Jednoliko ubrzano gibanje po pravcu

Jednoliko ubrzano gibanje po pravcu ili jednoliko ubrzano pravocrtno gibanje je gibanje po pravcu kod kojega se ubrzanje (akceleracija) ne mijenja, tj. to je gibanje stalnim (konstantnim) ubrzanjem. To znači da je pravo ubrzanje jednako srednjem (prosječnom) u bilo kojem vremenskom intervalu.

Klasična mehanika

drugi Newtonov zakon
povijest klasične mehanike
kronologija klasične mehanike

Posve isto značenje ima definicija da se kod jednoliko ubrzanog gibanja po pravcu brzina promijeni za jednake iznose u jednakim vremenskim razmacima (intervalima).

Uobičajeno je da se naziv "jednoliko ubrzano gibanje" odnosi i na slučaj kada tijelo doista ubrzava (povećava brzinu), kao i na slučaj kada tijelo usporava (smanjuje brzinu); no, kad se želi naglasiti da tijelo usporava, kaže se i jednoliko usporeno gibanje. Uobičajeno je (i korisno) rabiti iste formule (jednadžbe) u oba slučaja, s tim da se kod usporenoga za ubrzanje uvrštava negativan broj. Zbog takve upotrebe, neki autori koriste naziv jednoliko promjenjljivo gibanje umjesto općeg (dvosmislenog) naziva jednoliko ubrzano gibanje.

Jednoliko ubrzano gibanje po pravcu jedno je od najjednostavnijih primjera gibanja, na kojima učenici osnovnih i srednjih škola tek upoznaju veličine pomoću kojih se gibanje opisuje - znatno prije nego što će učiti npr. o vektorima ili o derivacijama. Na toj razini znanja, i brzina i ubrzanje se opisuju kao skalarne veličine, što je opravdano zato jer ne mijenjaju smjer.

Skalarni opis

uredi

Kad se jednoliko ubrzano gibanje po pravcu tumači bez korištenja vektorskih veličina, kaže se da je ubrzanje promjena brzine u jedinici vremena, te da je pozitivno kada brzina raste a negativno kad se brzina umanjuje. Takve su definicije "operativno korektne" jer omogućuju točan izračun brzine i pređenog puta (za gibanje tijela na istu stranu). Budući da se u tome obliku i najviše koriste, opis gibanja u ovome članku počinje sa skalarnim pristupom.

Veličine koje opisuju gibanje su ubrzanje, brzina i pređeni put, te se kao funkcije vremena opisuju sljedećim formulama[1]:

 
 
 

Tu je   brzina u "početnom" trenutku   (kaže se početna brzina); u najjednostavnijem slučaju ona je jednaka nuli (promatra se gibanje tijela od polaska), pa formule za brzinu i put nemaju desnog pribrojnika. Ubrzanje   ne ovisi o vremenu nego je konstantno ("konst."),   je brzina u trenutku  , dok je   put pređen od trenutka   do trenutka  .

Često se (na početnoj razini) kaže samo da je   vrijeme, čime se podrazumijeva da je to vremenski interval (detaljnije obrazloženje u članku vrijeme). Tada je   brzina na početku toga "vremenskog intervala  ", dok je   brzina postignuta na kraju vremenskog intervala, te   put pređen tijekom toga vremenskog intervala.

Ponekad se u formuli za put na desnoj strani dodaje treći pribrojnik  . On se opisuje kao put pređen prije početnog trenutka (odnosno, prije početka promatranog intervala), računajući od nekog "početnog položaja". Takav dodatak je puno jasniji (i opravdaniji) u vektorskom opisu gibanja (dolje).

Izvedene formule

uredi

Gornje formule za brzinu i put mogu se, naravno, preoblikovati tako da se na lijevu stranu "izvuče" bilo koja veličina s desne strane; no, takve elementarne manipulacije pojedine jednadžbe nema smisla nabrajati u ovakvom tekstu (npr. ako je početna brzina jednaka nuli, onda se ubrzanje može dobiti iz brzine kao  ). Ovdje se navode samo dvije korisne formule koje su manje očigledne:

 


 


Prva formula dobiva se kombinacijom i eliminiranjem vremena iz prethodnih jednadžbi za brzinu i put. Njezin jednostavniji i poznatiji oblik (ali manje općenit), dobiva se za slučaj da nema početne brzine,  , još poznatiji oblik je onaj za slobodni pad s visine  , gdje je  .

U drugoj formuli sadržana je tvrdnja da je   prosječna ili srednja brzina kod jedniliko ubrzanog gibanja, budući da je po definiciji prosječna brzina ona brzina pomoću koje se put računa običnim množenjem s vremenom (vremenskim intervalom),  .

Ova formula za pređeni put, i ona početna (koja koristi ubrzanje), lako se dobiju jedna iz druge uz pomoć početne formule za brzinu. Početnu formulu za brzinu (pomoću ubrzanja i vremena) nije teško razumjeti/dokazati: budući da konstantno ubrzanje opisuje promjenu brzine u jedinici vremena (sekundi), ukupna promjena brzine dobije se tako da se ubrzanje pomnoži s ukupnim proteklim vremenom (a onda se na tu promjenu dodaje početna brzina). Međutim, početnu bi formulu za pređeni put matematički korektno trebalo dokazivati pomoću integrala. Umjesto toga, može se provesti "intuitivni dokaz" pomoću prosječne brzine. Naime, budući da brzina jednoliko raste (za jednaki iznos u svakoj sekundi), jasno je da njezin prosječni iznos mora biti onaj koji ima u sredini promatranog vremenskog intervala (koliko je prije manja, toliko je poslije veća). Taj je iznos jednak  . Na taj način, formula za pređeni put pomoću prosječne brzine može poslužiti kao dokaz formule pomoću ubrzanja i kvadrata vremena.

Vektorski opis

uredi

U konceptualno korektnom opisu gibanja po pravcu, ubrzanje je vektor koji ne može biti niti pozitivan niti negativan; a skalar koji se koristi u gornjim formulama je skalarna tangencijalna komponenta ubrzanja  , budući da na pravcu nema normalnog ubrzanja pa je (koristeći jedinični vektor   u smjeru brzine):

 .

Nije, međutim, uobičajeno pisati formule za jednoliko ubrzano gibanje po pravcu pomoću  . Tako se obično pišu formule za jednoliko ubrzano gibanje po krivulji (uključujući i kružnicu), gdje postoji i normalno ubrzanje, pa izrazi za brzinu i put imaju isti oblik kao na pravcu, samo treba upisati   umjesto  .

Kod gibanja po pravcu uobičajeno je pravac "pretvoriti" u koordinatnu os Kartezijevog sustava, npr. u os "x" (treba samo odabrati gdje je ishodište   te na koju stranu je pozitivni smjer osi). Brzina i ubrzanje su vektori paralelni s pravcem (tj. sa osi "x"), a umjesto njihovih iznosa u formulama se koriste njihove skalarne komponente   odnosno   (brojevi istoga iznosa ali negativni kada je vektor u suprotnom smjeru od koordinatne osi). Time se jednoznačno određuje smjer brzine i ubrzanja u odnosu na "pozitivni" smjer pravca, pa se omogućuje i opis gibanja kod kojega brzina promijeni smjer u suprotni (tijelo se zaustavi i krene u suprotnom smjeru, kao kod dolje opisanoga vertikalnog hitca).[2] Tako se dobivaju formule:

 


 

Važno je uočiti da se tu, umjesto pređenog puta  , pojavljuje položaj  , tj. koordinata na osi "x". Kad se tijelo giba u pozitivnom smjeru, koordinata   raste, a u negativnom smjeru se smanjuje. Pritom je   koordinata (položaj) tijela u trenutku   (početni položaj). A pređeni put može se računati kao   sve dok se tijelo giba na istu stranu. Ako se krene vraćati, mora se put računati posebno za gibanje na jednu stranu, a posebno na drugu stranu. (To jednako vrijedi i u prvoj formuli za put   na početku članka, jer ona ima isti oblik; samo što to tamo nije očigledno/jasno, pa je jednostavnije reći da te prvotne formule vrijede "za gibanje na istu stranu").

Primjer: Vertikalni hitac

uredi

Vertikalni hitac je naziv za gibanje tijela koje blizu površine Zemlje bacimo ("ispalimo") vertikalno uvis ili prema dolje nekom početnom brzinom. Ovdje se navodi uobičajeni elementarni opis, koji podrazumijeva: (1) da se otpor zraka može zanemariti jer brzina nije velika a tijelo je kompaktno i znatne gustoće (npr. kamen, cigla, metalna kugla...); (2) ubrzanje slobodnog pada se ne mijenja osjetno s visinom jer su visinske razlike male; (3) Coriolisov učinak se može zanemariti jer su brzine male.

Uz navedene pretpostavke, vertikalni hitac je jednoliko ubrzano gibanje po vertikalnom pravcu zato što (nakon ispaljivanja) tijelo ima stalno vertikalno ubrzanje prema dolje, koje se naziva ubrzanjem slobodnog pada i obilježava simbolom  . Uobičajeno je za prikaz gibanja koristi vertikalnu koordinantnu os "y" usmjerenu uvis, pa prethodne jednadžbe gibanja dobivaju oblik:


 


 


Tu je   položaj koji tijelo prolazi u trenutku   i često se odabire da bude nula ako odatle bacamo tijelo (pa tu ima početnu brzinu  ). Ubrzanje je opisano vertikalnom komponentom  .

Izvori

uredi
  1. I. Levanat: Fizika za TVZ - Kinematika i dinamika Tehničko veleučilište u Zagrebu (2010)
  2. Berkeley Physics Course: Mechanics. Vol. 1 by Charles Kittel, Walter Knight, Malvin A. Ruderman, Authors, J. A. Lewis, Reviewer, first published by McGraw-Hill College in 1965
  NODES