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Probiotics modulate gut microbiota and improve insulin sensitivity in DIO mice
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Abstract

Obesity and type 2 diabetes are characterized by subclinical inflammatory process. Changes in composition or modulation of the gut microbiota may play an
important role in the obesity-associated inflammatory process. In the current study, we evaluated the effects of probiotics (Lactobacillus rhamnosus, L. acidophilus
and Bifidobacterium bifidumi) on gut microbiota, changes in permeability, and insulin sensitivity and signaling in high-fat diet and control animals. More
importantly, we investigated the effects of these gut modulations on hypothalamic control of food intake, and insulin and leptin signaling. Swiss mice were
submitted to a high-fat diet (HFD) with probiotics or pair-feeding for 5 weeks. Metagenome analyses were performed on DNA samples from mouse feces. Blood
was drawn to determine levels of glucose, insulin, LPS, cytokines and GLP-1. Liver, muscle, ileum and hypothalamus tissue proteins were analyzed by Western
blotting and real-time polymerase chain reaction. In addition, liver and adipose tissues were analyzed using histology and immunohistochemistry. The HFD
induced huge alterations in gut microbiota accompanied by increased intestinal permeability, LPS translocation and systemic low-grade inflammation, resulting
in decreased glucose tolerance and hyperphagic behavior. All these obesity-related features were reversed by changes in the gut microbiota profile induced by
probiotics. Probiotics also induced an improvement in hypothalamic insulin and leptin resistance. Our data demonstrate that the intestinal microbiome is a key
modulator of inflammatory and metabolic pathways in both peripheral and central tissues. These findings shed light on probiotics as an important tool to

prevent and treat patients with obesity and insulin resistance.
© 2017 Elsevier Inc. All rights reserved.
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1. Introduction

Obesity, insulin resistance and type 2 diabetes (T2D) are metabolic
disorders resulting from a combination of genetic and environmental
factors including caloric intake and sedentary lifestyle [1,2].In the past 10
years, data coming from different sources showed an important role of
gut microbiota in the pathogenesis of obesity and type 2 diabetes [3-10].

Approximately 10'> and 10" microorganisms live in a symbiotic
manner in the human gastrointestinal tract. This relationship is
essential for host physiology and metabolic health [11-13]. In this
regard, the intestinal bacteria help in the host nutrients absorption and
in the integrity of intestinal immune barrier [13,14] and regulate host fat
storage genes, thus regulating host energy homeostasis [15]. It is known
that high-fat diet (HFD) can cause imbalances in the gut microbiota
composition and in the intestinal epithelial layer integrity and that
germ-free animals are protected from this deleterious effect of HFD [ 16].
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Numerous strategies have been proposed to regulate these imbalances
in gut microbiota composition (also known as intestinal dysbiosis) in
obesity, such as the use of antibiotics, prebiotics and probiotics [7,17-19].
The latter, whose definition is live microbial food supplements which help
maintain the balance of intestinal microflora [18,19], have shown in some
studies to be effective in the treatment of insulin resistance in both
rodents and humans; however, the deep mechanisms that lead to such
benefits are poorly understood [4,18-20]. Indeed, multistrain probiotics
appear to be efficient against a wide range of intestinal issues [21,22].
Despite the absence of strong evidence for metabolic disease, we
hypothesized that probiotic mixture would be more suitable to test in
an experimental model of obesity. Furthermore, it is known that some
strains have important immune modulatory actions besides their effects
on gut epithelial barrier function [23-25]. Actually, Lactobacillus
rhamnosus is a special strain to treat a wide range of experimental liver
diseases, with interesting metabolic modulations in this organ [26-28].
Thus, in the current study, we have used a mixture of probiotic content
L. rhamnosus, L. acidophilus and Bifidobacterium bifidum to treat obese mice.

Emerging evidence has shown not only that gut microbiota is
important for intestinal physiology but also that microbiota-gut-
brain axis strongly influences the central nervous function and
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behavior [29-35]. Accordingly, it was previously hypothesized that
energy balance regulation by central nervous system signaling is
probably subject to an influence of gut microbiota [13]. Based on this
hypothesis, we can also speculate that gut microbiota may also exert
an influence in the control of food intake by hypothalamus, thus
contributing to evolution of obesity. In the current study, we evaluated
the effects of probiotics on gut microbiota, changes in permeability,
and insulin sensitivity and signaling in HFD and control animals. More
importantly, we investigated the effects of these gut modulations on
hypothalamic control of food intake, and insulin and leptin signaling.

2. Research design and methods
2.1. Materials

Antibodies anti-JNK (SC1648), anti-phosphorylated JNK (SC6254),
anti-IRR (SC711), anti-phosphorylated IRR (SC25103), anti-IRS1
(SC559), anti-phosphorylated IRS-1 (SC33956), anti-JAK2 (SC278),
anti-MyD88 (SC11356), anti-NOD1 (SC 398696), anti- STAT3 (SC483),
anti-phosphorylated STAT3 (SC8001), anti-occludin (SC5562) and anti-
Z0-1 (SC10804) were purchased from Santa Cruz Biotechnology (Santa
Cruz, CA, USA), except as follows: anti-Akt (#9272), anti-phosphorylated
Akt (#9271), anti-o-tubulin (#2144), anti-phophorylated JAK2 (#3776)
and anti-TLR4 (#2219), obtained from Cell Signaling Technology
(Beverly, MA, USA). Routine reagents were purchased from Sigma-
Aldrich (Saint Louis, MO, USA), unless otherwise specified.

2.2. Animals

UNICAMP Central Animal Breeding Center (Campinas, Sdo Paulo,
Brazil) provided 8-week-old male Swiss mice. Animals (n=6 per
group) were housed in individual cages with free access to water and
rodent chow under a 12-h light/dark cycle. The mice composed
randomly two groups: one group on chow diet (8% fat, 26% protein,
54% carbohydrate, as a percentage of total kcal) (C group) and the
second group on an HFD (55% of energy derived from fat, 29% from
carbohydrates and 16% from protein) (DIO group) for 12 consecutive
weeks. After that, some mice in the DIO and C groups received daily a
pool of probiotics for 5 weeks, and they composed the DIOPB and CPB
groups, respectively. The Ethics Committee of the State University of
Campinas approved all procedures.

2.3. Probiotic administration protocol

A pool of probiotics that included L. rhamnosus, L. acidophilus and
B. bifidum (Futureceuticals, Momence, IL, USA) was given for 5 weeks
daily (6x108 CFU of each strain; final concentration of 1.8x10° CFU of
bacteria). Prior of gavage, the probiotics were diluted in 300 pl of sterile
water. DIO and C groups received only the vehicle (sterile water).

2.4. Hormones and LPS determination

Enzyme-linked immunosorbent assay kits were used to measure
insulin (Millipore, St. Charles, MO, USA), TNF-a, IL-6 and glucagon like
peptide 1 (GLP-1) (Thermo Fisher Scientific, Rockford, IL, USA). LPS
was quantified using a commercially available Limulus Amebocyte
Assay (Cambrex, Walkersville, MD, USA), according to the manufac-
turer's protocol.

2.5. Tissue extraction, immunoprecipitation and protein analysis by
immunoblotting

Overnight-fasted mice were anesthetized; the abdominal cavity
was opened, the vena cava was exposed, and NaCl (0.9% wt./vol.)
solution or insulin (10~® mol/l) was injected. Liver, ileum, muscle and

hypothalamus were removed, minced coarsely and homogenized in
lysis buffer. Lysates were process as previously described [36].

2.6. Real-time polymerase chain reaction (PCR)

Total RNA was obtained from different tissues for all four groups of
mice according to the methods published previously [37]. Quantitative
PCR was performed in an ABI 5700 Sequence Detector System (Applied
Biosystems) using SybrGreen PCR Master Mix (Applied Biosystems,
Carlsbad, CA, USA) (primers described in Supplementary Table 1).

2.7. Metagenome profile

Fecal samples were frozen in liquid nitrogen and stored at —80°C
until use. At this time, DNA was extracted using the QIAamp DNA Stool
Mini Kit (Qiagen, Hilden, Germany). DNA from each sample was used
to amplify the V2-V3 regions of 16S rRNA genes. PCR amplification,
pyrosequencing of the PCR amplicons and quality control of raw data
were performed as described previously [38]. Samples were then
sequenced in GS FLX Titanium (Roche Applied Science, Mannheim,
Germany). The readouts obtained from the sequencing were analyzed
by bioinformatics using basic local alignment search tool X (BLASTX),
observed with METAREP software and compared according to phylum
prevalence among groups.

2.8. Liver and adipose tissue histology

Liver and epididymal white adipose tissues were excised and processed
as described previously [7]. Sections (5 pm) were obtained and stained by
hematoxylin and eosin to assess morphology. Tissue analyses were
performed blinded by an expert pathologist (A.A.S.). Adipose tissue was
evaluated by crown-like structure (CLS) density (average CLS number
within 10 high-power fields per animal) and mean adipocyte surface area,
using Imagelab Analysis software, as previously described [7].

2.9. Adipose tissue immunohistochemistry

Tissue sections, 5 pum, were mounted on silanized glass slides,
processed and incubated with an epidermal-growth-factor-like
compound containing mucin-like hormone receptor-like 1 (F4/80)
primary antibody, as previously described [39]. Antibody staining was
performed using an IHC-peroxidase kit (Advance HRP, Dako CytoMation,
Carpinteria, CA, USA) according to the manufacturer's instructions. Three
different high-power fields from three different sections were evaluated
blinded by an expert pathologist (A.A.S.). The total number of nuclei of
F4/80-expressing cells was counted for each field, and the area occupied
by these cells was measured.

2.10. In vivo experiments

Hyperinsulinemic-euglycemic clamp was performed in anesthe-
tized overnight-fasted mice immediately after catheterization. Prime
insulin (Human recombinant insulin, Eli Lilly, Indianapolis, IN, USA)
was continuously infused (30 mU kg ™! min™") up to 120 min. Blood
glucose was measured at 5-min intervals, and glucose (5% wt./vol.)
was infused at a variable rate to maintain blood glucose at fasting
levels. Glucose tolerance test was performed in 8-h fasted mice as
described before [36]. To determine insulin sensitivity in the
hypothalamus, stereotaxic surgery was employed with 26-gauge
stainless steel indwelling guide cannula aseptically placed into the
third ventricle (coordinates of —1.8 mm posterior to the bregma and
5.0 mm below the surface of the skull) in Swiss mice under anesthesia
as previously described [8,40]. Fasted mice for 12 h received
intracerebroventricular (ICV) infusion of vehicle or insulin (200 mU
in 2 pl; Eli Lilly and Company, Indianapolis, IN, USA) at 8:00 a.m. Food
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intake was recorded over 4 and 12 h. Next day, same mice were fasted
for 12 h and received ICV infusion of vehicle or insulin 15 min before
the hypothalamic tissue dissection. To determine leptin sensitivity in
the hypothalamus, after 5 weeks of probiotics treatment, five mice
from each group received an intraperitoneal (IP) injection of
recombinant leptin (3 mg/kg body weight; Calbiochem, San Diego,
CA, USA) or saline at 6:00 p.m. on 5 consecutive days, as previously
described [41]. Food intake were measured daily after the leptin
injection. For hypothalamic analysis of the leptin signaling, immuno-
blotting was performed, and the leptin was IP injected 45 min before of
the hypothalamic tissue dissection.

2.11. Statistical analysis

Data are expressed as means+S.E.M., and the number of
independent experiments is indicated. The results of blots are
presented as direct comparisons of bands or spots in autoradiographs
and quantified by optical densitometry (Scion Image; Scion Corpora-
tion, Frederick, MD). For statistical analysis, the groups were
compared using a two-way analysis of variance with the Bonferroni
test for post hoc comparisons and t test for comparison of only two
groups. The level of significance adopted was P<.05.

3. Results

3.1. Probiotic reduces weight gain and fat pad improves glucose
tolerance and insulin resistance in DIO mice

Probiotic-treated mice receiving an HFD gained significantly less
weight (DIOPB 11.44+1.2 g vs. DIO 16.9+1.4 g; P<.05) during the 5
weeks of the experiment and had reduced food intake compared with
animals that did not receive probiotics (DIOPB 2.9+0.2 g/day vs. DIO
3.440.3 g/da; P<.01). In order to avoid this bias, we submitted the
nontreated animals to pair feeding on an HFD, and this group was
called diet-induced obesity mice per fed (DIOPF).

R.A. Bagarolli et al. / Journal of Nutritional Biochemistry 50 (2017) 16-25

Fig. 1 shows comparative data regarding the controls (C), controls
treated with probiotics for 5 weeks (CPB), DIOPF and DIO mice treated
with probiotics for 5 weeks (DIOPB). As expected, the DIOPF and DIOPB
mice showed a significant increase in both body and epididymal fat
weight, along with higher levels of fasting glucose and insulin, when
compared with animals fed on chow diet (Fig. 1A-D). However, the
treatment with probiotics provided a marked decrease in weight gain
(DIOPB 12.8+1.1 g vs. DIOPF 14.7+1.2 g; P<.05) and fat pad weightin 5
weeks and also in fasting blood glucose and serum insulin (Fig. 1A-D).
Throughout the intraperitoneal glucose tolerance test (IPGTT), DIOPB
mice showed improved glucose and insulin profiles compared to DIOPF
animals (Fig. 1E and F). Likewise, the DIOPF group showed a striking
reduction in the glucose infusion rate measured by the
hyperinsulinemic-euglycemic clamp compared with control animals,
and the probiotic treatment partially restored insulin sensitivity in
DIOPF (Fig. 1G). It is important to mention that the probiotic treatment
did not induce significant difference in any physiologic and metabolic
parameters studied in animals fed on chow diet (Fig. 1A-G).

3.2. Effects of probiotic treatment on insulin signaling in liver and muscle
of DIO mice

As expected, in liver and muscle of mice fed on HFD, insulin-
stimulated AktS®" 473 phosphorylation levels were significantly
reduced compared to the control animals (Fig. 2A-B). On the other
hand, the probiotic treatment completely recovered the insulin-
induced Akt®" 473 phosphorylation levels in both tissues when
compared to the obese DIOPF (Fig. 2A-B). There was no difference in
the Akt protein expression among C, CPB, DIOPF and DIOPB groups.

3.3. Effects of probiotic treatment on the TLR4 signaling pathway in DIO
mice

The TLR4 protein levels in liver and muscle tissues were higher in
the DIOPF animals compared to corresponding controls, though the
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Fig. 1. Physiologic and metabolic parameters in control mice, control mice submitted to the administration of probiotics, obese mice (pair-fed DIOPF) and obese mice submitted to the
administration of probiotics (DIOPB). (A) Weight gain. (B) Epididymal fat pad weight. (C) Fasting blood glucose. (D) Fasting serum insulin. (E) Glucose tolerance test (GTT). (F) Insulin
response curve during the GTT. (G) Hyperinsulinemic-euglycemic clamp. Data are presented as means+S.E.M. of 6 to 10 mice per group. #P<.05 vs. control, *P<.05 vs. DIOPF.
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Fig. 2. Effects of probiotic administration on insulin signaling, TLR4 signaling pathway and cytokine mRNA level in DIO mice. Representative blots of the IRb tyrosine phosphorylation of
(upper panel) and Akt serine phosphorylation (lower panels) of control, CPB, DIOPF and DIOPB mice in extracts from liver (A) and muscle (B). TLR4 protein, TLR4/MyD88 interaction,
pJNK and pIRS15¢™7 in liver (C), muscle (D) of control, CPB, DIOPF and DIOPB mice. Total protein expression of a-tubulin (C and D lower panels). Determination of TNF-c and IL-6 mRNA
expression by real-time PCR in the liver and muscles (E). Circulating levels of TNF- o and IL-6 in the same groups (F). Data are presented as means+S.E.M. from six mice per group.

#P<.05 vs. control, *P<.05 vs. DIOPF. IB, immunoblotting; p, phosphorylated.

use of PB was able to return TLR4 protein levels to baseline (Fig. 2C-D).
As expected, the HFD activated the signaling of TLR4 in liver and
muscle tissues of DIOPF animals as evidenced by the greater
interaction of TLR4 with its adaptor protein MyD-88 along with
increased activity of its downstream JNK (Fig. 2C-D). Such activation
resulted in increased IRS-1%"%7 phosphorylation (Fig. 2C-D). By
contrast, the administration of probiotics to obese animals was able to
reduce TLR4 activation, downstream JNK phosphorylation and the
subsequent IRS15¢™%7 phosphorylation (Fig. 2C-D). With regard to the
control groups, the probiotic treatment did not provide changes on the
TLR4 signaling (Fig. 2C-D).

3.4. Probiotics reduce tissue cytokines mRNA level in DIO mice

To verify whether alterations in TLR4 signaling were reflected in
increased proinflammatory cytokines, we examined TNF-« and IL-6
mRNA expression in the tissues of the studied groups, and these mRNA
levels were higher in liver and muscle of the DIOPF as compared to the
control group (Fig. 2E). In accordance with TLR4 signaling, the relative
amounts of TNF-a and IL-6 transcripts were markedly reduced in liver
and muscle from DIOPB animals compared with DIOPF group (Fig. 2E).
These benefits were also observed in circulating levels of TNF-ac and IL-
6 (Fig. 2F).
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3.5. Effects of probiotic treatment on gut microbiota of DIO mice

The metagenomic sequencing analysis from feces of all groups
showed profile changes among all studied groups. Among the control
mice, treatment with probiotics increased the prevalence of Firmicutes
and Actinobacteria, as well as decreased the occurrence of Bacteroi-
detes compared to untreated animals. In addition, by comparing
control and DIO mice, regardless probiotic treatment, there were a
greater increase in the prevalence of Bacteroidetes and a decrease in
the Firmicutes and Actinobacteria phylum in the obese animals.
Although this result disaccords with most studies in animals, we
would like to emphasize that we previously observed similar result

C
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with Swiss mice [7]. Finally, the administration of probiotics in obese
animals provided a continued presence of Bacteroidetes, an increase in
the prevalence of Actinobacteria, along with a reduction in the phylum
Firmicutes compared to DIOPF. The probiotics also promoted an
increased variety of phyla presented in these animal feces (data not
shown).

Fig. 3B and C shows the distribution of some genera of Bacteroidetes
and Firmicutes phyla in the DIOPF and DIOPB groups. Although
probiotic treatment did not change the prevalence of Bacteroidetes in
animals on a HFD, there was a major change in the concentration of
certain genera, such as Bacteroides and Alistipes, populations of which
increased in a significant way compared to levels in DIOPF (Fig. 3B).
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Previous data have shown that an increased taxonomic family
Lachnospiraceae bacterium contributes to development of diabetes in
obese mice [42-44]. Our data showed that Robinsoniella and Rimino-
coccus genera from the Lachnospiraceae family were increased in
DIOPF mice and showed reduction after PB treatment (Fig. 3C).

3.6. Effects of probiotic treatment on gut metabolic and immunologic
homeostasis

We then examined the consequences that changes in gut
microbiota provoked on tight-junction proteins and on important
immune proteins situated in the ileum. ZO-1 and Occludin protein and
mRNA were reduced in DIOPF animals compared with controls,
whereas the administration of probiotics restored partially these
expressions (Fig. 3D). Furthermore, the main molecules involved in
gut microbiota inflammation and bacterial translocation, NOD-1 and
CD-14, had their expression increased in ileum of DIO animals, and the
treatment with probiotics reversed this negative modulation (Fig. 3D
and E). As consequence of these changes, obese mice also showed
increased levels of LPS in their portal circulation compared with the
control mice, and this was prevented by probiotic treatment (Fig. 3F).
Previous data showed that modulation of fasting-induced adipose
factor (FIAF, a factor that increases triglycerides accumulation in

adipose tissue) and GLP-1 might have a role in microbiota-induced
insulin resistance/obesity [45]. Probiotic treatment in high-fat fed
animals increased the expression of FIAF and proglucagon mRNAs in
the ileum, as well as serum levels of GLP-1, compared with DIOPF
(Fig. 3G-1). Probiotics had no such effect in control group (Fig. 3D-I).

3.7. Effects of probiotic treatment on histology in liver and adipose tissue

Histological sections from livers of DIOPF group showed the
presence of innumerous fat vesicles compared to control sections,
which characterizes hepatic steatosis. Nevertheless, treatment with
probiotics prevented this fat accumulation in the liver parenchyma
(Fig. 4A). Morphologic analysis of epididymal fat pad revealed
significant differences on adipocyte size from DIO groups compared
to control groups. However, between the DIO groups, we observed
that the treatment with probiotics reduced the area of the adipocytes
significantly but still far from the values of the controls animals. The
HFD provided a huge macrophage infiltration in the adipose tissue,
determined by the F4/80+ staining, but the administration of
probiotics decreased such infiltration as well as the number of
crown-like structures, which were abundant in DIOPF animals
(Fig. 4B-D).
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3.8. Effects of probiotics on hypothalamic insulin and leptin signaling

As mentioned before, probiotic-treated mice receiving an HFD
gained less weight than DIO mice (DIOPB 11.4+1.2gvs.DI0 16.9+14¢g
during treatment; P<.05) and had reduced food intake compared with
animals that did not receive probiotics (DIOPB 2.94-0.2 g/day vs. DIO 3.4
+0.3 g/da; P<.01). We then investigated whether probiotics treatment
improved the response to anorexigenic hormones such as leptin and
insulin in mice on HFD. The administration of probiotics in mice fed HFD
improved leptin sensitivity, as evidenced by reduced food intake
induced by leptin in DIOPF (Fig. 5A). In accordance, there was an
increase in JAK2 and STAT3 phosphorylation in the hypothalamus of
DIOPB compared to DIOPF mice (Fig. 5B). In addition to greater leptin
sensitivity, we observed an enhanced anorexigenic effect in response to
ICV insulin administration in the DIOPB group after 4 and 12 h (Fig. 5C).
In parallel, Akt phosphorylation was increased in response to ICV insulin
in the hypothalamus of DIOPB compared to DIOPF mice (Fig. 5D). We
further measured mRNA levels of NPY and POMC in the hypothalamus
since these neuropeptides have major action regulating food intake.
Probiotics treatment reduced NPY mRNA without changes in POMC
mRNA levels in the hypothalamus of DIOPB compared to DIOPF mice
(Fig. 5E and F). We also evaluated the effect of probiotics on several
inflammatory signals in the hypothalamus. Similar to the effects
observed in peripheral tissues, HFD-fed animals showed increment in
TLR4 and IL-6 expression in the hypothalamus, and probiotic treatment
was able to reduce TLR4 and IL-6 mRNA levels in this tissue (Fig. 5G and
H). There were no changes in the TNF-o mRNA levels in the
hypothalamus of DIOPB compared to DIOPF mice (Fig. 5I).
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4. Discussion

Here we show that HFD animals treated with probiotics have
changes in gut microbiota and the intestinal gene expression of
metabolic and immunological molecules that resulted in reductions in
circulating LPS, which attenuated TLR4 activation and improved
insulin signaling and inflammatory profiles in liver and muscle. In
addition, the probiotic treatment improved hypothalamic insulin
and leptin signaling pathways and modulated the control food intake
(Fig. 6).

Our metagenomic analysis of gut microbiota in the DIO groups
showed an increase in Bacteroidetes prevalence and a slight reduction
in Firmicutes. This result is similar to previous studies [46-48],
including a work from our group using also Swiss mice [7], but is not
in agreement with other classical published data [8,49], suggesting
that the gut microbiota profile in obesity depends also on genetic
background. Differences in animal species and/or strain may explain
these controversial results. Another phylum that is important to
intestinal homeostasis and was reduced in DIOPF animals compared to
controls was the Actinobacteria. Mice subjected to probiotic treatment
and fed HFD showed some differences in gut microbiota profiles
compared with DIO nontreated animals. Despite the maintenance of
Bacteroidetes phylum, there were a significant reduction in Firmicutes
prevalence and an increase in Actinobacteria. Genera analysis of Bac-
teroides showed relevant modifications after PB treatment: the genus
Bacteroides increased considerably, and it is known that it has
beneficial activities to the host, including increased adipose tissue
lipolysis, intestinal production of GLP-1, as well as reduction of
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Fig. 5. Effects of probiotic administration on leptin and insulin hypothalamic signaling, on the control of food intake and on proteins involved in the inflammatory signaling. (A) Six days
of controlled food intake; the first 2 days with daily IP infusion of saline and the last 4 days with daily IP infusion of recombinant leptin in DIO (not pair-fed) and DIOPB mice. (B) Leptin-
induced Jak2 and STAT3 tyrosine phosphorylation in the hypothalamus of DIO and DIOPB mice. (C) Four hours and 12 h of food intake after intrahypothalamic infusion of insulin in DIO
and DIOPB mice. (D) Insulin-induced Akt serine phosphorylation in the hypothalamus of DIO and DIOPB mice. NPY (E) and POMC (F) mRNA levels in control, CPB, DIO and DIOPB mice.
(G-I) Determination of mRNA expression of TLR-4 (G), IL-6 (H) and TNF-a (I) in control, CPB, DIO and DIOPB mice. Immunoblotting data are representative of four independent
experiments. Quantitative PCR and food intake data are presented as means4-S.E.M. from six mice per group. #P<.05 vs. control group and *P<.05 vs. DIO, except for panel C. *P<.05 vs.

DIO negative, #P<.05 vs. DIOPB negative. IB, immunoblotting; p, phosphorylated.
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Fig. 6. Effects of probiotic administration on obesity-related features by changes in the gut microbiota profile in mice subjected to an HFD. (A) DIO induced changes in microbiota
accompanied by an alteration in intestinal barrier (increased expression of ileal tight-junction proteins ZO-1 and occludin) and an increase in absorption and circulating levels of LPS,
accompanied by TLR4 and JNK activation and M1 macrophage infiltration in adipose tissue, all contributing to insulin and leptin resistance. (B) Probiotics (L. rhamnosus, L. acidophilus
and B. bifidum) treatment by modulating microbiota reversed these inflammatory phenomena and improved insulin and leptin action.

intestinal inflammation [50,51]. Another genus that increased with
probiotic administration in DIO animals was Alistipes. Serino et al. [52]
described that mice that have high prevalence of this genus is
protected from type 2 diabetes in an HFD scenario. Thus, despite the
unchanged prevalence of the Bacteroidetes phylum following probiotic
treatment, the modulation of the genera of this phylum might have a
role in the improvement of glucose tolerance and insulin sensitivity.

Changes in the gut microbiota of DIO mice promoted by probiotics
were accompanied by increased expression of ileal tight-junction
proteins (ZO-1 and occludin) and proglucagon mRNA, as well as
reduced intestinal expression of pattern recognition receptors (PRRs)
CD-14 and NOD1. These modulations might play a role in the
reduction in circulating levels of LPS and the increase in GLP-1
serum levels. In agreement with our results, Gomes et al. [18] have
recently shown that bacterial translocation needs CD-14 and NOD1
PRRs activation in DIO mice; however, probiotic treatment reversed
this situation. It is also known that fermented products of probiotics
bacteria can increase gut proglucagon expression, which results in
GLP-1 and GLP-2 secretion [53,54]. Another important intestinal
protein modulated by probiotics is FIAF. Obesogenic microbiota
decreases the expression of this molecule, a factor able to increase
lipoprotein-lipase-dependent triglyceride storage in adipose tissue
and to increase adipocyte triacylglycerol accumulation [5,55]. Our
results showed that probiotic administration increased the ileal
expression of FIAF in obese mice, probably contributing to reduce fat
storage in these animals.

It is interesting that obese mice treated with probiotics showed a
reduction in portal LPS concentrations, which certainly contributed to
down-regulate the TLR4-MyD88 interaction in liver and muscle,
leading to reduced activation of JNK and IRS-1 serine phosphorylation.
As expected, in parallel, there was an increase in activation of insulin
signaling in liver and muscle, improving insulin sensitivity and glucose
tolerance [56,57].

The positive feedback loop between JNK and proinflammatory
cytokines can perpetuate a vicious cycle of low-grade inflammatory
signaling, contributing to enhanced insulin resistance [9,58]. Our
findings indicate that the probiotic treatment reduced not only the JNK
activation but the TNFaq, IL-6 and IL-13 mRNA levels in liver and
muscle tissue, probably by reducing NF«B translocation into the
nucleus.

In obesity, adipose tissue macrophages are an important source of
cytokine tissue expression [59]. In addition, a reduction in macro-
phage infiltration can decrease local inflammation in adipose tissue
[60]. In accordance, our findings revealed a reduction in macrophage
infiltration in the adipose tissue of DIO mice treated with probiotics, as
observed by crown-like structures number. These morphological
changes, coupled with reduced expression of inflammatory molecules,
are factors that may contribute to improve insulin sensitivity in
treated animals. Lipid accumulation in the liver is a hallmark of high-
fat-diet-induced insulin resistance [61]. Although in hepatic sections
of DIOPF mice there were a large number of fat vesicles amply
distributed across the parenchyma, mice treated with probiotics



24 R.A. Bagarolli et al. / Journal of Nutritional Biochemistry 50 (2017) 16-25

presented liver parenchyma very similar to that of the controls, with
no evidence of hepatic steatosis, in parallel to a marked reduction in
inflammatory pathways and cytokine expression in this tissue.

Our data showed that animals fed HFD and treated with probiotics
presented decreased weight gain and food intake compared to DIO
counterparts. The regulation of food intake by the hypothalamus has been
extensively investigated and involves nutrients, hormones and neural
signals [62]. Leptin and insulin signaling and action in the hypothalamus
have profound anorexigenic effects [62]. Hypothalamic insulin signaling
promotes transcriptional and electrical events in neurons and activates
PI3K/Akt pathway controlling neuropeptides responsible to maintain
energy homeostasis. Leptin in the hypothalamus exerts its effects through
LR/JAK2/STAT3 pathway also regulating neuropeptide transcription. Both
hormones may increase POMC, which is anorexigenic, and decrease the
orexigenic NPY mRNA levels [62,63]. Obesity state is associated with
insulin and leptin resistance in the hypothalamus [64]. The mechanism
responsible for the resistance is likely due to, at least in part, aberrant
hypothalamic activation of proinflammatory molecules, including TLR4,
JNK and IKK [55,65]. Here we reported that probiotic administration by
gavage in HFD-fed mice induced a striking reduction in hypothalamic
TLR4 and IL-6 mRNA levels and a decrease in protein expression of serine
kinases JNK and IKK. The reduction of proinflammatory molecules was
associated with an improvement of insulin and leptin signaling, action in
the hypothalamus and decrease in NPY mRNA levels. These results might
contribute to reduce food intake and adiposity in mice treated with
probiotics.

Serum GLP1 levels were higher in mice treated with probiotics
than their controls. It is well established that activation of GLP1
receptor in multiple sites of the brain alters energy balance [66]. Thus,
we cannot rule out a possible contribution of GLP1 lowering body
weight and food intake in mice treated with probiotics.

In summary, our data demonstrate that HFD promotes alterations
in gut microflora that are reflected in increased intestinal permeabil-
ity, LPS translocation and systemic low-grade inflammation, resulting
in decreased glucose tolerance and hyperphagic behavior. These
obesity-related features were reversed by changes in the gut
microbiota profile induced by probiotics in mice subjected to an HFD
(Fig. 6). In this context, we believe that probiotics can be an important
tool to prevent and treat patients with obesity and insulin resistance,
but more studies are needed, especially to develop more specific
probiotic strains for treating metabolic disorders such as obesity.

Supplementary data to this article can be found online at http://dx.
doi.org/10.1016/j.jnutbio.2017.08.006.
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