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Abstract 

A new method is proposed in this paper for bridge damage detection using the response 

measured in a passing vehicle. It is shown theoretically that such a response includes three 

main components; vehicle frequency, bridge natural frequency and a vehicle speed pseudo-

frequency component. The Empirical Mode Decomposition (EMD) method is used to decompose 

the signal into its main components. A damage detection method is proposed using the Intrinsic 

Mode Functions (IMFs) corresponding to the vehicle speed component of the response 

measured on the passing vehicle. Numerical case studies using Finite Element modelling of 

Vehicle Bridge Interaction are used to show the performance of the proposed method. It is 

demonstrated that it can successfully localise the damage location in the absence of road profile. 

A difference in the acceleration signals of healthy and corresponding damaged structures is 

used to identify the damage location in the presence of a road profile. The performance of the 

method for changes in the transverse position of the vehicle on the bridge is also studied.  

Key words: Bridge; Damage detection; Indirect method  
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1. Introduction 

Bridges play a key role in road and rail transportation. However, concrete and steel deteriorate 

over time and many bridges in the developed world are structurally deficient. Therefore bridge 

condition monitoring is becoming a key element in the planning of maintenance interventions in 

transport infrastructure. Today, visual inspections are widely used for bridge damage detection. 

While effective in many cases, visual inspection suffers variability in the judgments of inspectors 

and accessibility issues which may leave some types of damage undiscovered.  

In recent years, there has been an increasing interest in vibration-based structural health 

monitoring methods for bridge damage detection. These approaches are mainly based on the 

variation of modal parameters of the structure (i.e. natural frequency, mode shape and damping 

ratio) with structural health condition. Natural frequency change is the most common damage 

indicator, but it is generally accepted that natural frequencies alone cannot provide local 

information about damage (Fan and Qiao, 2011). Recently more sensitive modal parameters 

such as mode shapes and modal curvatures have gained attention. These approaches have the 

potential to provide local information on the structural condition of the structure (Fan and Qiao, 

2011).  

Although these vibration-based methods can provide high quality information about bridge 

condition, they require the installation of many sensors and access to electrical power on the 

bridge. Considering the large number of short and medium span bridges, the instrumentation 

becomes expensive and smaller bridges are not routinely instrumented at this point in time. 

Recently, this drawback of direct methods has led to the concept of an indirect approach in 

which bridge condition is investigated using data measured on a passing vehicle (Malekjafarian 

et al., 2015). The idea is first proposed to extract the bridge natural frequency from indirect 

measurements (Yang et al., 2004). It is shown that the acceleration response measured on a 

vehicle passing over the bridge includes enough bridge response to reveal the bridge natural 
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frequencies. Early research in this field is focused on the validation of the idea experimentally 

(Lin and Yang, 2005), improvement of the accuracy (Kim and Kawatani, 2009; Yang and Chen, 

2015; Yang and Chang, 2009a) and accessing bridge natural frequencies other than just the first 

one (Yang and Chang, 2009b). Recent research investigates other modal parameters such as 

damping ratio (González et al., 2012) and mode shapes (Malekjafarian and Obrien, 2014; 

Oshima et al., 2014; Yang et al., 2014). Yang et al. (2014) show that the bridge mode shape can 

be identified from the Hilbert amplitude of a filtered response measured on a passing axle. 

Oshima et al. (2014) propose a method in which the bridge mode shapes are found from the 

response measured on a truck-trailer system. The mode shapes are identified by applying 

Singular Value Decomposition (SVD) to the responses measured on several axles of the truck-

trailer system. Malekjafarian and Obrien (2014) propose Short Time Frequency Domain 

Decomposition (STFDD) for the identification of bridge mode shapes from the response 

measured on two following axles passing over the bridge. It is shown that the mode shapes can 

be constructed by applying Frequency Domain Decomposition (FDD) to the responses in a 

multi-step procedure.  

Several attempts have been made to detect bridge damage using indirect measurements (Kim et 

al., 2014; Lederman et al., 2014; Li and Au, 2014; McGetrick and Kim, 2014a; Nguyen and Tran, 

2010).  Nguyen and Tran (2010) use a Symlet wavelet transform of the displacement response 

measured on a moving vehicle to identify the location of cracks in a bridge. McGetrick and Kim 

(2013); McGetrick and Kim (2014b) apply a Continuous Wavelet Transform (CWT) to the 

dynamic response of a passing vehicle. It is demonstrated that the CWT coefficients are affected 

when the axle passes over a damaged section. Li and Au (2014) suggest a multistage damage 

detection approach using modal strain energy and the genetic algorithm (GA). The approach 

successfully detects the location of damage in a two-span continuous bridge. OBrien and 

Keenahan (2014) introduce a new drive-by damage detection method using the concept of the 

apparent road profile. A mode-shape based damage detection method is proposed in (OBrien 
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and Malekjafarian, 2016) using an improved version of the STFDD method. They obtain a better 

resolution of the bridge mode shapes which has good potential for damage detection.   

In this paper, the theoretical response of a vehicle passing over a bridge is presented first. It is 

shown in (Yang et al., 2004) that the response measured on a passing vehicle contains three 

main components; vehicle frequency, bridge natural frequency and the pseudo frequency 

associated with vehicle speed. The first of these relates to the vehicle dynamic response and the 

last two correspond to the bridge response. Generally, those components corresponding to the 

bridge dynamics reflect the bridge condition. He and Zhu (2015) investigate the dynamic 

response of a bridge to a moving load (which is generally a moving vehicle). They show that the 

pseudo-frequency component of the response is more sensitive to damage and is preferred for 

damage localization. This finding is used in this paper, by separating the pseudo-frequency 

component of the response and using it for damage detection. The Empirical Mode 

Decomposition (EMD) is applied to the axle response to decompose it into different components 

using a sifting process. It is shown that the damage location can be detected using the IMFs 

corresponding to the pseudo-frequency. A finite element (FE) model of Vehicle Bridge 

Interaction (VBI) is used to provide a numerical case study to validate the method. A simulation 

of a quarter car passing over a bridge with a smooth road surface is followed by a case with 

good road roughness. Finally, the sensitivity of the method to changes in the transverse position 

of the vehicle on the bridge is investigated. 

2. Theoretical background 

The basis of indirect bridge monitoring is to use the response measured on a passing vehicle. A 

comprehensive theoretical look at this response is necessary for a better understanding of the 

indirect approach. A closed-form VBI solution is presented in this section to identify the main 

components of the response measured on a passing vehicle.  
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2.1. The response measured on a passing vehicle 

A greatly simplified model is first considered to identify the basic features of the system. The 

vehicle is modelled as a sprung mass and the bridge as a simply supported beam considering 

only the first mode. Then, the equation of motion for the sprung mass moving over the beam, 

shown in Fig. 1 can be written as (Yang et al., 2004): 

𝑚𝑣𝑞̈𝑣 + 𝑘𝑣(𝑞𝑣 − 𝑢|𝑥=𝑣𝑡) = 0 (1) 
 

where 𝑞𝑣 is the vertical displacement of the sprung mass, 𝑚𝑣 and 𝑘𝑣 are the mass and stiffness 

of the sprung mass and 𝑢 is the beam deflection. By considering the contact force between the 

sprung mass and the beam and the beam displacement due to the moving load, Eq. 1 can be 

expressed as (Yang et al., 2004): 

𝑚𝑣𝑞̈𝑣 + (𝜔𝑣
2𝑚𝑣)𝑞𝑣 − [𝜔𝑣

2𝑚𝑣sin⁡(
𝜋𝑣𝑡

𝐿
)] 𝑞𝑏 = 0 

(2) 

 

where 𝜔𝑣 is the sprung mass natural frequency given by 𝜔𝑣 = √
𝑘𝑣

𝑚𝑣
, 𝑣 is the speed of the sprung 

mass, 𝑡 is time, 𝐿 is the total length of the beam and 𝑞𝑏 is the deflection at mid-span of the beam.  

 

Figure 1: A sprung mass passing over a bridge 

If the vehicle mass is much less than the total mass of the bridge, then the vehicle displacement 

can be approximated as (Yang et al., 2004): 

𝑞𝑣(𝑡) =
∆𝑠𝑡

2(1 − 𝑆2)
[(1 − 𝑐𝑜𝑠𝜔𝑣𝑡) −

𝑐𝑜𝑠2𝜋𝑣𝑡/𝐿 − 𝑐𝑜𝑠𝜔𝑣𝑡

1 − (2𝜇𝑆)2

− 𝑆
𝑐𝑜𝑠(𝜔𝑏 − 𝜋𝑣/𝐿) 𝑡 − 𝑐𝑜𝑠𝜔𝑣𝑡

1 − 𝜇2(1 − 𝑆)2
+ 𝑆

𝑐𝑜𝑠(𝜔𝑏 + 𝜋𝑣/𝐿) 𝑡 − 𝑐𝑜𝑠𝜔𝑣𝑡

1 − 𝜇2(1 + 𝑆)2
] 

 

(3) 

L 

Velocity 

mv 

kv 

qv 

qu 
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where 𝜇 is the the ratio of the bridge frequency to the vehicle frequency, 𝜇 = 𝜔𝑏/𝜔𝑣, ∆𝑠𝑡 is  the 

approximate static deflection at mid-span of the beam under the gravity action of the mass 𝑚𝑣 

at that point and 𝑆 is defined as 𝑆 = 𝜋𝜈
𝐿𝜔𝑏
⁄ . This can be calculated using: 

∆𝑠𝑡= −
2𝑚𝑣𝑔𝐿

3

𝜋4𝐸𝐼
 

(4) 

 

where 𝑔 is the acceleration due to gravity, 𝐸 is the elastic modulus and 𝐼 is the second moment 

of area. 

The acceleration of the moving vehicle can be obtained by differentiating Eq. 3 twice (Yang et al., 

2004): 

𝑞̈𝑣(𝑡) =
∆𝑠𝑡𝜔𝑣

2

2(1 − 𝑆2)
[𝑐𝑜𝑠𝜔𝑣𝑡 +

(2𝜇𝑆)2𝑐𝑜𝑠2𝜋𝑣𝑡/𝐿 − 𝑐𝑜𝑠𝜔𝑣𝑡

1 − (2𝜇𝑆)2

+ 𝑆
𝜇2(1 − 𝑆)2 𝑐𝑜𝑠(𝜔𝑏 − 𝜋𝑣/𝐿) 𝑡 − 𝑐𝑜𝑠𝜔𝑣𝑡

1 − 𝜇2(1 − 𝑆)2

− 𝑆
𝜇2(1 + 𝑆)2 𝑐𝑜𝑠(𝜔𝑏 + 𝜋𝑣/𝐿) 𝑡 − 𝑐𝑜𝑠𝜔𝑣𝑡

1 − 𝜇2(1 + 𝑆)2
] 

 

(5) 

For a better understanding of the different components of vehicle acceleration, Eq. 5 can be 

rewritten as: 

𝑞̈𝑣(𝑡) =
∆𝑠𝑡𝜔𝑣

2

2(1 − 𝑆2)
[𝐴1𝑐𝑜𝑠𝜔𝑣𝑡 + 𝐴2𝑐𝑜𝑠

2𝜋𝑣

𝐿
𝑡 + 𝐴3𝑐𝑜𝑠 (𝜔𝑏 −

𝜋𝑣

𝐿
) 𝑡 + 𝐴4𝑐𝑜𝑠 (𝜔𝑏 +

𝜋𝑣

𝐿
) 𝑡] 

 

(6) 

where 𝐴1, 𝐴2, 𝐴3 and 𝐴4 determine the relative contributions of each component to the total 

acceleration response. These are given by: 

𝐴1 = 1 −
1

1 − (2𝜇𝑆)2
−

𝑆

1 − 𝜇2(1 − 𝑆)2
+

𝑆

1 − 𝜇2(1 + 𝑆)2
 

 

𝐴2 =
(2𝜇𝑆)2

1 − (2𝜇𝑆)2
 

 

𝐴3 =
𝑆𝜇2(1 − 𝑆)2

1 − 𝜇2(1 − 𝑆)2
 

 

𝐴4 =
𝑆𝜇2(1 + 𝑆)2

1 − 𝜇2(1 + 𝑆)2
 

(7) 

 

From Eq. 6, three main components exists in the total response that can be written as: 
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𝑞̈𝑣𝑣𝑒ℎ(𝑡) =
∆𝑠𝑡𝜔𝑣

2

2(1 − 𝑆2)
𝐴1𝑐𝑜𝑠𝜔𝑣𝑡 

 

𝑞̈𝑣𝑠𝑝𝑒(𝑡) =
∆𝑠𝑡𝜔𝑣

2

2(1 − 𝑆2)
𝐴2𝑐𝑜𝑠

2𝜋𝑣

𝐿
𝑡 

 

𝑞̈𝑣𝑏𝑟(𝑡) =
∆𝑠𝑡𝜔𝑣

2

2(1 − 𝑆2)
[𝐴3𝑐𝑜𝑠 (𝜔𝑏 −

𝜋𝑣

𝐿
) 𝑡 + 𝐴4𝑐𝑜𝑠 (𝜔𝑏 +

𝜋𝑣

𝐿
) 𝑡] 

 
 

(8) 

where 𝑞̈𝑣𝑣𝑒ℎ is the component associated with the vehicle frequency, 𝑞̈𝑣𝑠𝑝𝑒 is that part of the 

signal associated with vehicle speed and 𝑞̈𝑣𝑏𝑟 is the component associated with the bridge 

natural frequency. 

A simple case study is considered here to demonstrate the different components of the vehicle 

response. A mass-spring system with properties of 𝑚𝑣 = 700⁡kg and 𝑘𝑣 = 1.75×106⁡N/m is 

travelling over a simply supported beam with the properties given in Table 1. The vehicle speed 

is 10 m/s. 

Table 1. Properties of the bridge 

Properties Unit Symbol value 

Length m L 15 

Mass per unit length kg/m m 28125 

Modulus of elasticity N/mm2 E 35000 

Second moment of 

area 
m4 J 0.5273 

First natural 

frequency 
Hz 𝜔𝑏 5.65 

 

The acceleration of the moving axle is calculated using Eq. 5 and is shown in Fig. 2 (a). The Fast 

Fourier Transform (FFT) of the acceleration is plotted in Fig. 2 (b) and shows the dominant 

frequencies in the response. As was expected from Eq. 5, the response consists of three main 

components, the frequencies of which are numbered in the FFT spectrum: (1) the speed pseudo-

frequency, (2) the bridge frequency and (3) the vehicle frequency (Yang et al., 2004). 
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Figure 2: The response measured on a passing vehicle; (a) total acceleration, (b) FFT of the acceleration 

(x/L = vt/L). 

For a better understanding of the response, each component is plotted separately in Fig. 3. Fig. 

3(a) shows the speed pseudo-frequency part of the response which is related to the vehicle 

speed and the total length of the bridge. Fig. 3(b) shows the bridge vibrations measured on the 

vehicle. As only the first mode of the bridge is considered in the closed-form solution, this part 

only presents the first mode shape, corresponding to the first natural frequency of the bridge. 

Finally Fig. 3(c) shows the vehicle’s free vibrations.  

 

Figure 3: Components of the acceleration response; (a) speed pseudo-frequency part; (b) bridge 

frequency part and (c) vehicle frequency part (x/L = vt/L). 

 

(a) 

 

(b) 

 

(c) 
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For monitoring purposes, the bridge components of the indirect response are of interest. Many 

researchers have carried out studies on indirect bridge monitoring that consider bridge 

component in the measured response. These methods are usually based on the fact that damage 

to the bridge causes a change in its dynamic properties such as natural frequencies, damping 

ratios and mode shapes. By identifying these properties from the response measured on the 

vehicle, it is possible to investigate the bridge’s health condition. The most common method is 

detecting changes in the bridge natural frequencies which could be observable in the FFT of the 

response measured on the vehicle, 𝑞̈𝑣 which originally comes from 𝑞̈𝑣𝑏𝑟. Some researchers 

believe that natural frequency is not a sufficiently sensitive parameter for damage detection and 

may be affected by environmental conditions such as temperature (Fan and Qiao, 2011; Qiao 

and Cao, 2008). For this reason, using other parameters such as bridge mode shape has been 

suggested. Recently, some new methods have been proposed for the identification of bridge 

mode shapes using indirect measurements (Malekjafarian and Obrien, 2014; OBrien and 

Malekjafarian, 2015; Yang et al., 2014). The concept behind these methods is that the bridge 

frequency component of the vehicle response includes the full mode shapes of the bridge as the 

vehicle is measuring this part of the response on a moving coordinate system. On the other 

hand, there are some publications that consider the measured signal directly, seeking a 

discontinuity at the damage location using methods such as the Wavelet transform. The basis 

behind these methods can be understood by looking at the bridge response. It is shown in (He 

and Zhu, 2015) that the speed pseudo-frequency part of the response is very sensitive to 

damage when the response is measured directly on the bridge. The same explanation can be 

given for indirect measurements. Therefore, it can be concluded that if the response measured 

on a passing vehicle can be decomposed into its original components, the speed pseudo-

frequency part can show the damage location.   

2.2. Empirical Mode Decomposition (EMD) 

The EMD method (Huang et al., 1999; Huang et al., 1998) is a new signal processing tool which 

decomposes any signal, non-stationary or even nonlinear, into several so-called Intrinsic Mode 
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Functions (IMFs). It has been used before for damage detection and structural health 

monitoring (Chen et al., 2014; Kurt et al., 2012). The procedure of extracting an IMF is called 

sifting and is as follows: 

1. Identify all the local maxima and minima in the original time signal. 

2. Connect all the local maxima and minima with cubic splines as the upper and lower 

envelopes. 

3. Compute the mean value of the two envelopes and subtract it from the original signal. 

The differences between the original time history and the mean value is the IMF, if it satisfies 

the following conditions: the number of extrema and the number of zero crossings must be 

equal or differ at most by one and at any point the mean value of the envelope defined by the 

local maxima and the envelope defined by the local minima must be zero. The sifting procedure 

continues until the residue becomes so small that it is less than a predetermined value of 

consequence, or the residue becomes a monotonic function. The original time signal can then be 

expressed as the sum of the IMFs and the final residue. The first IMF contains the highest 

frequency content of the original signal and the final residue contains the lowest frequency in 

the signal.   

The bridge displacement and acceleration responses are obtained by theoretical calculation 

explained in Section 2.1. The EMD method is used in this section to decompose the theoretical 

responses. It is observed that in the case that the acceleration response is considered, the 

method works better when the vehicle frequency is removed from the total signal by using a 

moving average filtering (MAF). Therefore, before applying EMD, a MAF is set to the vehicle 

frequency and applied to the acceleration signal to remove the vehicle component from the total 

response measured on the vehicle. The IMFs obtained from the EMD and their FFT spectra are 

shown in Figs. 4 and 5 for displacement and acceleration respectively. It can be understood 

from the FFT spectrum of the first IMF that it is associated with the bridge first natural 

frequency (5.65 Hz) which is shifted by the vehicle speed. The second and third IMFs are related 

https://en.wikipedia.org/wiki/Maximum_and_minimum
https://en.wikipedia.org/wiki/Maxima_and_minima
https://en.wikipedia.org/wiki/Spline_%28mathematics%29
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to the speed pseudo-frequency part of the signal. Therefore, by removing the first IMF from the 

original signal, the speed pseudo-frequency part which was previously shown to be sensitive to 

damage, can be extracted from the signal.  

  

Figure 4: IMFs of the vehicle displacement response and their FFT spectra (x/L = vt/L). 

  

Figure 5: IMFs of the filtered vehicle acceleration response and their FFT spectra (x/L = vt/L). 

Figs. 6(a) and 6(b) show sum of the second and third IMFs obtained from the displacement and 

acceleration responses respectively. It can be seen that they are similar to the speed pseudo-

frequency part of the original signal shown in Fig. 3.  
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Figure 6: Sum of the second and third IMFs. (a) Displacement and (b) acceleration (x/L =vt/L). 

 

3. Numerical modelling  

3.1. Finite Element modelling of Vehicle Bridge Interaction 

A Finite Element (FE) Vehicle Bridge Interaction (VBI) model is used here according to the 

procedure used by Malekjafarian and Obrien (2014). In this model, a coupled VBI system is 

represented and the solution is calculated at each time step using an iterative procedure. The 

quarter-car model shown in Fig. 7 is used in this paper as it illustrates many of the important 

characteristics of VBI (Cebon, 1999). The vehicle has two independent degrees of freedom 

corresponding to body mass and axle mass translations. The vehicle body and axle component 

masses are represented by ms and mu and their displacements by ys and yu respectively. The axle 

mass is connected to the road surface via a spring with linear stiffness kt which represents the 

tyre. By imposing equilibrium of all forces and moments acting on the vehicle masses, the 

equations of motion of the vehicle model can be obtained in terms of the degrees of freedom: 

 

𝑀𝑣𝑦̈𝑣 + 𝐶𝑣𝑦̇𝑣 +𝐾𝑣𝑦𝑣 = 𝑓𝑖𝑛𝑡 

 

(9) 

where 𝑀𝑣, 𝐶𝑣 and 𝐾𝑣 are the respective mass, damping and stiffness matrices of the vehicle and 

𝑦̈𝑣, 𝑦̇𝑣 and 𝑦𝑣 are the respective vectors of nodal acceleration, velocity and displacement (𝑦𝑣 =

[𝑦𝑠 𝑦𝑢]𝑇). The vector 𝑓𝑖𝑛𝑡 contains the time-varying dynamic interaction forces applied to the 

vehicle degrees of freedom. 
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Figure 7: FE model of a quarter car passing over a bridge 

 

The bridge is modelled as a simply supported beam with total span length L using beam finite 

elements (Tedesco et al., 1999) (Fig. 7). Each beam element is represented by four degrees of 

freedom (one translational and one rotational for each of two nodes), constant mass per unit 

length, m, modulus of elasticity, E and second moment of area, J. The equations of motion of the 

beam under a series of moving time-varying forces can be written in terms of its degrees of 

freedom: 

 

𝑀𝑏𝑦̈𝑏 + 𝐶𝑏𝑦̇𝑏 + 𝐾𝑏𝑦𝑏 = 𝑓𝑖𝑛𝑡 

 

(10) 

where 𝑀𝑏, 𝐶𝑏 and 𝐾𝑏 are the global mass, damping and stiffness matrices of the beam model, 

respectively and 𝑦̈𝑏 , 𝑦̇𝑏 and 𝑦𝑏 are the vectors of nodal bridge accelerations, velocities and 

translation, respectively. For the case of low bridge damping, 𝜉, Rayleigh damping can be adopted 

to represent viscous damping and is given by (Clough and Penzien, 1993): 

 

𝐶𝑏 = 𝛼𝑀𝑏 + 𝛽𝐾𝑏 

 

(11) 

 

where 𝛼 and 𝛽 are constants. The damping 𝜉 is assumed to be proportional for all modes and 𝛼 

and 𝛽 are obtained from, 𝛼 = 2𝜉𝜔1𝜔2/(𝜔1 +𝜔2) and 𝛽 = 2𝜉/(𝜔1 +𝜔2) where 𝜔1 and 𝜔2 are 

the first two natural frequencies of the bridge (Clough and Penzien, 1993). The dynamic 

interaction between the vehicle and the bridge is implemented in MATLAB. The vehicle and the 
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bridge are coupled at the tyre contact points via the interaction force vector. Combining equations 

(9) and (10), the coupled equation of motion of the vehicle and bridge is formed as: 

 

𝑀𝑔𝑢̈ + 𝐶𝑔𝑢̇ + 𝐾𝑔𝑢 = 𝐹 

 

(12) 

where 𝑀𝑔 and 𝐶𝑔 are the combined system mass and damping matrices, respectively, 𝐾𝑔 is the 

coupled time-varying system stiffness matrix and F is the system force vector. The vector, 𝑢 =

{𝑦𝑣 , 𝑦𝑏}
𝑇, is the displacement vector of the system. The Wilson-Theta integration scheme 

(Tedesco et al., 1999) is used to solve the equations for the coupled system with the optimal value 

of the parameter 𝜃 =1.420815 for unconditional stability in the integration scheme. The initial 

condition of the solution is considered to be zero vertical translation, velocity and acceleration in 

all simulations. 

A quarter-car with the properties given in Table 2 is modelled to pass over a bridge with the 

same properties given in Table 1. The bridge is modelled using 20 elements. The vehicle speed 

is 10 m/s and a smooth road profile is considered in this example.  

Table 2. Properties of the quarter-car 

Properties Unit Symbol Value 

Body mass kg sm
 9300 

Axle mass kg um
 700 

Suspension stiffness N/m sk
 4×105 

Suspension damping Ns/m sc
 104 

Tyre stiffness N/m tk
 1.75×106 

Body bounce frequency 
Hz b  0.94 

Axle hop frequency 
Hz a  8.83 

 

 

The first damage case is defined by imposing a crack in the 14th element of the bridge using the 

crack modelling method proposed by Sinha et al. (2002). Accordingly, the crack is deemed to 

cause a stiffness loss in a region on each side of it, with the flexibility varying linearly on each 

side from the uncracked to the cracked beam section. The severity of the damage is represented 
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by the crack depth, expressed as a ratio of the beam depth. A crack ratio of 0.3 is considered in 

this example. The vehicle is simulated to pass over the healthy and damaged bridges and the 

acceleration responses in the axle for each simulation are presented in Fig. 8.  

 

Figure 8: The acceleration measured on the axle (𝑦̈𝑢) of the vehicle passing over healthy and damaged 

bridges (x/L = vt/L). 

 

3.2. Results for a quarter car on a smooth road profile 

The acceleration and displacement responses measured on the vehicle are decomposed into 

IMFs using EMD (Fig. 9). As introduced in Section 2, the speed pseudo-frequency components of 

the vehicle responses are extracted from the total response. The responses extracted in this way 

for both the healthy and damaged cases are compared in Fig. 10 for displacement and 

acceleration. The damage location is shown by a vertical line. There is a clear difference 

between the healthy and damaged IMFs, confirming that it is damage-sensitive. Furthermore, 

the crack location (the vertical blue) aligns quite well with a peak in the differences between the 

healthy and damaged IMFs. This suggests that, not only can damage be detected, but the 

location of the damage might also be estimated.  
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(a) 

 
(b) 

Figure 9: IMFs of the vehicle response. (a) Displacement and (b) acceleration. 

 
  (a) 

 
(b) 

 
(c) 

 
(d) 

Figure 10: Speed pseudo-frequency component of vehicle response. (a) Comparison of healthy and 

damaged bridges for displacement and (b) their difference. (c) Comparison of healthy and damaged 

bridges for acceleration and (d) their difference (x/L = vt/L). 
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To validate the effectiveness of the method for other damage locations, a second damage case is 

investigated using a new crack location. The new crack has the same depth as the first but is 

located in the 10th element of the 20 that make up the bridge. The IMFs are obtained for this 

case and shown in Fig. 11. A comparison of the speed pseudo-frequency components of the 

vehicle displacements and accelerations for the healthy and the damage cases is presented in 

Fig. 12. While there is a peak in the difference near the damage location, there are also peaks at 

other locations with no obvious association. As they appear only in the case considering the 

acceleration signal, they might be due to the ‘end effect’ caused by using the MAF. It should be 

noted that when the displacement signal is considered (Fig. 10 (b)), the proposed method 

provides more consistent results, having only one peak. On the other hand, when acceleration is 

considered (Fig. 10(d)), a more local effect is achieved corresponding to damage location, but 

there are still some peaks due to other effects. It may limit the method to the case that both 

acceleration and displacement signals may need to be required.  

 
(a) 

 
(b) 

Figure 11: IMFs of the vehicle response. (a) Displacement and (b) acceleration. 
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(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 12: Speed pseudo-frequency components of the accelerations for damage in 10th element. (a) 

Displacement signal components for the healthy and damaged cases and (b) their difference. (c) 

Acceleration signal components for the healthy and damaged cases and (d) their difference (x/L = vt/L). 

3.3. IMF-based Damage indicator 

As shown in section 3.2, the difference between the speed pseudo-frequency parts of the 

acceleration signals for the healthy and damaged structures is sensitive to damage. In this 

section an IMF-based damage indicator, i.e., a parameter sensitive to damage, is introduced that 

addresses the contamination introduced by the road surface profile. As shown schematically in 

Fig. 13, the EMD is applied here to the difference between the acceleration signals for the 

healthy (𝑦̈𝑣
ℎ𝑒(𝑡)) and damaged (𝑦̈𝑣

𝑑𝑎(𝑡)) structures. The hypothesis is that this subtraction will 

remove the effects of road profile excitation which are assumed to be similar in the two cases.  
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Figure 13: Schematic of damage detection procedure 

 

  

Figure 14: IMFs of the difference in the accelerations measured for the healthy and damaged cases and 

their FFT spectra (x/L = vt/L). 

 

Fig. 14 shows the IMFs obtained from applying EMD to such a difference for the first damage 

case. As is clear from the frequency content of the IMFs, IMF1 corresponds to the bridge natural 

frequency. Thus, the other IMFs correspond to the speed pseudo-frequency component of the 

signal. By adding all of the IMFs except the first, the damage indicator is obtained. The results 

for both damage cases are shown in Fig. 15, using displacement and acceleration responses. 

Three crack sizes, 0.1, 0.2 and 0.3 are considered for both damage cases. There is a clear peak 

close to the damage location for all cases when the displacement signal is used. Fig. 15 (c) shows 

𝑦̈𝑣
ℎ𝑒(𝑡) − 𝑦̈𝑣

𝑑𝑎(𝑡) 
EMD 

IMF1 

... 

IMF𝑛−1 

IMF𝑛 

IMF  

Speed pseudo-

frequency  
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that when smaller crack sizes are used, the end effect is the dominant peak while there is still a 

peak at the damage location.  

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 15: Speed pseudo-frequency part of the difference. (a) Damage case 1 and (b) damage case 2 using 

displacement. (c) Damage case 1 and (d) damage case 2 using acceleration (x/L = vt/L). 

The test conditions for the vehicle passing over the healthy and damaged beams is assumed to 

be same. These conditions include the vehicle speed, the wheel path and the environmental 

condition (temperature) of the beam that may change when the test is repeated for the 

damaged case. Therefore, they need to be considered in this approach to achieve a reliable 

result. For the case where the vehicle speed is not perfectly constant or varies from the healthy 

case to the damaged one, the key point is that the speed should be measured exactly to map the 

vehicle response versus the location of the vehicle in terms of x/L. 

3.4. Two quarter cars on a Class A road profile 

A number of researchers [17, 10, 13 and 15] have reported that estimation of bridge frequency 

from the vehicle response is difficult when a road profile is present. In most cases, the vehicle 

and road profile frequencies are dominant in the vehicle response, while the bridge frequency 
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may be barely detectable. Yang and Chang (2009a) illustrated that with high vehicle/bridge 

acceleration amplitude ratios, the probability of successfully identifying the bridge frequency is 

less. Recently, a subtraction idea has been proposed by Yang et al. (2012) in which the effect of 

road profile is largely removed by subtracting the responses measured from identical following 

axles. Malekjafarian and Obrien (2014) show the idea of subtracting  the measured acceleration 

responses of two following axles travelling over a bridge. It is demonstrated that the effect of 

road profile is substantially removed from the residual acceleration response, provided the two 

axles have the same properties. However, the presence of road roughness is still classified as 

one of the most important challenges in indirect bridge monitoring methods (Malekjafarian et 

al., 2015). 

 

Figure 16: Two quarter cars passing over a bridge 

It is suggested in this paper, that if the same vehicle is employed for the healthy and damaged 

cases and the same road profile exists in each case, the effect of road profile can be removed by 

subtracting the responses. On the other hand, when a road profile is present in the simulation, it 

is recommended by Li (2014) to increase the amplitude of the bridge components at least to the 

same level as the road profile. The amplitude of the speed pseudo-frequency part corresponds 

to the static load applied to the bridge (the weight of the vehicle). Therefore, in this section two 

following axles are modelled passing over the bridge instead of one in order to increase the total 
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moving load (Fig. 16). The same bridge as for Section 2 is considered, except that a road profile 

is added. The vehicle speed is selected to be 5 m/s in this case. The irregularities of this profile 

are randomly generated according to the ISO standard (1995) for a road class ‘A’ (very good) 

profile, as expected in a well maintained highway. The speed pseudo-frequency component of 

the difference of the responses measured on the first axle passing over healthy and damaged 

bridges is obtained as before. The results are shown in Fig. 17 for the two damage cases.  

 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 17: The speed pseudo-frequency part of the difference in the presence of a road profile. (a) 

Damage case 1 and (b) damage case 2 using displacement. (c) Damage case 1 and (d) damage case 2 using 

acceleration (x/L = vt/L). 

 

Comparing Figures 15 and 17 shows that the presence of road profile causes some more 

oscillation in the damage indicator. However, damage can still be detected, as evidenced by the 

non-zero results and there are still peaks adjacent to the damage locations.  

3.5. Changes in the transverse position of the vehicle on the bridge 
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As explained in Section 3.3 the damage indicator is based on the difference between the 

responses for healthy and damaged bridges. The idea relies on the assumption that the vehicle 

excited by the same road surface before and after occurrence of damage. Achieving this in the 

filed may be difficult. The vehicle may pass along a parallel track, in a slightly different 

transverse position on the bridge. (The surface profile may also have changed due to pavement 

wear. The effect would be similar.) Therefore, the sensitivity of the algorithm is tested for 

changes in the transverse positon of the vehicle on the bridge. A carpet if correlated profiles 

(Fig. 18) is generated (Cebon and Newland, 1983) from the initial road profile. It is assumed 

that the vehicle passes the healthy and damaged structure in different relative lateral positions, 

∆𝑟.  

 

 Figure 18: Carpet profile 

Figs 19(a) and (b) show the damage indicator using the vehicle displcement when ∆𝑟 = 0.001m 

and ∆𝑟 = 0.01m, respectively. The results for vehicle acceleration when ∆𝑟 = 0.0005m and ∆𝑟 = 

0.001m are shown in Fig. 19(c) and (d), respectively. It can be seen that when displacement is 

used, the damage indicator is less sensitive to the changes in the lateral position of the vehicle. 

 
(a) 

 
(b) 
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(c) 

 
(d) 

Figure 19: Speed pseudo-frequency part of the difference using a range of relative positions of the 

vehicle on the road carpet. (a) ∆𝑟 = 0.001m and (b)⁡∆𝑟 = 0.01m using displacement. (c) ∆𝑟 = 0.0005m 

and (d) ∆𝑟 = 0.001m using acceleration (x/L = vt/L). 

4. Conclusion 

A bridge damage detection procedure using Empirical Mode Decomposition is proposed in this 

paper using the response measured on a passing vehicle. It is theoretically shown that the 

vehicle response contains three main parts and that the speed pseudo-frequency part is 

sensitive to damage. EMD is used to extract this part from the total response. A numerical case 

study of vehicle bridge interaction is modelled using the FE method to demonstrate the 

potential of the approach. It is shown that damage location may be identified with acceptable 

accuracy using the proposed method. However the method is sensitive to changes in the road 

profile as might be expected from changes in the the lateral position of the vehicle. It is 

concluded that the damage may be located by if the differences in the profile are small.  
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