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Abstract

The human microbiome consists of a multitude of bacterial genera and species which 

continuously interact with one another and their host establishing a metabolic 

equilibrium.  The dysbiosis can lead to the development of pathology, such as 

inflammatory bowel diseases.  Sulfide-producing prokaryotes, including sulphate-

reducing bacteria (SRB) constituting different genera, including the Desulfovibrio, are 

commonly detected within the human microbiome recovered from fecal material or 

colonic biopsy samples. It has been proposed that SRB likely contribute to colonic 

pathology, for example ulcerative colitis (UC). 

The interaction of SRB with the human colon and intestinal epithelial cell lines has been 

investigated using Desulfovibrio indonesiensis as a model mono-culture and in a co-

culture with E. coli isolate, and with SRB consortia from human biopsy samples. 

We find that D. indonesiensis, whether as a mono- or co-culture, was internalized and 

induced apoptosis in colon epithelial cells. This effect was enhanced in the presence of E. 

coli. The SRB combination obtained through enrichment of biopsies from UC patients 

induced apoptosis of a human intestinal epithelial cell line. This response was not 

observed in SRB enrichments from healthy (non-UC) controls. Importantly, apoptosis 

was detected in epithelial cells from UC patients and was not seen in epithelial cells of 

healthy donors. Furthermore, the antibody raised against exopolysaccharides (EPS) of D. 

indonesiensis cross reacted with the SRB population from UC patients but not with the 

SRB combination from non-UC controls. This study reinforces a correlation between the 

presence of sulphate-reducing bacteria and an inflammatory response in UC sufferers. 
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1. Introduction

Sulphate reducing bacteria (SRB) are a diverse group of anaerobic prokaryotes 

able to reduce sulphate to sulphide [1].  They are  ubiquitous in aquatic and terrestrial 

environments, and in man-made systems [2], and are associated with plants, animals and 

humans [3].  In humans, SRB are known colonizers of the intestine and have been 

implicated in several clinical and inflammatory conditions such as periodontitis, 

Pouchitis, metabolic syndrome and obesity [4]; [5-8].  

More than nine hundred bacterial species are known to colonize the human gut 

[9]. The delicate balance between pathogenicity and host-commensal bacterial mutualism 

is maintained with constant tolerance of bacterial antigens [10, 11],[12].  It is well 

accepted that an imbalance in the number or composition of gut microbiota (known as 

dysbiosis) is associated with a vary inflammatory diseases [13]..  While some bacteria are 

used as probiotics in clinical studies [14], others can be harmful if they break across the 

epithelial barrier [13, 15, 16].  It has been proposed that induction of apoptosis of 

epithelial cells is one mechanism whereby the bacteria can cause pathology [17]. Some 

bacteria may also secrete virulence factors that can destroy the mucus barrier, allowing 

direct contact between bacteria and the epithelium [10, 18].  

Ulcerative colitis (UC) is an inflammatory bowel disease (IBD) of multifactorial 

etiology, i.e., susceptibility genes combine with environmental factors to produce the 

diseased phenotype [19, 20].  Bacterial infection could be one of the environmental 

factors. Although the involvement of SRB in the initiation and/or maintenance of UC in 

both humans and animals has been proposed [21, 22], the exact mechanism by which 

SRB could contribute to UC etiology remains unknown.  The modificated environment 

may contribute to unproportional growth of SRB. Furthermore SRB are resistant to broad 

spectrum antibiotics [23], what can facilitates the burst of these bacteria in condition of 

repeated antibiotic use. The main product of metabolic the activity of SRB, sulphide, is 

toxic for human cells as it can destroy the sulphate-bridges in the mucus layer, thus 

neutralizing the ability of mucus to protect the colon epithelium [24, 25].  The mesophilic 

Gram-negative species representing the Desulfovibrio genus are of interest among the 

SRB. It has been demonstrated that members of Desulfovibrio colonize surfaces of 



intestinal epithelial tissue of UC animals and are absent in healthy animals [26].  In 

human studies, it has been reported that, compared to healthy controls, the abundance of 

Desulfovibrio cells in UC patients are higher than in controls [21, 27-29].  Although the 

role of diet in the etiology of UC remains uncertain, evidence suggests that in UC 

patients, low-fat diets and insoluble oligosaccharides (prebiotics) could be beneficial 

[30]. A decrease in the level of anaerobic bacteria such as SRB has been observed in the 

microflora of the intestinal tract following the beneficial diet change [31-33].  It is also 

known that diets poor in sulphur containing-compounds are beneficial to UC patients 

[27].  While the numbers of SRB are similar for UC patients and healthy controls, 

differences were noted in the proliferative rates of bacterial colonies enriched from these 

samples [34].  

Other studies confirmed that samples from UC patients and healthy controls 

harbor the same level of SRB, but there are significant differences in the structure of the 

SRB community between the two groups [35].  Here we report that SRB of the 

Desulfovibrio genus can interact with the surface of human intestinal epithelial cells and 

induce their apoptosis.  



2. Material and Methods

2.1. Human intestinal tissue samples

Specimens of intestinal mucosa were taken during colonoscopy from the proximal colon 

of 29 patients with chronic ulcerative colitis and 37 control individuals with non-

inflammatory conditions from the Department of Gastroenterology, Queen Alexandra 

Hospital. Portsmouth, UK.  The biopsy procedure is described elsewhere [36].  Ulcerative 

colitis was diagnosed based on clinical, endoscopic and histological findings; the clinical 

data of patients and controls are shown in the Table 1. All human samples examined in 

this study were collected with the approval of local ethics committee (Portsmouth, 

Hampshire, UK) approval number 01/01/1106, and written informed consent was 

obtained from all participants.  

Following sampling, specimens of mucosa were immediately transferred with a sterile 

needle from the forceps into an Eppendorf tube containing 0.2 ml of sterile physiological 

saline solution.  The mucosal samples were maintained under an atmosphere of oxygen-

free nitrogen gas from the time of the initial collection until use, and then vigorously 

aspirated into and out of a Pasteur pipette to ensure complete dissociation of bacterial 

cells from mucosa.  The aliquots of mucosal samples were used for inoculating 10-ml 

vials with lactate- and sulfate-supplemented liquid VM medium I, as follow described.

2.2. Bacterial growth conditions

D. indonesiensis (NCIMB 13468) and Escherichia coli isolated from UC patients were

cultivated at 37oC.  The VM medium I was composed of (g l-1 distilled water): KH2PO4,

0.5; NH4Cl, 1.0;  Na2SO4, 4.5; NaCl, 9.0; CaCl2
.2H2O, 0.04; MgSO4

.7H2O, 0.06; sodium

lactate, 6.0; sodium citrate, 0.3; casamino acids, 2.0; tryptone, 2.0; thioglycolic acid, 0.1;

FeSO4
.7H2O, 0.5; modified Wolfe’s mineral elixir [37] and vitamin solution. The pH of

the medium was adjusted to 7.5 prior to adding vitamin solution.  The combination of

vitamins was as following (mg l-1 distilled water): ascorbic acid, 100; nicotinic acid, 0.5;

vitamin B1, 0.6; vitamin B12, 0.05; vitamin B2, 0.2; vitamin B5, 0.6; vitamin B6, 0.6;

vitamin H, 0.01.  The vitamin solution and the modified Wolfe’s mineral elixir were filter

sterilized.  Culture tubes were filled with the medium (without vitamins), purged with a



N2 flux and autoclaved at 121 oC for 30 min. Due to the presence of Fe ions, VM medium 

I acts as an indicator medium for SRB. Upon the production of hydrogen sulfide by 

active SRB cells, the development of a black color, resulting from the presence of 

anaerobically formed iron sulfide compounds, indicates bacterial growth.  The cultures 

were inspected for the change of color at regular time intervals over a period of 28 days.

2.3. Intestinal cryo-sections and Immunostaining assay

Dot blotting assay 

The bacterial cells were pelleted from the culture by centrifugation for 15 min at 13,000 

rpm. The cells were then suspended in 1 ml of distilled water, disrupted by eight freezing 

and thawing cycles (-180oC and +37oC, respectively) and spun at 13,000 rpm for 15 min.  

The supernatants were transferred into another set of tubes and the pellets were dissolved 

in 100 µl of distilled water. Nitro-cellulose membrane (Bio-Rad) was adjusted to a dot 

blot apparatus (Jencons - PLS) and the samples were applied under vacuum. After 

loading the samples, the membrane was dried, soaked in egg albumin 1 % solution for 1 h 

at room temperature and then washed three times using PBS-Tween 0.02 %, 10 min each 

time. After washing the membrane was incubated with normal goat serum 1:5 at room 

temperature for 3 h and then at 4oC overnight with rabbit polyclonal antibody anti- 
exopolysaccharides (EPS) of D. indonesiensis diluted 1:50. The membrane was again 

washed three times with PBS-Tween and incubated with goat antibody anti-rabbit IgG 

conjugated to horseradish peroxidase (Sigma Co.) diluted 1:2000 for 2 h at 37oC.  The 

membrane was, then, washed five times with PBS-Tween, 10 min each time. The reaction 

was assessed by revealing peroxidase enzyme activity using 30 mg of 4-chloro-1-naphtol 

dissolved in 10 ml of cold ethanol, 50 ml of PBS and 30 µl of 30 % H2O2.The positive 

reaction is detected by dark bluish precipitate on the sample spots applied to the 

membrane.

2.4. SRB interaction with human epithelial cells assay.

The human epithelial cells line HCT8 cells from ATCC were distributed on 24 wells 

culture plates with and without slides on each well and left to grow in RPMI medium for 



24h, achieving a monolayer culture.  D. indonesiensis and E. coli 2R/BP were grown on 

VMNI medium and centrifuged for 1 min at 12,000 rpm on Eppendorf refrigerated 

centrifuge. The bacteria were then resuspended on RPMI medium.  The bacteria (2x105 

cells in 100 µl of medium) were added on wells containing 2x104 cells in 300 µl of RPMI 

and let to interact for 1h at 37 oC.  After that, the cells were washed, 2 ml of RPMI 

medium were added, and the cells were maintained in a CO2 incubator at 37 oC for two 

additional hours. In some wells, epithelial cells were pre-incubated with 10 µg/ml of 

cytochalasin D, a phagocytosis inhibitor drug, for 30 min before the infection.  At the end 

of the experiments, the cells were washed and the slides were prepared for 

immunostaining assay.  The remaining cells which had grown directly on wells were 

released by treatment with PBS/EDTA 1mM for 10 min at 37 oC, collected on Falcon 

tube and processed for flow cytometry analysis.

2.5. Immunostaining assay

The cells attached to slides were processed for immunostaining using the same incubation 

steps with antibodies, but additionally incubated with DAPI for bacterial DNA and 

nucleus of epithelial cells staining. The cells were analyzed using Zeiss Axioplan (Zeiss, 

Germany) microscope coupled with Leica DC 200 image acquisition system (Leica, 

Cambridge, UK).

2.6. Flow cytometry analysis

For flow cytometry analysis, the cells were fixed on paraformaldehyde (PFA) 4% in PBS 

for 10 min at room temperature.  The cells were then washed with PBS and incubated 

with 10% of calf serum in phosphate buffer saline PBS to block unspecific bindings, 

followed by sequential incubations for 30 min at room temperature with: 1) rabbit anti-D. 

indonesiensis extracellular polymeric substances (anti-D. indo EPS) polyclonal antibody 

diluted 1:50; 2) calf antibodies anti-rabbit IgG FITC-conjugated diluted at 1:50.  All 

antibodies were diluted in PBS/BSA 1% saponin 0.1%. After each antibody incubation 

step, the cells were washed twice with PBS.  Final 10.000 cells were acquired for flow 

cytometry FACScan Becton Dickson for fluorescence analysis. 



2.7. Apoptosis assay using flow cytometry

The HCT8 human intestinal epithelial cells were infected or not with pure strain (D. 

indonesiensis or E. coli 2R/BP or E. coli K12) or with mixed culture bacteria (D. 

indonesiensis + E. coli 2R/BP or SRB combination from UC patient or from control 

individual) for 12 to 40 h.  The infections were also performed with the bacteria but in the 

presence of Z-VAD, a drug that inhibit apoptosis mediated by caspases. The epithelial 

cells were also incubated with EPS from D. indonesiensis. The attached cells were then 

released from the wells with PBS/EDTA and recovered in Falcon tubes, washed and 

centrifuged for 7 min at 250g.  The cells were finally resuspended in apoptosis buffer 

containing 0.1% sodium citrate, 0.1% Triton X-100 and 5 g/ml of propidium iodate.  The 

DNA content of the acquired cells (10.000 cells per tube) was analyzed using a FACScan 

Becton Dickinson flow cytometry. 

2.8. TUNEL labelling 

Terminal deoxythymidine transferase-mediated dUTP nick end labelling (TUNEL) 

staining was performed using an in situ cell death detection kit (Boehringer Mannheim; 

Meylan, France) according to the manufacturer’s recommendations.  Briefly,   harvested 

adhered and supernatant cells were fixed in 4 % paraformaldehyde (PFA; BDH 

Laboratory Supplies, Poole, UK) at room temperature for 30 min and permeabilized with 

a buffer containing 0.1% Triton X-100 and freshly-prepared 0.1% sodium citrate.  Fixed 

cells were labeled with fluorescein isothiocyanate (FITC)-dUTP using terminal 

deoxythymidine transferase.  The FITC-stained cells were visualized with a Zeiss 

Axioplan microscope (Jena, Germany) coupled to a Leica DC 200 image acquisition 

system (Cambridge, UK).  The figures were prepared using the Adobe Photoshop 5.0 

program. 

2.9. Statistical analysis

Statistical analysis was performed using the unpaired Students’t-test.  Values of P < 0.05 

were considered significant.



3. Results

3.1. The pure strain of SRB interacts with human intestinal epithelial cells 

in culture

The flow cytometry analysis showed that D. indonesiensis interacts with HCT8 human 

intestinal epithelial cells in culture (Fig. 1).  The mean fluorescence intensity obtained 

from cells incubated/infected with D. indonesiensis was higher than for uninfected 

controls. There was no significant increase in staining when the cells were permeabilized 

with saponin during the incubation with antibodies, suggesting that the bacteria interacted 

mainly with the surface of the cells.  However, the pre-treatment with cytochalasin D (a 

drug that inhibits phagocytosis) reduced the mean fluorescence intensity of HCT8 cells 

by 30%, suggesting that there was some internalization of SRB by the host cells (data not 

shown). These findings were confirmed by analysis of immunofluorescence staining, 

observed by fluorescence microscopy.  The SRB interacted with the cell membrane of 

epithelial cells, usually creating aggregates (presumably biofilms) (Fig. 2), both when D. 

indonesiensis infected alone (Fig. 2e) or in combination with E. coli 2R/BP (Fig. 2g).  

The E. coli 2R/BP strain was not labelled with the antibody against EPS of D. 

indonesiensis (Fig. 2, d, h; shown by arrows).  

3.2. The pure D. indonesiensis and E. coli 2R/BP strains induce apoptosis 

of human intestinal epithelial cells

The infected and uninfected HCT8 cells were analyzed for hypo-diploid cells by flow 

cytometer as described in Material and Methods.  We found that D. indonesiensis and E. 

coli BP individually induced apoptosis in HCT8 cells and that the combination had a 

larger effect than either of them separately (Fig. 3a).  Z-VAD treatment inhibited partially 

apoptosis induced by either strain of bacteria, suggesting that the apoptosis induced by 

either strain individually may require the activity of caspases, but treatment was not 

significantly effective on infection by the combination of bacterial strains.  The TUNEL 

analysis confirmed the data obtained by flow cytometry, showing nuclear fragmentation 

only in cells treated with D. indonesiensis, E. coli BP or the combination of both strains 

(fig. 3b).  



We then investigated whether the apoptosis of HCT8 cells induced by D. indonesiensis, 

E. coli BP or by the combination was specific or a general effect of other bacterial

species. We observed that D. indonesiensis or E. coli BP separately or in combination

induced apoptosis (5 ±1%, 29 ±2%, or 41 ±1% respectively), while another strain of E.

coli (E. coli K12) also induced a low level of apoptosis (5 ±0.6%) in HCT8 cells.  But the

combination of bacteria enriched with SRB extracted from mucosal biopsies of healthy

subjects did not induce apoptosis (Fig. 4).  Conversely, the combination of bacteria

enriched with SRB from patients with ulcerative colitis clearly induced apoptosis (13

±1%) on HCT8 cells.  We also investigated the effect of soluble bacterial products on the

apoptosis obtained and observed that the extracellular polymeric substance extracted

from D. indonesiensis did not induce apoptosis on intestinal epithelial cells HCT8.   To

better characterize the effect of D. indonesiensis on induction of death of HCT8 cells, we

performed kinetic experiments growing the cells in the presence of the antibiotic

penicillin.  Under this experimental condition, the specific apoptosis induced by D.

indonesiensis was 9.3 ±1.5% and 18 ±1 2.5% after 12h and 40h of infection, respectively

(Fig. 5).  The apoptosis induced by D. indonesiensis was also dependent on the bacterial

concentration, since doubling the initial inoculum induced almost twice as much

apoptosis after 24h.

3.3. Apoptosis in human intestinal epithelial biopsies from ulcerative 

colitis patients

We examined apoptosis in biopsies of epithelial tissue from patients (n=3) and healthy 

donors (n=3) by the TUNEL technique.  We observed many apoptotic cells in samples 

from colitis patients (Fig. 6a and 6b). No apoptotic cells were observed on slides from 

healthy donor samples. Using antibodies against EPS of SRB, we also identified SRB on 

samples from ulcerative colitis patients, where they were found in association with the 

surface of intestinal epithelia (Fig. 6c). These results suggested that the epithelial barrier 

was broken in the patients and the colonic epithelium was infiltrated with SRB bacteria.

3.4. Antibodies against EPS of D. indonesiensis discriminate between SRB 

isolated from ulcerative colitis patients and control samples



The polyclonal antibody against EPS of D. indonesiensis was used to recognize SRB in 

bacteria consortium isolated in biopsies from the intestinal mucosa of ulcerative colitis 

patients and control groups by the dot blotting assay.  As shown in table 1, the antibody 

could recognize 81% of samples from human colon biopsies from patients with ulcerative 

colitis and only 20.8% of samples from the control groups.  

These results were confirmed by the immunofluorescence technique, which showed SRB 

staining in bacteria consortium isolated in biopsies from intestinal mucosa of ulcerative 

colitis patients (Fig.7a and b) but not control samples (Fig. 7c and d).  These results 

suggest that the antibody against EPS of D. indonesiensis can be used as an additional 

marker for differential recognition of SRB present on human colon biopsies with and 

without ulcerative colitis.

4. Discussion

Intestinal bacteria are believed to play a role in the pathogenesis of inflammatory bowel 

disease (IBD), including ulcerative colitis (UC) and Crohn’s disease.  Genetically 

engineered animal models have shown the importance of commensal bacteria in 

development of disease [38, 39], antibacterial treatment could improve symptoms of IBD 

[40], and some SRB are susceptible to drugs used in active treatment of UC patients [41]. 

Inhibition of BRS-sulfide production by 5-aminosalicylic acid (5-ASA)-containing drugs 

has been proposed for therapy of UC patients [42].  There are also circumstantial and 

sometimes conflicting reports regarding the differences in SRB populations (strains, 

growth rate) and metabolic activity (expressed as sulphide production) in healthy and 

diseased specimens.  Furthermore, most of the reported data were obtained from fecal 

samples [43, 44], which do not necessarily provide a reliable readout for SRB infection in 

the colon.

We show here that SRB can interact with the human epithelial intestinal cell membrane 

and are cytotoxic for those cells.  The apoptosis induced by SRB was significantly higher 

when the cells were co-infected with E. coli commensal bacteria, and these findings were 

confirmed when the SRB and E. coli were obtained from UC patients.  The mechanism 

how SRB induces cytotoxity in human intestinal epithelial cells is not completed 



understood. Interesting the Hydrogen sulfide (H2S) that is produced by both SRB and E. 

coli [45], at higher concentrations is associated with inhibition of cellular bioenergetics 

and mitochondrial respiration, pro-oxidant effects, DNA damage, suppression of cell 

viability and promotion of cell necrosis and/or apoptosis [46].  Depending of cell type the 

H2S treatment increases cell death in human lung fibroblast or inhibits cell cycle 

progression in rat smooth muscle, oral epithelial cells and human colon cancer cells 

inhibiting cyclin dependent kinase [47].  Furthermore, the H2S at lower concentration can 

develop a beneficial effect protecting intestinal cancer Caco2 cells from TNF and IFN-γ 

induced cell death [48].  

Previous studies have suggested that cell wall products derived from the luminal bacteria 

of the colon could cause colitis in immunodeficient mice [49], and that bacterial flagellin 

is a dominant antigen in IBD [50].  Besides, LPS of SRB was associated with microbiota 

inflammatory properties [51] while E. coli LPS induces increase in plasma H2S levels in 

mice during inflammation [52], what prompted us to consider the LPS as an additional 

signalling molecule responsible for the SRB effects on intestinal epithelial cells.  In 

addition, some probiotic bacteria can confer health benefits to the host by improving the 

microbial composition of the indigenous microflora in UC patients [53, 54]. In this 

direction the infection by Yersinia enterocolitica induces chronic bowel inflammation 

with dysbiosis favoring SRB proliferation and treatment using probiotics could prevent 

the microbiota alterations changes and inflammation showing the importance of dysbiosis 

of the gut microbiota for development of IBD [12]. 

Finally, recently we described that germ-free mice colonization with Desulfovibrio 

indonesiensis or with a human SRB consortium (from patients with colitis), induced 

changes in colonic architecture with increased cell infiltration in the lamina própria, and 

upregulation of IL-17 and Treg profiles of cytokine production/cell activation in cells 

from mesenteric lymph nodes [55]. What favors the hypothesis of SRB involvement in 

initiation of IBD.

5. Conclusion

We propose that SRB could contribute to initiation of IBD, by impairing the barrier 

function of the intestine and/or impairing the healing response to local inflammation.



Figure Legends

Fig. 1 D. indonesiensis interacts in vitro with intestinal epithelial cells.  Labeling with 

anti-EPS antibodies with HCT8 cells was analyzed by flow cytometry.  HCT8 cells 

infected with D. indonesiensis showed higher fluorescence intensity than control cells not 

infected or infected with E. coli 2R/BP (**p<0.001). Data are expressed as mean ± 

S.E.M. of 3 independent experiments. The asterisk represents a significant difference 

relative to the control value.

Fig. 2  Immunostaining reaction showing the in vitro interaction of D. indonesiensis with 

human intestinal epithelial cells.  The left panel (a,c,e,g and i) shows in green SRB 

staining with anti-EPS antibodies, the right panel (b,d,f,h and j) shows the double 

staining of SRB (green) and the nucleus (blue) of eukaryotic cells and bacteria.  Note that 

D. indonesiensis interacts with the surface of HCT8 cells (e,g,i, arrow), usually showing a

cellular aggregate.  In h, the wide arrow shows the absence of green staining in cells

incubated with E. coli 2R/BP. Magnification (a-j) x 1000 gain.

Fig. 3 Apoptosis of intestinal epithelial cells after bacterial infection.  The HCT8 cells 

were infected with E. coli 2R/BP (BP) and D. indonesiensis (D. ind), individually or in 

combination, analyzed by hypodiploid cells by flow cytometry (a) and by TUNEL (b), 

where the apoptotic nuclei are shown in green.  *P<0.05, **P<0.001, ***<P<0.001 

compared to control; #P<0.05 compared to Z-VAD untreated. The experiment is 

representative of three independent experiments in triplicate. 

Fig. 4  Apoptosis of epithelial cells induced by different bacteria.  Specific apoptosis is 

displayed as % of hypodiploid cells.  The HCT8 cells were infected with bacteria or 

incubated in the presence of bacterial exopolysaccharides (EPS) for 12h (BP: E. coli 

2R/BP; D. ind: D. indonesiensis; EPS D. ind: extracellular polymeric substance purified 

from D. indonesiensis; Cons (patient); sample bacteria consortium enriched in SRB 

isolated from intestinal mucosa biopsies from ulcerative colitis patient; Cons (control); 



consortium enriched in SRB isolated from intestinal mucosal biopsies from healthy 

individuals.  *P<0.05, **P<0.001, ***<P<0.001 compared to untreated control. Data are 

expressed as mean ± S.E.M. of 3 independent experiments performed in triplicate. The 

asterisk represents a significant difference relative to the Cons (control) value. (b 1000x 

gain)

Fig. 5 Time and concentration dependence of BRS-induced apoptosis in epithelial cells.  

HCT8 cells were infected with D. indonesiensis for 12h and 40h in RPMI medium 

without antibiotics.  The percentage of apoptosis was dependent on the dose of inoculum 

and time of infection (*p<0.01). The experiment were performed in triplicate and 

repeated three times. The asterisk represents a significant difference relative to the 1x 

dose inoculum value.

Fig. 6 Apoptosis and SRB interaction on intestinal epithelial cells from UC patients.  

Apoptotic cells detected by TUNEL reaction (a-b) and immunostaining for SRB (c) on 

frozen samples from biopsies of intestinal mucosa from UC patients.  Apoptotic cells 

were observed in the human colon epithelium (a- 400x; b-1000x gain; green staining).  In 

(c) bacteria were stained with anti-EPS of D. indonesiensis (shown in green) associated

with intestinal epithelial cells (nucleus stained in blue).

Fig. 7 Selective staining of EPS of SRB from UC patients.  The presence of total bacteria 

is shown in blue for DAPI-stained nuclei (right panel).  The staining of bacteria with anti-

SRB antibody is shown in green (left panel).  The bacteria enriched with SRB isolated 

from colon biopsies of UC patients (a, b) and healthy volunteers (c, d) shows positive 

staining in patients but not healthy volunteers.  Note that on patient consortium there are 

few bacteria that are not recognized by antibody (b, arrow). (a-d 1000x gain)



Table 1

Dot blotting results showing the percentage of bacterial samples labeling using anti-EPS 

of D. indonesiensis antibody.  The immune reactions were done against bacterial lysates 

from consortiums enriched with SRB isolated from patients with ulcerative colitis and or 

from control group.
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Table 1: Dot blotting of SRB enriched consortiums from patients or from control group 
using anti-EPS of D. indonesiensis antibody

Reaction Ulcerative colitis patients (n = 21) Control group  (n = 24)
Positive 17  (81 %) 5    (20.8 %)
Negative 4    (19 %) 19  (79.2 %)

                                                                                                                                                                                                                                                                                                                                     




