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SUMMARY

This paper proposes a novel Immersed Boundary Method where the embedded domain is exactly described
by using its CAD boundary representation with NURBS or T-Splines. The common feature with other
immersed methods is that the current approach substantially reduces the burden of mesh generation. In
contrast, the exact boundary representation of the embedded domain allows to overcome the major drawback
of existing immersed methods that is the inaccurate representation of the physical domain. A novel approach
to perform the numerical integration in the region of the cut elements that is internal to the physical domain is
presented and its accuracy and performance evaluated using numerical tests. The applicability, performance
and optimal convergence of the proposed methodology is assessed by using numerical examples in three
dimensions. It is also shown that the accuracy of the proposed methodology is independent on the CAD
technology used to describe the geometry of the embedded domain. Copyright c© 2014 John Wiley & Sons,
Ltd.

Received . . .

KEY WORDS: Immersed Boundary Methods; Cartesian grids; NURBS; T-spline; Bézier extraction;
NEFEM

1. INTRODUCTION

In the Finite Element Method (FEM) the domain, usually defined by a Computer-Aided Design
(CAD) model, where the problem is actually solved, is partitioned in subdomains, or elements,
of simple geometries (e.g., triangles or quadrilaterals in 2D and tetrahedra, hexahedra, prisms
or pyramids in 3D). Despite mesh generation using simplexes (i.e., triangles and tetrahedra) is
considered a mature technology, the generation of a fitted mesh for complex geometries with good-
quality elements to avoid numerical errors due to presence of highly distorted elements, still requires
a substantial effort. In addition, the computational mesh must be adapted to properly capture the
local features of the solution such as stress concentrations in solid mechanics or boundary layers in
fluid mechanics.

According to some studies, the process of creating an analysis-suitable geometry and the meshing
of that geometry appropriate for Finite Element Analysis (FEA) takes 80% of the total time required
to perform a finite element simulation. The bibliography about this subject shows several ways to
decrease this 80%. Among them we can cite the Isogeometric Analysis (IGA) (1) and the techniques
where the mesh is made independent of the geometry of the domain to be analyzed.

∗Correspondence to: Centro de Investigación en Ingenierı́a Mecánica (CIIM), Universitat Politècnica de València,
Valencia 46022, Spain. E-mail: onmaral@upvnet.upv.es

Copyright c© 2014 John Wiley & Sons, Ltd.
Prepared using nmeauth.cls [Version: 2010/05/13 v3.00]

Page 1 of 24

http://mc.manuscriptcentral.com/nme

International Journal for Numerical Methods in Engineering



Peer Review
 O

nly

2 O. MARCO ET AL.

NURBS (Non-Uniform Rational B-Splines) are ubiquitous in CAD and have been successfully
used as a basis for IGA where, instead of polynomials, the FE interpolation functions are those used
to define the geometry. This new concept seeks to reduce errors by focusing on one, and only one,
geometric model, which can be utilized directly as the analysis model. A newer CAD representation
tool, the T-splines (2), which allows for the use of the so called T-junctions, ensures the possibility
to create water-tight models (this was not always possible with a NURBS representation of the
surface) and has helped to overcome the difficulties of the IGA to produce local refinements. IGA
does not only require the NURBS discretization of the surface given by the CAD modeler but also
a NURBS/T-spline analysis-suitable discretization of the volume. Progresses towards the automatic
generation of this discretization can be found in (3; 4; 5; 6; 7; 8).

The second option analyzed in this paper to decrease the above mentioned analysis time, while
maintaining the overall FEA environment, is to use a computational mesh that is completely
independent of the geometry of the domain. This option is particularly attractive, for example, in an
optimization framework, when the analysis requires continuous mesh adaptations and re-meshings.

The eXtended FEM (XFEM) (9) and the Generalized FEM (GFEM) (10) are two variations of
the traditional FEM that reduce the burden of mesh generation. The main motivation of the XFEM
was to deal with cracks without the need of re-meshing even if the cracks grow. Making use of the
Partition of Unity Method (PUM) (11), this approach enriches the numerical solution to represent
singular stress fields near the crack tip and discontinuities on the crack faces. The GFEM follows
a similar rationale also using the PUM to include enrichment functions that describe the known
behavior of the solution at specific locations. In both methods the mesh can be independent of the
geometry, although, for integration purposes only, a boundary-fitted mesh, obtained by additional
subdivision of elements cut by the boundary, has to be created so that the numerical integration
considers the region of the element that actually lies within the domain.

Other variations of the FEM that were developed to reduce the burden of mesh generation are
based on the idea of defining an auxiliary and easy to mesh domain 
 which embeds the problem
domain 
Phys. All these method were classified under the umbrella term of Finite Elements in
Ambient Space in (12). Examples of these analysis techniques are the Immersed Boundary Method
(IBM) and the Immersed Finite Element Method (IFEM). The IBM was introduced by Peskin (13)
to alleviate the cost associated with remeshing in body-fitted techniques when simulating the
flow around heart valves. Later developments including the IFEM (14) were proposed in order
to avoid the limitations associated to the assumption of the fiber (i.e., one-dimensional) nature of
the immersed structure. Immersed boundary methods, often referred to as embedded methods, have
been object of intensive research within the fluid mechanics community and several alternatives
and modifications to the original method have been proposed, see (15) for a review. These methods
have become very popular in the last decade within the computational bio-mechanics community,
see for instance (16; 17; 18). As in the case of XFEM and GFEM, to numerically compute the
integrals appearing in the weak formulation, these techniques rely on a submesh of the elements cut
by the boundary that is used to perform the integration in the interior to the physical domain, 
Phys.
Therefore these elements require a specific treatment.

As previously indicated, the geometry of the domain to be analyzed is usually defined by a CAD
model. The accuracy of the geometric representation in FE computation is another issue to take
into account which in the late 1990s motivated the incorporation of powerful CAD techniques
into FE computations (19). There is a big concern in the scientific community about the need to
integrate CAD systems with the numerical analysis tools. Any attempt towards this integration will
require the numerical analysis tools to be able to use the most modern techniques used in the CAD
industry. Because of this, methods able to incorporate the most extended CAD technology, namely
NURBS and more recently T-Splines, into the FE analysis stage such as IGA methods (20; 21) or
the NURBS-enhanced Finite Element Method (NEFEM) (22; 23; 24) have become very popular.

When the IBM-type methods are applied to complex geometries, it is common to substitute
the exact geometry of the embedded domain by an approximated description using a faceted
representation in three dimensions. The errors introduced by an approximated geometry
representation can be termed as geometrical modeling errors that will translate into numerical

Copyright c© 2014 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng (2014)
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EXACT 3D BOUNDARY REPRESENTATION IN FEA BASED ON CARTESIAN GRIDS 3

integration errors that will negatively influence the accuracy of the numerical analysis because
the submesh employed for integration purposes is directly constructed using the approximated
embedded geometry. The importance of the geometrical model in body-fitted FE simulations has
been pointed out by several authors, see (22) and references therein, but it has been rarely accounted
for in immersed techniques until very recently (25; 26). In this work, the CAD description of the
boundary of the physical domain is considered.

In addition, new strategies for treating boundaries and interfaces have been developed recently.
Within the scope of the IGA, a two dimensional NURBS-based IGA with trimming technique (27) in
which the auxiliary domain 
 is defined as a NURBS parametric space has been proposed. Another
interesting approach is the Finite Cell Method (FCM) (28) which uses the p-version of the FEM to
perform adaptive analysis over a mesh of regular quadrilaterals (2D) or cubes (3D). One of the main
features of the FCM is that, for integration purposes, it uses a highly refined integration mesh into
each of the elements cut by the boundary to appropriately capture the limits of the domain, hence,
the resolution of the boundary is related to the refined integration mesh. In exchange, our approach
will consist of using high-order quadratures over the integration subdomains of the coarse mesh to
capture the boundary of the problem.

The Cartesian grid Finite Element Method (cgFEM) presented by Nadal et al. (29; 30) is a
computationally efficient FE methodology for the resolution of 2D linear elasticity problems that
makes use of a Cartesian grid in which the problem domain is embedded. A hierarchical data
structure relates the different refinement levels of the Cartesian grid allowing for the definition
of h-refined meshes for h-adaptive analysis and for the simple data transfer and re-utilization
between elements of different refinement levels. The Superconvergent Patch Recovery technique
for displacements (SPR-CD) uses constrain equations to obtain accurate recovered displacement and
stress fields that locally satisfies the equilibrium equations and the Dirichlet boundary conditions.
These fields are used as the standard output of cgFEM instead of the raw FE solution and as
part of the information required by the Zienkiewick-Zhu error estimator (31) that drives the h-
adaptive refinement process. Dirichlet boundary conditions are imposed using a stabilized Lagrange
multipliers approach (32), where the stabilization term is provided by the FE tractions along the
Dirichlet boundaries evaluated in a previous mesh. In cgFEM, a procedure, only valid for the 2D
case, based on the use of transifinite mapping functions can be used in the elements cut by the
boundary in order to consider the exact geometry of the domain in the evaluation of the required
volume integrals. This avoids integration errors due to an inaccurate representation of the domain
that could even lead to an error convergence rate of the FE solution smaller than the expected
theoretical optimum.

An extension of cgFEM to 3D, called FEAVox, is under development. One of the most challenging
aspects of the development of FEAVox is to consider the exact boundary of the domain in the
evaluation of volume integrals. Therefore, this paper presents a methodology that incorporates the
exact boundary representation of the 3D computational domain 
Phys embedded in the domain 

meshed with a Cartesian grid composed of regular hexahedra. Instead of simplifying the embedded
geometry to perform the numerical integration, we propose efficient techniques to perform the
numerical integration over the true computational domain 
Phys. The proposed technique follows
the NEFEM rationale although new developments are needed in order to find the intersections
between the Cartesian grid and the boundary of the physical domain. In addition, this paper
considers not only NURBS but also T-Splines.

The paper is organized as follows: A brief review of NURBS and T-spline representations will be
shown in Section 2, then Section 3 will be devoted to explain how to capture exact geometries within
a Cartesian grid framework. Section 4 will present the formulation of the problem the procedure
used to impose Dirichlet boundary conditions considering meshes not conforming to the geometry.
Numerical results showing the behavior of the proposed technique will be presented in Section 5.
This contribution ends with the conclusions in Section 6.

Copyright c© 2014 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng (2014)
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2. GEOMETRICAL REPRESENTATION: FROM NURBS TO T-SPLINE

Different options are available for representing surfaces in CAD such as B-Splines (33),
NURBS (34; 35), subdivision surfaces (36) or T-Spline (2). In this paper, we consider NURBS
and T-splines for the geometrical representation of three dimensional models. This section covers
succinctly the main features of these two technologies.

2.1. NURBS fundamentals

NURBS are a generalization of B-splines, which in turn are piecewise polynomial curves composed
of B-spline basis functions. The basis functions are defined in parametric space on a so-called
knot vector �. This is a set of non-decreasing real numbers representing coordinates (knots) in
the parametric space:

� = {ξ1, . . . , ξn+p+1} , (1)

where p is the order of the B-spline and n the number of basis functions. The interval [ξ1, ξn+p+1]
is called a patch, whereas the interval [ξ1, ξi+1) is called a knot span. A knot vector is said to be
uniform if its knots are uniformly spaced and non-uniform otherwise. Moreover, it is said to be open
if its first and last knots are repeated p+ 1 times.

The B-spline basis functions N (p)
i (ξ) of order p ≥ 0 are defined recursively on the corresponding

knot vector as follows:

N
(0)
i (ξ) =

{
1 ξi ≤ ξ ≤ ξi+1

0 otherwise
(2)

N
(q)
i (ξ) =

(ξ − ξi)N (q−1)
i (ξ)

ξi+q − ξi
+

(ξi+q+1 − ξ)N (q−1)
ξ+1 (ξ)

ξi+q+1 − ξi+1
(3)

for q = 1, . . . , p and with i = 1, . . . , n+ p+ 1. They are Cp−1-continuous if internal knots are not
repeated. If a knot has multiplicity k, the basis is Cp−k-continuous at that knot. Further properties
of the basis functions are

• B-spline basis functions formed from open knot vectors constitute a partition of unity, that is,∑n
i=1N

(p)
i (ξ) = 1 ∀ ξ.

• The support of each N (p)
i (ξ) is compact and contained in the interval [ξ1, ξi+p+1).

• B-spline basis functions are non-negative: N (p)
i (ξ) ≥ 0 ∀ ξ.

B-spline curves of order p are linear combinations of B-spline basis functions of order p, N (p)
i ,

and of points Pi. These points, Pi, referred to as control points, are given in d-dimensional space
Rd. E.g. in three dimensions this means Pi = (xi, yi, zi)

T . Hence B-splines are given as:

C (ξ) =

n∑
i=1

N
(p)
i (ξ) Pi (4)

The control points define the control polygon. B-spline curves interpolate the control points just
at their start and end points. In between, interpolation can be achieved by a certain multiplicity of
control points or knots, respectively.

NURBS are rational B-spline curves which are the projection of a non-rational B-spline
curve Cw (ξ), defined in (d+ 1)-dimensional homogeneous coordinate space, back onto the d-
dimensional physical space Rd. Homogeneous (weighted) (d+ 1)-dimensional control points are

Pw
i = (wixi, wiyi, wizi, wi)

T (5)

The non-rational (d+ 1)-dimensional B-spline curve Cw then reads

Cw (ξ) =

n∑
i=1

N
(p)
i (ξ) Pw

i (6)

Copyright c© 2014 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng (2014)
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Projecting onto Rd by dividing through the additional coordinate yields the rational B-spline
curve

C (ξ) =

∑n
i=1N

(p)
i (ξ)wiPi∑n

i=1 wiN
(p)
i (ξ)

=

n∑
i=1

R
(p)
i (ξ) Pi (7)

Here Pi are the control points in Rd , R(p)
i are rational B-spline basis functions and wi is referred

to as the i-th weight, typically wi ≥ 0 ∀i. Through this projection all common shapes, especially
conic sections such as circles and ellipses, can be represented exactly.

Finally, NURBS surfaces are constructed from a tensor product through two knot vectors � =
{ξ1, . . . , ξn+p+1} and � = {η1, . . . , ηm+q+1}. The n×m control points Pi,j form a control net. For
the geometric description of NURBS surfaces the typical arrangement is a (n×m)-dimensional
matrix with elements (i, j). The NURBS surface S (ξ, η) is defined on the one-dimensional basis
functions N (p)

i and M (q)
i (with i = 1, . . . , n and j = 1, . . . ,m) of order p and q, respectively, as

S (ξ, η) =

n∑
i=1

m∑
j=1

N
(p)
i (ξ)M

(q)
j (η)wi,j∑n

i=1

∑m
j=1N

(p)
i (ξ)M

(q)
j (η)wi,j

Pi,j (8)

In the case of surfaces, we refer to the [ξ1, ξn+p+1]× [η1, ηm+q+1] as patch and [ξi, ξi+1)×
[ηj , ηj+1) as knot span. NURBS surfaces examples are shown in Figure 1a and Figure 1b, where in
blue we can see the control points and in red the projections of the knot vectors onto the surface.
These models will be analyzed in the section devoted to numerical comparisons.

NURBS have been used as a basis for IGA where the interpolation functions are those used to
define the geometry. This approach brought to light some drawbacks of NURBS surfaces due to
its tensor product nature. For instance, to model complicated designs requires multiple NURBS
patches, which are often discontinuous across patch boundaries. Even achieving C0 continuity
across patches requires special techniques. The joining of two patches that were created separately
may require the insertion of many knots and nonlinear reparameterization of one or both patches.
Furthermore, all NURBS refinement operations are global. In other words, when we refine by
inserting knots into the knot vectors of a surface, the knot lines extend throughout the entire domain.
Global refinement introduces an unnecessary cost when NURBS as used as basis for the analysis.
Finally, to add features, such as holes it is common to use trimming curves. The application of
trimming curves destroys the tensor product nature of the geometry thus the geometric basis no
longer describes the geometry and cannot be used directly in FE analysis.

2.2. T-spline fundamentals

To achieve a tight integration of design and analysis requires a technology built on the smooth
B-spline basis which can be locally refined and is capable of representing domains of arbitrary
topological complexity as a single watertight geometry. All of these capabilities are present in a
generalization of NURBS called T-splines. In this work we are not interested in the characteristics
of this technology from the IGA point of view but in its representation power as a state-of-the-art
technology.

T-spline basis functions are defined on local knot vectors, and its control nets allow T-junctions
which are introduced during local refinement. T-spline does not have the superfluous control points
in NURBS model to satisfy topological constrains. A T-spline surface is defined as

S(ξ, η) =

∑n
i=0Bi(ξ, η)wiTi∑n
i=0 wiBi(ξ, η)

, (ξ, η) ∈ 
, (9)

where
Bi(ξ, η) = Nξ

i (ξ)Nη
i (η) (10)

and Ti are the T-spline control points, wi are the respective weights, Nξ
i (ξ) and Nη

i (η) are B-
spline basis functions defined by two local knot vectors ξi and ηi. If the degree is 3, we have

Copyright c© 2014 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng (2014)
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ξi = [ξi0 , ξi1 , ξi2 , ξi3 , ξi4 ] and ηi = [ηi0 , ηi1 , ηi2 , ηi3 , ηi4 ] (2; 4). The algorithm used to infer knot
vectors from a T-mesh is introduced in (37).

Neither NURBS nor T-spline can be directly used for analysis, since they are defined to represent
the whole domain. To obtain the discretized finite element representation of a NURBS or T-spline,
we can use Bézier extraction operator to decompose the domain into Bézier elements. The Bézier
extraction operator maps a piecewise Bernstein polynominal basis onto a B-spline basis (38). A
Bézier extraction operator E is a linear operator such that

N(s) = EB(s) (11)

whereN(s) is a B-spline basis function andB(s) is a set of Bézier basis functions. The operator E is
constructed from the repeated knot insertion of knot vector which definesN(s) and it is independent
from the control points and the basis functions. A similar extraction operator M can be defined to
transform T-spline basis functions to Bézier basis functions (39). In a T-spline framework, for each
parametric domain which can extract one Bézier element, we can first find all the control points
with nonzero basis functions. Then we have

Bet = MeBeb (12)

where Bet is the vector formed by all the T-spline basis functions with nonzero function values,
and Beb is the vector formed by the Bézier basis functions. For each Bézier element, Me can be
calculated using the Oslo knot insertion algorithm (40). This algorithm can obtain the extraction
operator from all the related T-spline basis functions to the Bézier basis functions in a single step.
In this work we will use this by-product to be able to represent T-spline geometries, see Figure 1c.

(a) NURBS sphere model. (b) NURBS torus model. (c) T-spline torus model.

Figure 1. Geometrical models used in this contribution.

3. CARTESIAN GRIDS WITH EXACT REPRESENTATION OF THE IMMERSED
GEOMETRY

As previously mentioned, in the classical FEM, the most extended approach is to employ
unstructured meshes that conform to the boundary of the physical domain. Mesh generation and,
especially, mesh adaptation techniques such as mesh refinement, mesh movement or remeshing are
time consuming and require a substantial amount of human hours (41; 42). Expertise is required
in order to refine the mesh appropriately to accurately represent both the geometry of the physical
domain and the local characteristics of the solution of the problem under consideration.

Given an open bounded domain 
Phys ⊂ R3, see Figure 2a, with boundary �IB = ∂
Phys, the
key principle of FEAVox, or any other IBM, consists in defining an embedding domain 
 such
that 
Phys ⊂ 
 and with a much more simpler geometry than the physical domain. Therefore, 
 is
extremely easy to mesh compared to the domain of interest 
Phys. In FEAVox, we consider 
 to be

Copyright c© 2014 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng (2014)
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EXACT 3D BOUNDARY REPRESENTATION IN FEA BASED ON CARTESIAN GRIDS 7

(a) Geometrical model of an sphere,
ΩPhys.

(b) Cartesian grid, Ω. (c) Approximation of ΩPhys, Ωh
Phys.

Figure 2. Typical Immersed Boundary Method environment.

a cuboid, and a Cartesian grid is used to mesh the domain 
 as represented in Figure 2b. In order to
represent the geometry of the physical domain in IBM, it is common to use a linear triangular mesh
to discretize the boundary �IB. This option allows for the implementation of simple algorithms to
find the intersections between the discretized immersed boundary and the mesh of the embedding
domain, but this also means that the problem is solved not in the physical domain 
Phys but in an
approximation of 
Phys, namely 
hPhys, Figure 2c. The effect of this approximation can be very
important if high order elements are used. This method can be used to obtain good results from an
engineering point of view in many problems. However, the optimal convergence rate of the FEM
can be compromised because of the rate of convergence of the integration error when the mesh
is refined. To overcome this problem, in this work, the CAD description of the boundary of the
physical domain �IB is considered using high-order quadratures over the integration subdomains to
capture the boundary of the problem.

The translation of complex CAD-based geometrical models into conforming FE discretizations is
computationally expensive, difficult to fully automate and often leads to error-prone meshes, which
have to be improved manually by the user. Immersed boundary methods do not require body-fitted
meshes, but embed the domain into a Cartesian grid (i.e., a regular grid of axis-aligned elements),
which is generated irrespective of the geometric complexity of the physical domain. In this work,
we present an strategy that exploits the advantages of Cartesian grids and uses specific strategies for
the numerical integration over the exact physical domain, with a CAD boundary representation.

3.1. Generation of the analysis mesh

FEAVox is based on the use of a sequence of uniformly refined Cartesian meshes where hierarchical
relations between the different mesh levels have been defined.

The sequence of m meshes used to discretize the embedding 3D domain 
 is called the Cartesian
grid pile and is denoted by {Qih}i=1,...,m. For each level of refinement, the embedding domain

 is partitioned in niel disjoint cubes of uniform size, where ni+1

el = 8niel. A hierarchical data
structure for FE analysis based on element splitting was presented in (29). This data structure takes
into account the hierarchical relations between the elements of different levels, obtained during the
element splitting process, to accelerate FE computations. The data structure has been adapted to
the particular case of a sequence of meshes given by the Cartesian grid pile, where all elements
are geometrically similar to the element used in the coarsest level of the Cartesian grid pile, called
the reference element. One important benefit of the data structure adopted here is that the mapping
between an element in the Cartesian grid and the reference element is affine and, therefore, its
Jacobian is constant. This property can be exploited to dramatically speed up the computation of the
elemental matrices. For instance, the analysis presented in (43) shows that the number of operations
required to compute the elemental matrices can be reduced by a factor of 10 when a mapping with
a constant Jacobian is considered with low-order hexahedral elements. This and other hierarchical

Copyright c© 2014 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng (2014)
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relations considered in the data structure allow for a simplification of the mesh refinement process
and the precomputation of most of the information used by the FE implementation, remarkably
influencing the efficiency of the code. The implementation uses functions that directly provide
the nodal coordinates, mesh topology, hierarchical relations, neighborhood relations, and other
geometric information, in an efficient manner, when required. Therefore, there is no need to store
this information in memory, making the proposed algorithm more efficient, not only in terms of
computing time but also in terms of memory requirements.

3.2. Element classification and geometry-mesh intersection

The first step of the proposed strategy consists of creating the analysis mesh used to obtain the FE
solution of the boundary value problem. In order to obtain the analysis mesh, the elements of the
Cartesian grid are classified as:

• Boundary elements: elements cut by the boundary of the physical domain, this is, elements

B such that 
B ∩ �IB 6= ∅.

• Internal elements: elements inside the physical domain, thus, elements 
I such that 
I ⊂

Phys, and

• External elements: elements outside the physical domain, elements 
E such that 
E ⊂

 \ 
Phys,

as illustrated in Figure 3 where a sphere is embedded in a Cartesian grid, Figure 2b.

(a) Perspective view. (b) 2D section.

Figure 3. Section of a three dimensional Cartesian grid showing the three different types of elements: (1)
In red, external elements, ΩE, not considered in the analysis, (2) in blue, elements, ΩB, intersected by the

boundary of the embedded domain and (3) in green interior elements, ΩI.

The analysis mesh is formed by the internal and the boundary elements intersected by the
geometry. The external elements are not considered in the analysis stage. Internal elements are
treated as standard FE elements and the affinity with respect to the reference element is exploited
in order to speed-up the computational cost of the element matrices. For those elements cut by the
boundary of the physical domain, and since we are working with meshes completely independent
of the embedded geometry, it is necessary to determine the relative position of the elements with
respect to the physical boundary, so specific strategies are required to find the intersection with
the boundary and to perform the numerical integration. Efficient strategies to perform these two
operations are proposed in the remaining of this section.

The strategy considered in this work to classify the elements consists of three steps:

1. Find the intersections of the physical boundary with the edges of the Cartesian grid elements,
2. Classify the grid nodes as internal or external, relative to the physical domain, and
3. Classify the elements as internal, boundary or external.

It is therefore only necessary to describe in detail the proposed strategy to compute the
intersections of the physical boundary with the edges of the Cartesian grid elements There are
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several methods available in the literature to evaluate the intersection between parametric surfaces
and a Cartesian grid. Most of them were developed for ray-tracing tasks related to the animation
industry, where rendering CAD models is mandatory, see (44) for a review of the methods.

We employ a Newton-Raphson algorithm to find the intersections between the edges of the
Cartesian grid elements of the analysis mesh and the parametric surfaces describing the boundary of
the physical domain. Efficiency is guaranteed by using, as an initial approximation, the intersection
of the edges of the Cartesian grid elements with an auxiliary triangular surface mesh of the boundary
of the physical domain. We have to remark that this triangular mesh is only an approximation of
the exact CAD description of the physical boundary. However, this approximation is only used to
compute a good initial guess for the Newton-Raphson algorithm.

If the embedded domain is represented by trimmed surfaces, we need to create the auxiliary
triangulation, used during the Newton-Raphson procedure, only over the trimmed surface of the
NURBS. To illustrate this situation we consider the example depicted in Figure 4. Figure 4a shows
the parametric space of a NURBS surface �S. The immersed body �T is assumed to be the image of
the trimmed space where NURBS will be used to define the boundary curves (trimming curves). We
will define a triangulation of �T as shown in Figure 4d. To generate this triangulation we will use a
set of arbitrary points distributed over the parametric space of the NURBS surface (red squares in
Figure 4b) but we will also add points located over the boundary curves defining �T, (blue squares
in Figure 4b). We have to ensure that the intersections between the Cartesian grid edges and the
NURBS are correctly identified as intersections on �T or outside �T. Obviously, for an appropriate
representation, the points located over the boundary curves of �T must include the extremes of
these curves, but additional points must also be included to properly define the boundary. To do
this, the additional points will correspond to the intersections of the trimming curves with all the
Cartesian planes that define the faces of the elements of the Cartesian grid. The evaluation of these
intersections only introduces a marginal extra computational cost because, although NURBS are
rational curves, their homogeneous description, see Section 2.1, is employed in the intersection
process. A triangulation of the NURBS surface will be created using this cloud of points and the
efficient 2D Delaunay triangulation procedure, see Figure 4c. The triangles lying outside �T will
be discarded to obtain the final auxiliary triangulation shown in Figure 4d. This figure also shows
the point of intersection between the NURBS and the edges of the elements of the Cartesian grid,
correctly classified as internal (red dots) or external (blue dots) with respect to �T.

The above procedure requires the definition of an auxiliary triangulation in the parametric space
of the NURBS surfaces defining the embedded domain. In order to guarantee convergence of
the Newton-Raphson algorithm to the desired intersection point, it is advantageous to define a
triangulation with a triangle size related to the size of the elements of the analysis mesh. If the
auxiliary triangulation is too coarse, the axis of the Cartesian grid can intersect the same triangle
several times. This situation will prevent the convergence of the Newton-Raphson algorithm in some
cases as the same initial guess will be considered for the computation of two different roots. This
situation is illustrated in Figure 5. In Figure 5a a NURBS surface is represented together with two
planes corresponding to sections of the Cartesian grid. Figure 5b shows the parametric space of the
NURBS surface with a coarse auxiliary triangulation. The two curves correspond to the intersections
of the planes in Figure 5a with the NURBS surface in the parametric space. It can be observed that,
for this coarse auxiliary triangulation, the axis of the Cartesian grid can intersect several times the
triangle highlighted in light blue. Figure 5c shows a finer triangulation that fixes this issue. To avoid
the problem the size of the triangles has to be selected depending on the refinement of the Cartesian
grid.

Assuming that the intersections of the physical boundary with the edges of the Cartesian grid
elements are computed, it is easy to classify the element nodes as internal or external just marching
along the edges of the Cartesian grid. Once the grid nodes are classified, it is straight forward to
classify the elements as internal, boundary or external, just by counting the number of internal and
external nodes in each element.

Copyright c© 2014 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng (2014)
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(a) Parametric space of a NURBS surface,
ΓS, and subspace to define a trimmed

NURBS, ΓT.

(b) Points used to define an arbitrary
auxiliary triangulation on the parametric

space.

(c) Triangulation over the parametric
space.

(d) Final auxiliary triangulation that
ensures the correct classification of all

intersection points.

Figure 4. Identification of intersections between a trimmed NURBS surface and the edges of the Cartesian
grid.

3.3. Integration over subdomains

The FEM requires the computation of integrals over the domain of interest. When a body-fitted
mesh is employed, the integrals on the domain interior are computed by adding the contribution of
the integrals over each element and, analogously, the boundary integrals are computed by adding
the contribution of the integrals over each element face on the boundary of the physical domain.
The numerical integration in IBM require special attention as the mesh is completely independent
of the geometry of the physical domain.

Internal elements are treated as standard finite elements and the integration is performed using
a tensor product of one-dimensional Gauss quadratures with the desired number of points in each
direction. However, the contribution from the boundary element 
B requires special attention as
the integral must be computed only over the portion of the boundary elements that lies inside the
physical domain, namely 
Phys

B = 
B ∩ 
Phys. In fact, the independent generation of the Cartesian
grid with respect to the embedded geometry implies that the region of elements intersected by the
mesh lying inside the computation domain, 
Phys

B can be extremely complex. The strategy proposed
to perform the integration over 
Phys

B consists in employing a tetrahedralization of this region that
incorporates the exact boundary representation of 
Phys.

The proposed approach is inspired on the Marching Cubes (MC) algorithm (45), which uses a
set of templates for the intersection between surfaces and the edges of cubes. The MC algorithm is
widely used in computational graphics to represent approximations of surfaces as it is very efficient
sorting out basic intersection patterns and creating linear surfaces between them. We have taken the
basic intersection patterns of the MC algorithm to identify the most common intersection patterns
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(a) NURBS surface in grey and two
planes corresponding to sections of

the Cartesian grid.

(b) Parametric space of the NURBS
with a coarse auxiliary triangulation
and the projection of the two planes

in Figure 5a.

(c) Parametric space of the NURBS
with a refined auxiliary triangulation
and the projection of the two planes

in Figure 5a.

Figure 5. Automatic definition of the size of the auxiliary triangulation to avoid multiple intersections of a
single triangle with the planes of the Cartesian grid.

between the embedded geometry and the Cartesian grid, then a parametrized tetrahedralization of
each one of these patterns is generated and stored. To facilitate the implementation, and without loss
of generality, we assume that the Cartesian elements are intersected, at most, once by the boundary
of the physical domain. This condition can be easily relaxed and it is employed here only to simplify
the presentation and to facilitate the implementation. From this premise, we need only seven out
of fourteen templates of the original MC algorithm (1, 2, 5, 8, 9, 11 and 14, see (45)). It is in fact
possible to use the remaining templates to identify regions of particular geometric complexity where
extra mesh refinement can be introduced to properly capture them. The seven patterns considered
are depicted in Figure 6. In the figures we can see the nodal topologies and the set of tetrahedra used
for each pattern. Colors identify internal and external subdomains (or different materials if the case
of multimaterial problems).

Numerical integration over the region 
phys
B is then accomplished by integrating over each

subdomain of the tetrahedralization. In order to perform the integration over the subdomains,
the strategy proposed within the NEFEM (23) is adopted. This methodology was designed to
incorporate the exact boundary of the computational domain into body-fitted FE simulations and
the advantages with respect to the classical finite element method were demonstrated for a variety
of problems, see (46). A tetrahedral subdomain TFe with a face on the physical boundary is
parametrized using the mapping

Ψ : �e × [0, 1] −→ TFe

(ξ, η, ζ) 7−→ Ψ(ξ, η, ζ) := (1− ζ)S(ξ, η) + ζx4,

Copyright c© 2014 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng (2014)
Prepared using nmeauth.cls DOI: 10.1002/nme

Page 11 of 24

http://mc.manuscriptcentral.com/nme

International Journal for Numerical Methods in Engineering



Peer Review
 O

nly

12 O. MARCO ET AL.

(a) Configuration 1. (b) Configuration 2.

(c) Configuration 3. (d) Configuration 4.

(e) Configuration 5. (f) Configuration 6.

(g) Configuration 7.

Figure 6. Intersection patterns inspired on the MC algorithm. Nodal topology (left) and tetrahedralization
(right).

where S(�e) denotes the curved face of TFe on the boundary of the physical domain and x4 is
the internal vertex of TFe . Analogously, a tetrahedral subdomain TEe with an edge on the physical
boundary is parametrized using the mapping

Φ : [ξ1, ξ2]× [0, 1]2 −→ TEe

(ξ, η, ζ) 7−→ Φ(ξ, η, ζ) := (1− ζ)(1− η)C(ξ) + (1− ζ)ηx3 + ζx4.

where C([ξ1, ξ2]) denotes the curved edge of TEe on the boundary of the physical domain and x3

and x4 are the two internal vertices of TEe .
The most salient properties of the mappings used by NEFEM is the ability to decouple the

directions of the surface definition, �e and [ξ1, ξ2] in the mappings Ψ and Φ respectively, with
respect to the interior directions. In addition, the mappings are linear in the interior directions,
guaranteeing that the required number of integration points is minimum, compared to other options
such as the transfinite mappings (47).
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Figure 7. Integration over a curved tetrahedron with a face over the physical domain.

Given these parametrizations, it is possible to perform the numerical integration over all the
curved tetrahedral elements that form 
phys

B . To this end, we consider tensor products of triangle
quadratures (48) and one-dimensional Gaussian quadratures for the tetrahedrons with a face on the
boundary of the physical domain, see Figure 7.

For the tetrahedra with an edge on the boundary of the physical domain, tensor products of
one-dimensional Gaussian quadratures are employed. The number of integration points required
in the parametric space of the parametric boundary representation depends on the CAD technology
employed. In (49), the number of integration points required to integrate polynomial functions over
domains with a NURBS or B-spline boundary description is studied numerically. The conclusions
show that, compared to traditional FE, NEFEM requires the same, or just one integration point
more, in order to ensure that the numerical error due to the numerical integration is lower
than the interpolation error. In addition, the ideas supporting this approach are valid not only
when the boundary of the domain is parametrized by NURBS, but for any piecewise boundary
parametrization.

Remark 1
It is important to note that, when non trimmed surfaces are considered, NEFEM defines the
triangular face in the parametric space, �e in Figure 7 as a stright-sided triangle (49). This is
always possible due to the boundary fitted nature of the NEFEM approach. In contrast, the approach
proposed in this paper requires the faces of the tetrahedral elements on the boundary of the
embedded domain are defined as the anti-image (by the NURBS surface) of the intersections of
Cartesian planes and the NURBS surfaces. Therefore, in general these faces are curved triangles
in the parametric space of the NURBS. It is worth noting that the mapping depicted in Figure 7 is
still valid to perform the numerical integration, even if the boundary face is a curved triangle in the
parametric space.

4. PROBLEM FORMULATION AND NUMERICAL SOLUTION

Let us consider an open bounded domain 
Phys ⊂ R3 with closed boundary �IB = ∂
Phys. The
boundary of the domain is partitioned into the Neumann boundary �N and the Dirichlet boundary
�D, with �IB = �N ∪ �D and �N ∩ �D = ∅. The strong form of the equilibrium equations and the
boundary conditions are

−∇ · σ (u) = b in 
Phys

σ (u) · n = t on �N

u = ũ on �D

(13)

where u is the displacement field, σ(u) is the Cauchy stress tensor, b is the body force vector, n
is the outward unit normal vector to �N , t is the imposed traction on �N and ũ is the imposed
displacement on �D.
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The weak variational formulation associated to the strong form of the equilibrium equations can
be expressed as: find u ∈

[
H1(
Phys)

]3
such that

a (u,v) = l (v) ∀v ∈
[
H1(
Phys)

]3
(14)

where

a (u,v) =

∫
ΩPhys

σ (u) : ε (v) d


l (u) =

∫
ΩPhys

b · vd
 +

∫
ΓN

t · vd�

(15)

In the above expressions ε is the strain tensor that satisfies

σ = Dε, (16)

where D is the Hooke’s tensor.

4.1. Boundary conditions

One major difficulty associated to the use of immersed boundary methods with Cartesian grids is
the fact that, in general, the mesh nodes are not placed on the boundary of the domain, increasing
the difficulty to impose Dirichlet boundary conditions in strong form. In this paper, Dirichlet
boundary conditions are imposed by means of stabilized Lagrange multipliers. More precisely,
the procedure chosen to impose the constraints (i.e., Dirichlet boundary conditions) follows the
technique proposed by (32; 50). This method is suitable for h-refinement based on the use of
hierarchical Cartesian grids, where a functional is added to the initial formulation of the problem
that has the effect of stabilizing the problem. The stabilization term uses the FE stress field from a
previous mesh (32) or a recovered stress field from a previous mesh or the current one (50). In the
second case, an iterative method is defined to solve the problem. In both cases, the definition of the
Lagrange multipliers field will allow us to directly condense the degrees of freedom of the Lagrange
multipliers at an element level. For the model problem of Equation (13), the weak formulation with
Lagrange multipliers reads: find

(
u,λ

)
∈
[
H1(
Phys)

]3 × [H−1/2(�D)
]3

such that

a (u,v) + b(λ,v) = l (v) ∀v ∈
[
H1(
Phys)

]3
b(µ,u) = b(µ, �u) ∀µ ∈

[
H−1/2(�D)

]3 (17)

where
b(λ,v) =

∫
ΓD

λ · vd�

The stabilized formulation can be derived from a constrained minimization problem solved
using the Lagrange multipliers method. Applying the FE discretization and considering the discrete
subspaces U h ⊂

[
H1(
Phys)

]3
and L h ⊂

[
H−1/2(�D)

]3
, he problem consist of finding the saddle

point of the following functional:

Ls

(
vh,µh

)
=

1

2
a
(
vh,vh

)
− c
(
vh
)

+ b
(
µh,vh

)
− 1

2
s
(
µh −T,µh −T

)
with s

(
φh,θh

)
= κ

∑
e

he

∫
Γe
D

φh · θhd�
(18)

where he is the size of the Dirichlet boundary faces and κ is a positive penalty parameter that
is selected to accurately impose the boundary conditions without affecting the convergence rate
of the method. The different stabilization methods are obtained by selecting different terms T in
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the modified Lagrangian. T∗ can be defined as the traction obtained from the FE stress field σ∗

of a previous mesh (32), i.e. T∗ = −σ∗ (uhi−1

)
· n, where n is the vector normal to the Dirichlet

boundary, and uhi−1 are the displacements evaluated in mesh i− 1. The alternative implemented in
this work is to use the recovered solution of the current mesh, and define an iterative process to
update the solution (50). In both cases, the stabilization term prevents excessive oscillations of the
Lagrange multipliers solution and κ can be chosen to maintain the optimal convergence rate of the
method.

5. NUMERICAL EXAMPLES

This section presents a series of examples to demonstrate the applicability and the performance of
the proposed methodology for three dimensional problems when the boundary of the domain is
described by NURBS or T-spline. The models where previously presented in the section devoted
to geometrical, see Figure 1. First, the error associated to the proposed strategy to perform the
numerical integration of polynomial functions over NURBS surfaces is studied. Then, the proposed
strategy is applied for the numerical solution of linear elastic problems.

5.1. Numerical integration

We first evaluate the accuracy of the proposed approach to perform the integrals of the weak
formulation. In fact, only the boundary integrals are of interest because the strategy to perform
the integrals on the element interiors use a mapping that is linear in the interior direction and exact
integration in this direction is feasible, see Section 3.3.

Let us consider a sphere of unit radius embedded in a coarse mesh with only eight Cartesian
elements, as depicted in Figure 1. Let S be the surface integral of a polynomial function f defined
as

S =

∫
Γ

f(x, y, z)d� (19)

where � =
{

(x, y, z) | x, y, z ≥ 0, x2 + y2 + z2 = 1
}

represents the surface of the sphere. The
numerical result computed with the strategy proposed in this paper, Sh(f), is compared to the
analytical result Se(f). The accuracy is evaluated by defining the relative error in percentage as
100× (Se(f)− Sh(f)) /Se(f). To test the performance of the proposed approach we consider
constant, linear and quadratic functions. It is worth noting that when a linear approximation of the
solution is considered, the elemental stiffness matrix requires the integration of constant functions
whereas with quadratic approximations the stiffness matrix requires the integration of constant,
linear and quadratic functions. The analytical results are reported here for completeness

Se(f = 1) =
π

2
, Se(f = x) = Se(f = y) = Se(f = z) =

π

4
,

Se(f = x2) = Se(f = y2) = Se(f = z2) =
π

6
, Se(f = xy) = Se(f = xz) = Se(f = yz) =

1

3
.

Table II shows the result of the numerical integration the constant function f(x, y, z) = 1 and
the linear functions f(x, y, z) = x, f(x, y, z) = y and f(x, y, z) = z. The percentage error is also
reported. These results show how increasing the number of integration points allows us to reduce
the error towards machine accuracy. For the constant function f(x, y, z) = 1, with 48 integration
points in each of the 8 elements used in the analysis (192 integration points in total), the error due
to numerical integration is less than 1%. The distribution of integration point is shown in Figure 8a.
If we increase the number of integration points to 448 in each element (i.e., 1792 integration points
in total) the error due to numerical integration goes down to 9× 10−10%. The distribution of
integration points in this case is displayed in Figure 8b. It is worth remarking that for the linear
functions f(x, y, z) = x and f(x, y, z) = z a comparable accuracy is obtained whereas slightly less
accurate results are attained from the linear function f(x, y, z) = y.
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Gauss points f = 1 Error (%) f = x Error (%)
32 1, 7847357662 13, 6198 0, 8923678831 13, 6198
64 1, 6538967700 5, 2903 0, 8269483850 5, 2903
192 1, 5672909334 0, 2231 0, 7836454667 0, 2231
384 1, 5708636716 0, 0042 0, 7854318358 0, 0042

640 1, 5707956384 4, 38 · 10−5 0, 7853978192 4, 38 · 10−5

1344 1, 5707963271 2, 03 · 10−8 0, 7853981636 2, 03 · 10−8

1792 1, 5707963268 9, 45 · 10−10 0, 7853981634 9, 445 · 10−10

Table I. Sphere defined by NURBS: Integration error on the surface integral for constant and linear function
f = x.

Gauss points f = y Error (%) f = z Error (%)
32 1, 1085106556 41, 1399 0, 8923678831 13, 6198
64 0, 9164009972 16, 6797 0, 8269483850 5, 2903
192 0, 7754902482 1, 2615 0, 7836454667 0, 2231
384 0, 7855902456 0, 0244 0, 7854318358 0, 0042

640 0, 7853963976 2, 25 · 10−4 0, 7853978192 4, 38 · 10−5

1344 0, 7853981668 4, 29 · 10−7 0, 7853981636 2, 03 · 10−8

1792 0, 7853981632 2, 04 · 10−8 0, 7853981634 9, 45 · 10−10

Table II. Sphere defined by NURBS: Integration error on the surface integral for linear functions f = y and
f = z.

(a) 8 elements and 192 Gauss points. (b) 8 elements and 1792 Gauss points.

Figure 8. Sphere defined by NURBS: Examples of the mesh used to evaluate the integration error with
different number of quadrature points on the surface.

Tables III and IV show the result of the numerical integration of quadratic functions and the
associated percentage error. Again, it can be observed that with 48 integration points per element
(i.e., 192 integration points in total), all the integrals are computed with an error of less than 2% and,
in some cases, the error is lower than 1%. Increasing the number of integration points per element
the error converges rapidly to machine accuracy. For instance, with 448 in each element (i.e., 1792
integration points in total) the error due to numerical integration is of the order of 2× 10−6% or
lower.

It is worth emphasizing that the overhead caused by the numerical integration with the exact
geometry is restricted to the elements of the Cartesian grid that are cut by the boundary of the
embedded geometry. For interior elements the number of integration points is chosen a priori
to be the minimum number required to exactly compute the integrals of the weak formulation.
For instance, if linear elements are considered, a quadrature with only one integration point
guarantees exact integration of the elemental stiffness matrix terms. Analogously, with a quadratic
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Gauss points f = x2 Error (%) f = y2 Error (%) f = z2 Error (%)
32 0, 5135503309 1, 9191 0, 7576351044 44, 6976 0, 5135503309 1, 9191
64 0, 5137816653 1, 8749 0, 6263334393 19, 6208 0, 5137816653 1, 8749
192 0, 5275430006 0, 7532 0, 5122049323 2, 1760 0, 5275430006 0, 7532
384 0, 5235375836 0, 0116 0, 5237885044 0, 0362 0, 5235375836 0, 0116
640 0, 5235986049 3, 25 · 10−5 0, 5235984286 6, 62 · 10−5 0, 5235986049 3, 25 · 10−5

1344 0, 5235987699 1, 08 · 10−6 0, 5235987873 2, 23 · 10−6 0, 5235987699 1, 08 · 10−6

1792 0, 5235987759 5, 56 · 10−8 0, 5235987750 1, 142 · 10−7 0, 5235987759 5, 56 · 10−8

Table III. Sphere defined by NURBS: Integration error on the surface integral for quadratic functions.

Gauss points f = xy Error (%) f = xz Error (%) f = yz Error (%)
32 0, 5086633254 52, 5989 0, 4401458247 32, 0437 0, 5086633254 52, 5989
64 0, 3946299371 18, 3889 0, 3901829374 17, 0548 0, 3946299371 18, 3889
192 0, 3269680495 1, 9095 0, 3293966424 1, 1810 0, 3269680495 1, 9095
384 0, 3335154896 0, 0546 0, 3333287772 0, 0013 0, 3335154896 0, 0546
640 0, 3333318950 4, 31 · 10−4 0, 3333329888 1, 03 · 10−4 0, 3333318950 4, 31 · 10−4

1344 0, 3333333403 2, 09 · 10−6 0, 3333333304 8, 88 · 10−7 0, 3333333403 2, 09 · 10−6

1792 0, 3333333330 1, 01 · 10−7 0, 3333333334 2, 02 · 10−8 0, 3333333330 1, 01 · 10−7

Table IV. Sphere defined by NURBS: Integration error on the surface integral for quadratic functions.

approximation of the solution a tensor product of one-dimensional Gauss quadratures with two
points in each direction (i.e., eight integration points per hexahedral element) guarantees exact
integration of the elemental stiffness matrix terms.

5.2. Discretization error

In this section, a linear elastic analysis is performed on two domains given by a CAD boundary
representation with NURBS and T-Splines. The computation is performed with the proposed
approach by embedding the CAD geometry in a Cartesian grid and a refinement study is performed
in order to evaluate the accuracy of the proposed approach.

In all the examples the Young’s modulus and the Poisson ratio are E = 1000 and ν = 0.3
respectively. The analytical solution of the problem is the cubic displacement field u = (ux, uy, uz)
with

ux = x+ x2 − 2xy + x3 − 3xy2 + x2y, uy = −y − 2xy + y2 − 3x2y + y3 − xy2, uz = 0
(20)

Dirichlet boundary conditions, corresponding to the analytical displacement field are considered in
the whole boundary.

The exact expression of the stress tensor, obtained by using the constitutive relation is

σx =
E

1 + ν

(
2x− 2y + 3x2 − 3y2 + 2xy

)
, σy =

−E
1 + ν

(
2x− 2y + 3x2 − 3y2 + 2xy

)
,

σz = ν (σx + σy) , τxy =
E

1 + ν
(−x− y +

x2

2
− y2

2
− 6xy), τxz = τyz = 0

and the volumetric forces required to satisfy the internal equilibrium equation are given by b =
(bx, by, bz) with

bx =
−E

1 + ν
(1 + y) , by =

−E
1 + ν

(1− x) , bz = 0 (21)

The quality of the results will be assessed by evaluating the relative error in the displacement field
in energy norm, defined as

ηe =


∫

Ω

(σh − σe) D−1 (σh − σe) d
∫
Ω

σeD
−1σed



1/2

(22)
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where σh and σe are the FE (approximated) stress tensor and the analytical stress tensor
respectively. In all the numerical examples we select the number of integration points to be enough in
order to guarantee that the error due to numerical integration is lower than the spatial discretization
error.

5.2.1. Sphere defined by NURBS The first example considers a sphere of unit radius. A set of
four meshes is employed, where uniform refinement is considered. Table V summarizes the main
properties of the computational meshes used. In particular, this Table shows the number of active
elements in each mesh. The number of elements that are interior to the embedded domain and the
number of elements intersecting the boundary of the embedded domain is also detailed, together
with the number of tetrahedra used to perform the numerical integration. Finally, this table shows
the number of degrees of freedom used in the numerical simulation when 8-noded (L8) or 20-noded
(Q20) isoparametric hexahedral elements are considered, corresponding to a linear or quadratic
approximation of the solution respectively.

Mesh Elements Internal elems. Boundary elems. Tetrahedra DOFs L8 DOFs Q20
1 8 0(0%) 8(100%) 8 81 243
2 64 8(12.5%) 56(87.5%) 224 375 1275
3 408 136(33.3%) 272(66.7%) 1392 1839 6663
4 2632 1472(55.9%) 1160(44.1%) 6432 10059 37923

Table V. Sphere defined by NURBS: Information about the calculation meshes.

Table VI shows the relative error in the displacement field in energy norm when linear and
quadratic elements are used in the four meshes detailed in Table V. The theoretical optimal
convergence rate of the error in energy norm of the FE solution is 1 for the case of linear elements
and 2 if quadratic elements are used. The values of the convergence rate of the error in energy norm
also displayed in the table show the optimal rate for both linear and quadratic approximations.

The rate of convergence is also displayed, showing the optimal rate for both linear and quadratic
approximations.

Mesh ηe (%) L8 Rate L8 ηe (%) Q20 Rate Q20
1 52, 2879 – 9, 1053 –
2 28, 7238 0.9 2, 9562 1.6
3 15, 1344 0.9 0, 8055 1.9
4 7, 7817 1.0 0, 2046 2.0

Table VI. Sphere defined by NURBS: discretization errors and convergence rates using linear (L8) and
quadratic (Q20) elements.

The results shown in Table VI can be seen in Figure 9 as a function of the total number of degrees
of freedom. The superiority of quadratic elements is clearly observed, as expected for problems with
smooth analytical solution, see for instance (51). In particular, the comparison in Figure 9 shows
that the error attained with linear elements in the finest mesh (with 2632 elements) is almost the
same as the error attained by using quadratic elements in the coarsest mesh (with only 8 elements).

The displacement field represented over the surface of the sphere is displayed in Figure 10.
The result corresponds to a computation using the mesh number 4 with linear elements. The
displacement in the z direction is represented to illustrate the error due to the imposition of the
Dirichlet boundary condition in weak form by using the technique described in Section 4 because
the analytical displacement in this direction is exactly zero, as detailed in 20.

It is worth remarking that the geometry of the sphere has been exactly represented using one
quadratic NURBS surface with 27 control points, as represented in Figure 1a. As mentioned earlier
in the introduction one of the main advantages of NURBS is the ability to exactly represent conics,
which is not possible if a polynomial representation of the geometry is considered.
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Figure 9. Sphere defined by NURBS: discretization error vs. degrees of freedom for linear and quadratic
elements.

(a) (b) (c)

Figure 10. Sphere defined by NURBS: Computed displacement field. (a) x direction, (b) y direction and (c)
z direction

5.2.2. Torus defined by NURBS The second example considers a torus exactly defined by a NURBS
surface, see Figure 1b. A set of four meshes is employed, where uniform refinement is considered.
Table VII summarizes the main features of these four computational meshes.

Mesh Elements Internal elems. Boundary elems. Tetrahedra DOFs L8 DOFs Q20
1 32 0(0%) 32(100%) 110 225 735
2 216 16(7.4%) 200(92.6%) 992 1101 3891
3 1128 384(34%) 744(66%) 4016 4860 17844
4 7136 3968(55.6%) 3168(44.4%) 18072 26892 101832

Table VII. Torus defined by NURBS: Information about the calculation meshes.

Table VIII shows the relative error in the displacement field in energy norm when linear and
quadratic elements are used in the four meshes detailed in Table VII. The convergence rate of
the error in energy norm is also displayed, showing the optimal rate for both linear and quadratic
approximations.

Figure 11 represents the relative error in the displacement field in energy norm as a function of
the total number of degrees of freedom, both for linear and quadratic elements. The conclusions are
similar to the ones obtained in the previous example, showing that the performance of the proposed
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Mesh ηe (%) L8 Rate L8 ηe (%) Q20 Rate Q20
1 37, 3394 – 4, 1987 –
2 21, 9811 0.8 1, 4862 1.5
3 11, 3050 1.0 0, 3904 1.9
4 5, 7553 1.0 0, 0986 2.0

Table VIII. Torus defined by NURBS: discretization errors and convergence rates using linear (L8) and
quadratic (Q20) elements.

methodology does not depend on the geometry considered. The superiority of quadratic elements is
again clearly observed. both in terms of accuracy and error convergence rate.

Figure 11. Torus defined by NURBS: discretization error vs degrees of freedom.

The displacement field represented over the surface of the torus is displayed in Figure 12. The
result corresponds to a computation using the mesh number 4 with linear elements. Again, the
displacement in the z direction is represented to illustrate the error due to the imposition of the
Dirichlet boundary condition in weak form by using the technique described in Section 4.

(a) (b) (c)

Figure 12. Torus defined by NURBS: computed displacement field. (a) x direction, (b) y direction and (c) z
direction

5.2.3. Torus defined by T-spline The last example considers a torus defined by T-spline, see
Figure 1c. The same meshes used in the previous computations are employed, see Table VII.
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Table IX shows the relative error in the displacement field in energy norm when linear and quadratic
elements are used in the four meshes detailed in Table VII. The convergence rate of the error in
energy norm is also displayed, showing, once more, the optimal rate for both linear and quadratic
approximations.

Mesh ηe (%) L8 Rate L8 ηe (%) Q20 Rate Q20
1 39, 2256 – 5, 1908 –
2 22, 7172 0.8 1, 5881 1.7
3 11, 7909 0.9 0, 4172 1.9
4 5, 9671 1.0 0, 1056 2.0

Table IX. Torus defined by T-spline: discretization errors and convergence rate using linear (L8) and
quadratic (Q20) elements.

Figure 13 represents the relative error in the displacement field in energy norm as a function of
the total number of degrees of freedom, both for linear and quadratic elements. The conclusions
are identical to the ones discussed before, when the torus was represented with NURBS. This
illustrates, once more, that the performance of the proposed methodology is independent on the
CAD technology employed to represent the geometry of the embedded domain.

Figure 13. Torus defined by T-spline: discretization error vs degrees of freedom.

6. CONCLUSIONS

This papers proposes a novel methodology to consider the exact 3D boundary representation of the
domain in a immerse boundary framework where a Cartesian grid is used to mesh the embedding
domain. The method is capable of employing any boundary representation of the embedded domain
but the presentation is focused in the most extended CAD technology, namely NURBS, and a novel
approach with T-Splines. The proposed technique removes the geometric errors that are associated
to standard immersed boundary methods due to the approximation of the embedded geometry by a
faceted representation.

The strategy to compute the intersections between the Cartesian grid and the exact geometry
of the boundary of the embedded domain is detailed. A novel approach to perform the numerical
integration in the region of the cut elements that is internal to the physical domain is developed.
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The strategy consists in defining, for integration purposes only, a tetrahedral submesh in each of the
elements cut by the boundary where the tetrahedral have at most one face or one edge in contact
with the boundary of the embedded domain. Then, specifically designed numerical quadratures are
defined in the tetrahedra by following the rationale of the NURBS-enhanced finite element method.
The performance and accuracy of the proposed technique to compute the integrals appearing in the
weak formulation has been analyzed using numerical examples.

One crucial aspect in immersed boundary methods is the imposition of essential boundary
conditions. As mesh nodes do not lie on the boundary of the physical domain it is not possible to
strongly impose such conditions. The technique adopted here consists in using stabilized Lagrange
multipliers to impose essential boundary conditions.

Three numerical examples have been considered in order to show the potential and applicability
of the proposed methodology. The optimality of the approximation in terms of error convergence
rate, for both linear and quadratic elements, has been corroborated. The method shows the same
performance on problems where the embedded geometry is represented using NURBS or T-Splines,
showing independence on the CAD technology utilized. Finally, all the numerical examples have
shown the potential of the proposed approach when quadratic elements are considered.

The present method has been presented using linear elasticity problems but it could be adapted
to solve any problem where immersed boundaries show advantages with respect to standard
methods. In addition, an h-refinement strategy based on a Zienkiewick-Zhu error estimator is under
development and it will be fully integrated with the techniques proposed in this paper.
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[19] Cirak F, Ortiz M, Schröder P. Subdivision Surfaces: a New Paradigm for Thin-shell Finite Element
Analysis. International Journal for Numerical Methods in Engineering 2000; 47(12):2039–2072.

[20] Inoue K, Kikuchi Y, Masuyama T. A NURBS Finite Element Method for Product Shape Design. J.
Engrg. Design 2005; 16(2):157–174.

[21] Cottrell JA, Hughes TJR, Bazilevs Y. Isogeometric Analysis: Toward Integration of CAD and FEA.
Wiley, 2009.

[22] Sevilla R, Fernández-Méndez S, Huerta A. NURBS-enhanced Finite Element Method (NEFEM): A
Seamless Bridge Between CAD and FEM. Archives of Computational Methods in Engineering 2011;
18(4):441–484.

[23] Sevilla R, Fernández-Méndez S, Huerta A. 3D-NURBS-enhanced Finite Element Method (NEFEM).
International Journal for Numerical Methods in Engineering 2011; 88(2):103–125.

[24] Legrain G. A NURBS-enhanced Extended Finite Element Approach for Unfitted CAD Analysis.
Computational Mechanics 2013; 52(4):913–929.
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