SN 1987A

SN 1987A — сверхновая звезда, вспыхнувшая на окраине туманности Тарантул в Большом Магеллановом Облаке, карликовой галактике-спутнике Млечного Пути, приблизительно в 51,4 килопарсека (168 тысяч световых лет) от Земли[2]. Свет вспышки достиг Земли 23 февраля 1987 года[3]:22[4]:197. Поскольку это была первая сверхновая, наблюдавшаяся в 1987 году, ей присвоили название SN 1987A.

SN 1987A
Остаток SN 1987A, снимок в ближнем инфракрасном диапазоне полученный камерой NIRCam телескопа Джеймс Уэбб
Остаток SN 1987A, снимок в ближнем инфракрасном диапазоне полученный камерой NIRCam телескопа Джеймс Уэбб
Наблюдательные данные
(Эпоха J2000,0)
Тип сверхновой II[1]
Галактика Большое Магелланово Облако
Созвездие Золотая Рыба
Прямое восхождение 05ч 35м 28,01с[2]
Склонение −69° 16′ 11,6″[2]
Дата открытия 23 февраля 1987
Расстояние 51,4 кпк (168000 световых лет)
Физические характеристики
Прародитель Sanduleak -69° 202
Класс прародителя голубой сверхгигант
Другие обозначения
HP99 854, WS90 1, INTREF 262, XMMU J053528.5-691614, SHP2000, LMC 264, AAVSO 0534-69
Логотип Викисклада Медиафайлы на Викискладе
Логотип Викиданных Информация в Викиданных ?

В максимуме, достигнутом в мае 1987 года, она была видимой невооружённым глазом, пиковая видимая звёздная величина составила +3[5]:185. Это самая близкая вспышка сверхновой, наблюдавшаяся со времён изобретения телескопа[6].

Звезда-предшественник и вспышка

править

Сверхновая SN 1987A была открыта канадским астрономом Яном Шелтоном[англ.] при помощи 25-см астрографа обсерватории Лас-Кампанас[5]:182, а первая фотография получена Мак Нотом 23 февраля в 10:35[3]:22. В течение первой послевспышечной декады светимость SN 1987A уменьшалась, а затем почти три месяца увеличивалась до максимума[4]:197. Звездой-предшественником SN 1987A был голубой сверхгигант Sanduleak −69° 202[7] с массой около 17 масс Солнца, который присутствует ещё в Капском фотографическом обозрении 1896—1900 гг.[5]:183 По радиоизлучению, зарегистрированному в первые две недели вспышки, радиоастрономами было установлено, что окружавший звезду газ по плотности и скорости соответствовал звёздному ветру голубого сверхгиганта. В то же время ультрафиолетовое излучение, зарегистрированное в мае 1987 года спутником IUE, по спектру соответствовало газу более высокой плотности и меньшей скорости, располагавшемуся дальше от звезды-предшественника. На основе анализа был сделан вывод, что этот газ соответствовал звёздному ветру красного сверхгиганта, дувшему за тысячи лет до вспышки, то есть что звезда-предшественник была в то время красным сверхгигантом, но затем превратилась в голубой сверхгигант[3]:29.

Вспышка потребовала пересмотра некоторых положений теории звёздной эволюции, поскольку считалось, что почти исключительно красные сверхгиганты и звёзды Вольфа — Райе могут вспыхивать как сверхновые[5]:184.

SN 1987A является сверхновой типа II, образующейся на конечном этапе из одиночных массивных звёзд, о чём свидетельствовали линии водорода уже в самых ранних спектрах этой сверхновой, так как именно водород и гелий являются основными элементами оболочки сверхновых II типа[3]:23—24.

Нейтринная вспышка

править

В 2:52 по всемирному времени 23 февраля на советско-итальянском нейтринном детекторе LSD под горой Монблан было зарегистрировано 5 событий, вызванных нейтрино; подобные эффекты за счёт случайных совпадений фон способен создавать лишь раз в два года[5]:192. Через 5 часов, в 7:35 по всемирному времени 23 февраля (приблизительно за 3 часа до первого обнаружения сверхновой на фотопластинке) нейтринные обсерватории Kamiokande II, IMB и Баксан зарегистрировали вспышку нейтрино, длившуюся менее 13 секунд, причём по данным Kamiokande II было определено направление, с точностью около 20 градусов совпавшее с направлением на Большое Магелланово Облако[5]:191. Хотя за это время были зарегистрированы всего 24 нейтрино и антинейтрино, это существенно превысило фон. Зарегистрированные нейтринные события стали первым (и на 2017 год — единственным) случаем регистрации нейтрино от вспышки сверхновой. По современным представлениям, энергия нейтрино составляет около 99 % общей энергии, выделяемой при вспышке. Всего выделилось порядка 1058 нейтрино с общей энергией порядка 1046 джоулей[5]:189 (~100 Foe). Всплеск нейтрино, унёсший основную часть гравитационной энергии, свидетельствовал о коллапсе ядра звезды-предшественника и образовании на его месте нейтронной звезды[3]:26—27

Нейтрино и антинейтрино достигли Земли практически одновременно, что стало подтверждением общепринятой теории, по которой гравитационные силы действуют на материю и антиматерию одинаково.

Тепловой энергии разлетающегося вещества оболочки сверхновой недостаточно для объяснения длительности её вспышки, продолжавшейся несколько месяцев. На поздней стадии сверхновая светилась за счёт энергии радиоактивного распада никеля-56 (период полураспада 6 суток) с образованием кобальта-56 и последующего распада кобальта-56 (период полураспада 77,3 суток) с образованием стабильного железа-56[8]. Уносящие большую часть энергии распада гамма-кванты, рассеиваясь оболочкой, породили также жёсткое рентгеновское излучение сверхновой[3]:25—27.

10 августа 1987 года обсерваторией «Рентген» на модуле «Квант-1» было обнаружено жёсткое рентгеновское излучение SN 1987A[5]:195, получены широкополосные (~1—1000 кэВ) спектры излучения этой сверхновой[9]. Поток в диапазоне 20—300 кэВ от SN 1987A был также зарегистрирован спутником Ginga[5]:195. Гамма-излучение от сверхновой регистрировалось в августе-ноябре 1987 года спутником SMM[3]:26.

Световое эхо

править

В феврале 1988 года на Европейской южной обсерватории было обнаружено световое эхо сверхновой SN 1987A. Оно представляло собой два концентрических кольца вокруг места вспышки сверхновой, которые созданы рассеявшимся на газо-пылевых облаках светом, испущенным сверхновой во время вспышки[3]:29.

 
Световое эхо сверхновой SN 1987A

В исследовании, опубликованном в июне 2015 года, используя изображения с космического телескопа «Хаббл» и Very Large Telescope, сделанные в период с 1994 по 2014 год, показывается, что светящиеся сгустки материи, составляющие кольца, исчезают. Прогнозируется, что кольца исчезнут в период между 2020 и 2030 годами[10].

 
Остаток SN 1987A, наложение снимков в разных диапазонах спектра, 6 января 2014 года. Данные ALMA (радиодиапазон, красный цвет) показывают вновь образовавшуюся пыль в центре остатка. Данные телескопов «Хаббл» (видимый диапазон, зелёный цвет) и «Чандра» (рентгеновский диапазон, синий цвет) показывают распространение ударной волны

Остаток сверхновой

править

Остаток SN 1987A является объектом пристального изучения. Особенностью сверхновой являются открытые в 1994 два симметрично расположенных неярких кольца, образовавшихся при слиянии двух звёзд[11][12].

Примерно в 2001 году вещество, образовавшееся в результате взрыва и разлетающееся со скоростью более 7000 км/с, достигло внутреннего кольца. Это стало причиной нагревания последнего и порождения рентгеновского излучения, поток которого от кольца увеличился в три раза с 2001 по 2009 год. Часть рентгеновского излучения, поглощаемая плотным веществом, близким к центру, отвечает за сопоставимое увеличение видимого потока от остатка сверхновой за период с 2001 по 2009 гг. Это увеличение яркости остатка повернуло вспять процесс, наблюдавшийся до 2001 года, когда поток в видимом диапазоне уменьшался из-за распада изотопа титан-44[13].

Астрономы предсказывали, что по мере остывания газа после взрыва атомы кислорода, углерода и кремния в холодных центральных частях остатка будут связываться, образуя большие количества молекул и пыли. Однако наблюдения SN 1987A с помощью инфракрасных телескопов в течение первых 500 дней после взрыва выявили лишь малые количества горячей пыли. 6 января 2014 года появилось сообщение об обнаружении в рамках проекта ALMA намного больших количеств холодной пыли, которые ярко светились в миллиметровом и субмиллиметровом диапазонах. Астрономы оценили, что на тот момент остаток сверхновой содержал вновь образовавшуюся пыль массой в четверть массы Солнца, и что почти весь углерод, выделившийся в результате взрыва, вошёл в состав пыли; они также нашли значительные количества диоксида углерода и моноксида кремния[14][15].

В 2019 году при анализе данных телескопа ALMA, полученных в 2015 году, учёные обнаружили в системе SN 1987A участок пыли и газа с высокой относительно окрестностей температурой (хотя более высокую плотность, а не температуру этого участка нельзя полностью исключать), что дало повод авторам исследования утверждать в опубликованной статье о вероятном компактном источнике, а в публичном заявлении — о нейтронной звезде, скрывающейся за пылью и нагревающей её[16][17].

Примечания

править
  1. Lyman, J. D.; Bersier, D.; James, P. A. Bolometric corrections for optical light curves of core-collapse supernovae (англ.) // Monthly Notices of the Royal Astronomical Society : journal. — Oxford University Press, 2013. — Vol. 437, no. 4. — P. 3848. — doi:10.1093/mnras/stt2187. — Bibcode2014MNRAS.437.3848L. — arXiv:1311.1946.
  2. 1 2 3 SN1987A in the Large Magellanic Cloud. Hubble Heritage Project. Дата обращения: 25 июля 2006. Архивировано из оригинала 4 марта 2016 года.
  3. 1 2 3 4 5 6 7 8 Чугай Н. Н. Сверхновая в Большом Магеллановом Облаке // Земля и Вселенная. — М.: Наука, 1989. — № 2. — С. 22—30.
  4. 1 2 Мустель Э. Р., Чугай Н. Н. Сверхновые, какими мы их видим // Наука и человечество, 1988 / Редкол., предс. А. А. Логунов. — М.: Знание, 1988. — С. 187—197.
  5. 1 2 3 4 5 6 7 8 9 Ефремов Ю. Н., Шакура Н. И. Сверхновая 1987 A в Большом Магеллановом Облаке // Астрономический календарь на 1989 год : Справочное издание. — М.: Наука, 1988. — С. 181—195. — ISSN 0132-4063.
  6. Более близкая сверхновая G1.9+0.3, открытая в 1985 году по её остатку и, по подсчётам учёных, вспыхнувшая около 1868 года, в то время не наблюдалась.
  7. Sk −69° 202 Архивная копия от 7 февраля 2016 на Wayback Machine в SIMBAD
  8. Астрофизический модуль «Квант» // Наука и человечество, 1989 / Редкол., предс. А. А. Логунов. — М.: Знание, 1989. — С. 299—301.
  9. Discovery of hard X-ray emission from supernova 1987A [1] с теоретическими предсказаниями спектра излучения сверхновой [2]
  10. Liz Kruesi. Supernova prized by astronomers begins to fade from view. New Scientist. Дата обращения: 13 июня 2015. Архивировано 13 июня 2015 года.
  11. [3]Архивная копия от 6 февраля 2020 на Wayback Machine [astro-ph/0703317] The Triple-Ring Nebula around SN1987A: Fingerprint of a binary merger
  12. Элементы — новости науки: Объяснено происхождение колец сверхновой 1987А. Дата обращения: 3 апреля 2011. Архивировано 29 ноября 2011 года.
  13. Larsson J et al. X-ray illumination of the ejecta of supernova 1987A (англ.) // Nature : journal. — 2011. — Vol. 474, no. 7352. — P. 484—486. — doi:10.1038/nature10090.
  14. "Supernova's Super Dust Factory Imaged with ALMA" (англ.). National Radio Astronomy Observatory. 2014-01-06. Архивировано 27 апреля 2015. Дата обращения: 27 апреля 2015.
  15. Indebetouw R et al. Dust Production and Particle Acceleration in Supernova 1987A Revealed with ALMA (англ.) // The Astrophysical Journal : journal. — IOP Publishing, 2014. — Vol. 782, no. 1. — doi:10.1088/2041-8205/782/1/L2. — arXiv:1312.4086.
  16. P. Cigan et al. High Angular Resolution ALMA Images of Dust and Molecules in the SN 1987A Ejecta (англ.) // The Astrophysical Journal. — IOP Publishing, 2019. — Vol. 886, iss. 1. — P. 51. — doi:10.3847/1538-4357/ab4b46. — Bibcode2019ApJ...886...51C. — arXiv:1910.02960.
  17. Jonathan O'Callaghan. A Missing Neutron Star May Have Been Found after 30-Year Hunt. Scientific American (25 ноября 2019). Дата обращения: 15 декабря 2019. Архивировано 20 декабря 2019 года.

Ссылки

править
  NODES
Project 1