [Pe+m1 C]T is
defined, with Pe+m1 representing the generating group power
(i.e., the combined generator motor and engine) and C repre-
senting the battery capacity. With a fixed battery pack, the gen-
erating group of the series architecture, i.e., Pe+m1, is varied in
size, and the possibility of downsizing or upsizing the engine
is analyzed. Once a value was found for Pe+m1, this is fixed,
and the variation on the battery pack sizing is investigated. We
refer to this as one-variable-at-a-time exhaustive search, since,
when mapping this problem to the previous example in Fig. 7,
the authors vary one variable at a time, resulting in only one
row/column, and repeat this process for all design variables.

The exhaustive search strategy is simple and insightful but
only works for a limited number of plant design variables. The
computational burden quickly grows, for increasing number of
plant variables. The computational time may be expressed as
T = Ta ·

∏N
i=1 gi, with N being the number of plant design

variables, Ta being the time in which the optimal control
problem is solved, and gi being the number of grid points for
variable i. The grid needs to be sufficiently dense to guarantee
a reasonable accurate interpolation between the grid points.
Alternatively, for increasing number of plant variables, one
may consider to use a Latin hypercube design exploration
with a radial basis of Kriging type of surrogate model for the
interpolation.

In recent years, the use of optimization-based multilevel de-
sign, (introduced already for different applications [109]–[111])
has seen an increased interest. By using an optimization algo-
rithm for the plant design problem, one seeks to reduce the
number of cost function evaluations, compared with exhaustive
search (see, for example, Fig. 7), with a better exploration of
the design space in the design region of interest.

The SLD problem is usually nonlinear and often also has
mixed-integer characteristics. In the literature about multilevel
optimization of HEV, a wide variety of algorithms have been
selected for the plant optimum design. One may distinguish be-
tween derivative-free and gradient-based algorithms. Examples
of derivative-free algorithms include the following: Dividing
Rectangles (DIRECT) [122], [139]; particle swarm optimiza-
tion (PSO) [56], [130]; genetic algorithms (GAs) [20], [51],
[140]–[142]; and simulated annealing (SA) [123], [143]. Papers
that use a gradient-based algorithm include sequential quadratic
programming (SQP) or convex optimization (CO) [133], [136],
[137], [144].
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TABLE I
CLASSIFICATION OF SEVERAL FRAMEWORKS FROM EXISTING LITERATURE, AS A FUNCTION OF COORDINATION METHODS AND ALGORITHMS

USED FOR SIZING AND CONTROL DESIGN [ECMS : EQUIVALENT CONSUMPTION MINIMIZATION STRATEGY,
(S)DP : (STOCHASTIC) DYNAMIC PROGRAMMING, SQP : SEQUENTIAL QUADRATIC PROGRAMMING),

SA : SIMULATED ANNEALING, PSO : PARTICLE SWARM OPTIMIZATION, RB : RULE BASED,
SADE : SELF-ADAPTIVE DIFFERENTIAL EVOLUTION, DS : DOWNHILL SIMPLEX METHOD]

When in the system design process separate plant and con-
troller optimization subproblems are considered, a coordination
method between these two optimization layers is needed. Based
on the coordination schemes defined in Fig. 5, in Table I, a
classification of several frameworks from existing literature is
shown. This table tabulates the type of algorithm for the plant
design problem, the type of algorithm for the control design
problem, and the coordination strategy to arrive at the system
optimal solution. One may notice that recent studies use either
nested, simultaneous, or alternating coordination methods to
reach an optimal design. The structure in Table I indicates also
the evolution of the strategies used. Methods have evolved from
sequential to mostly nested plant and controller design. Quite
recently, also the simultaneous and alternating coordination
schemes have been proposed for use in HEV frameworks,
which may provide computational advantages compared with
the nested scheme.

Vehicle simulation packages, such as Advanced Vehicle
Simulator (ADVISOR) [145] or Powertrain System Analysis
Toolkit [146], containing RB algorithms for HEV control,
have facilitated the fast development and simulation of design
frameworks. For instance, using an RB control algorithm nested
within multiobjective GA (having UDDS as input driving cycle)
[51], in [20], the sizing of a parallel hybrid bus is discussed for
multiple objectives, i.e., J1, J4, J5, and J6 from (9). In addi-
tion to the benefits for design, the following are highlighted:
1) The increase of population size of the algorithm will result
in improved accuracy of results; 2) no user-supplied weights of
each objective must be provided; and 3) more driving cycles
must be used to improve this methodology and the design.
This is addressed in [127] and [128], where the same strategy
is applied to find the optimal design of a hybrid submarine,
investigating three different topologies for four different driving
cycles. This study shows that multiobjective GA can handle a
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very large design problem, with 16 objective functions and a
nine-dimensional design space, with both discrete and continu-
ous design variables.

One clear drawback in these studies is the use of RB al-
gorithms for controller design, which is suboptimal. An alter-
native is to use, for example, an evolutionary algorithm such
as PSO in combination with DP for optimizing the control
strategy, as used in [56] and [130]. In this novel framework, DP
ensures finding the optimal control policy for every population
point candidate selected by PSO in the outer loop. The authors
use this framework to optimally size and control a parallel pas-
senger HEV and compare its results with previously developed
frameworks, which use SQP in the outer loop (plant design) and
RB algorithms in the inner loop (controller design). It is shown
that RB algorithms are less fuel efficient (by 11% for this case)
and lead to a more expensive system (by 14%) than optimal
solutions obtained by PSO.

The frameworks that solve the plant design problem using
stochastic algorithms such as PSO, GA, or SA, or using deter-
ministic search algorithms such as DIRECT, can handle non-
linear cost function and constraints, searching the design space
globally. However, when the cost function behaves smoothly
and has only few local minimizers, a derivative-based algorithm
will offer a faster solution to the optimization problem. In
addition, a larger number of plant variables can be addressed
in that case.

The typically used J1 cost function from (9) is multimodal
(with many local minima), and, sometimes, noisy and dis-
continuous [122]. To ensure the receivability of the global
optimum, in [22], [133], [144], and [147], the HEV design
problem is formulated as a convex optimization problem, with
proposed convex component models and integer control signals
obtained by heuristics. Comparative studies of the gradient-
based and derivative-free algorithms for HEVs optimal design
are presented in [121]. Furthermore, comparisons between only
the derivative-free algorithms for HEVs optimal design can be
found in [122] and [119]. Choosing one optimization algorithm,
to find the optimal solution to each design layer, is not straight-
forward; it depends strongly on the problem setup and will
briefly be described next.

V. TRENDS IN OPTIMAL SYSTEM-LEVEL DESIGN FOR

HYBRID ELECTRIC VEHICLES

An important driver for optimization approaches in HEV
vehicle design is the legislative restrictions, which have become
increasingly tight during the last two decades. Emission regu-
lations have evolved from Euro 1 in 1993 to Euro 6 in 2014
(changing both permissiveness, e.g., CO2 levels, and focus, e.g.,
from CO2 to NOx or PM). The number of yearly publications on
HEV optimization approaches has steadily grown (see Fig. 8).
Within the hybrid vehicle research publications area, the plant
and control design areas have also grown in recent years.

When defining an optimization problem, its target is a for-
mal transposition of vehicle manufacturer preferences on the
constructed system. In turn, the manufacturer tries to meet all
legislative restrictions and create a vehicle competitive on the
market, appealing to customers and financially beneficial. In

Fig. 8. Research trends in hybrid vehicles design and optimization algorithms
used. The curve shows the number of papers in the Google Scholar database
containing the keywords hybrid vehicle and the keywords in the legends as
parts of their title.

this frameup, the challenge to have a general problem definition
is even bigger, since these dependencies are changing over
time (e.g., emissions regulations). These challenges have led to
constant development of control algorithms for HEVs (named
either supervisory control or EMSs). In Fig. 8, one can see an
ascending trend in the use of DP as a control algorithm. In fact,
DP is used as a benchmark comparison for the development of
other algorithms (real time implementable).

For solving the problem of optimal system design, there
is no universally accepted or widely used algorithm (as, for
example, in control design DP). The trend in algorithms selec-
tion, for component sizing, is to use evolutionary optimization
algorithms. Among these, most commonly used optimization
algorithms are GA and PSO, as shown in Fig. 8. Furthermore,
multiple research papers report the computational inefficiency
of exhaustive search, which leads to its inapplicability for large
multidimensional design spaces.

Another trend is the increased focus on the driving cycles
used in the HEV optimization problem formulation. Each man-
ufacturer will design a car suitable for certain road types (road,
e.g., highway, in-city, and interurban, off-road, ship, rail, or air)
and applications (e.g., heavy-duty vehicle, passages, and bus),
which will use a specific driving cycle. These range from high-
speed highway driving on flat road to city driving with altitude
variations, and all the variations in between [148], [149]. The
ideal HEV should be fuel efficient in all situations in which
it is used. In most cases, designers/researchers choose to vary
the driving cycle in the design step of the hybrid vehicle to
have a more efficient vehicle (in terms of energy) [103], [131],
[150], [151]. In addition, synthetic cycles can be constructed
to be shorter (enabling thus faster simulations or larger design
space explorations) but more representative of the actual driving
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cycles [152]. In this direction, the methods based on Markov
chain theory show promising results, as presented in [52] and
[153]–[155].

Depending on the shape of the optimization function, as
well as the types of constraints, an optimization algorithm may
prove to be better than others. Typically, the road types and
applications dictate a choice of topology, eliminating layers (a)
and (b) in Fig. 3.

In [122] and [129], different optimization algorithms, for the
sizing loop (plant design), are compared to find the optimal
design for one topology. For the control, one algorithm is used
in all cases. At the expense of larger batteries, GA reaches a
design with 7% reduced fuel consumption. Next, a design that
does not require engine downsizing is reached with the PSO
algorithm, where the 5% fuel consumption is achieved with a
smaller EM. Without continuing with this analysis, one must
be aware that these results are sensitive to how the algorithms
are tuned (such as maximum number of function evaluations
and to what supervisory control algorithm is used).

In the case of a strong nonlinear optimization function,
the algorithms that use the gradient of the function, such as
SQP, often converge to a local minimum. To avoid premature
convergence and local optima, one can start from different
initial points, i.e., xp0, or use a global optimization algorithm,
such as GA, PSO, or another. Population-based evolutionary
algorithms, such as GA, PSO, and SA, will have, overall, more
function evaluations then gradient-based algorithms, since, at
each iteration (generation), they will evaluate J for multiple
starting points xp0 (often named population).

Summarizing, different tricks must be made when one de-
sires to use a certain kind of optimization algorithm for sub-
problem solving: 1) When convex optimization is used, the
convexification of the optimization problem is required to
guarantee finding the global optimum; 2) when SQP is used,
for the original problem (nonconvex), the initial point xp0 can
be varied to test the reach of local or global minimum; and
3) when evolutionary algorithms are used, various parameters
have to be tuned (e.g., population size). In addition, as stated
earlier, it is important what coordination strategy is used, and
which decomposition paradigm (overviews of such paradigms
are found in [156] or [157]).

Designing an HEV with explicitly considering the coupling
between the plant and its control has proved more promising
than sequential design. These novel design approaches (nested
or simultaneous) were investigated for the main components
of the propulsion, i.e., electric motor, battery, and combustion
engine. Following this trend of combining the plant and control
design, in the future, more components can be considered as
variables in the design process. Examples can include auxiliary
units, e.g., air conditioning system or the power steering sys-
tem, as considered in [3], [158], and [159]. With the inclusion
of more components as variables, the design problem becomes
more difficult to define and handle.

VI. CONCLUSION

This paper has reviewed the current state of design of hybrid
vehicles, including architecture, sizing components, control

algorithm, and methods of finding the optimal SLD. Although,
at first glance, there seem to be three major classes of HEV
topologies to chose from (serial, parallel, and serial–parallel),
current market vehicles prove that minor design changes can
lead to significant improvements in fuel consumption, costs of
electrification, performance, and generated emissions. These
small changes, such as the addition of a clutch or resizing
the battery, cause many changes in different design levels
(both at the subsystem level and at the system level). Thus,
the interaction between components is becoming increasingly
important, and neglecting it in the design step leads to loss of
potential after hybridization.

Starting with sequential designs, usually made in a topdown
manner, a transition to coupled plant and control designs has
commenced in the last decade, the most popular variant being
controller design nested within plant design. These approaches
prove clear advantages but also introduce several challenges in
solving this optimization problem. Sequential design is simple
and intuitive, but neglects the influence of the plant design on
the controller design. The plant is designed without taking the
controller into account. Subsequently, the controller is designed
using the given design as is.

Bilevel optimization frameworks take the coupling between
plant and controller designs into account. One may distinguish
a nested and an alternating formulation. Often used, nested
optimization poses more challenges on finding a global optimal
solution at the system level and creates a shift toward multi-
disciplinary design. Even so, recent studies have shown that
HEV designs with significantly lower fuel consumption and
emissions can be found. These are opportunities to be further
investigated.

By analyzing existing publications, we can conclude that
using optimization algorithms, to solve different optimization
layers, has proven beneficial for design. These could be further
used, in more extended coordination methods to include the
selection of topologies and technologies. For instance, these
extended coordination methods might include the following:
1) (simultaneous topology and sizing design) alternating with
controller design; 2) controller design nested with respect to
simultaneous topology and sizing; 3) topology alternating with
sizing alternating with control; or 4) simultaneous topology,
sizing, and control design.

To substantially reduce the computational burden, one can
introduce approximations of the original problem (e.g., the
convexification of the problem or metaheuristic models), can
shorten the driving cycle used for design, or can use parallel
computing. Driving cycles used as input for the control al-
gorithm (energy management strategy) should be build short,
more realistic, and more representative of realistic driving types.

How to address, in an (more) automatic way, multiple topolo-
gies with a large variety in the components types and numbers
remains an open question. Furthermore, the topology automatic
construction and optimization problems create challenges in the
control algorithm development, which has to handle various
topologies in an automatic way. To solve the SLD problem and
find an HEV that can be market competitive, one may define the
optimization targets to include, in addition to fuel, also costs,
emissions, or performance aspects. Easy-to-use methodologies



SILVAS et al.: REVIEW OF STRATEGIES FOR SYSTEM-LEVEL DESIGN IN HYBRID ELECTRIC VEHICLES 67

must be developed, to help developers, and the industry in
general, to reach better designs in the early steps of the HEV
development process.
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