Heliosynchrónna obežná dráha
Heliosynchrónna obežná dráha je takmer polárna obežná dráha okolo planéty, v ktorej satelit prechádza cez ktorýkoľvek daný bod povrchu planéty v rovnakom miestnom strednom slnečnom čase.[1] Technicky precesia uzlovej priamky danej obežnej dráhy za rok spraví jednu celú otáčku, takže si vždy zachováva rovnaký sklon k Slnku.
Aplikácia
upraviťHeliosynchrónna obežná dráha umožňuje umiestniť satelit do stáleho slnečného svetla a preto môžu solárne panely nepretržite pracovať. Táto obežná dráha je užitočná pre zobrazovacie, špionážne a meteorologické satelity pretože zakaždým, keď satelit prelietava ponad dané miesto, bude uhol osvetlenia povrchu planéty pod ním takmer rovnaký. Toto konzistentné osvetlenie je užitočná vlastnosť pre satelity, ktoré zobrazujú zemský povrch vo viditeľných alebo infračervených vlnových dĺžkach, ako sú meteorologické a špionážne satelity alebo pre satelity určené k diaľkovému prieskumu Zeme (napríklad satelity pre prieskum oceánov alebo atmosféry. Satelit na heliosynchrónnej dráhe môže prelietavať cez rovník dvanásťkrát denne zakaždým v približne 15:00 stredného miestneho času.
Špeciálnymi prípadmi heliosynchrónnej obežnej dráhy sú poludňajšie a polnočné orbity, kde miestny priemerný slnečný čas prechodu cez rovníkovú šírku je okolo poludnia alebo polnoci. Úsvitová a súmraková obežná dráha, kde miestny stredný slnečný čas prechodu cez rovníkové šírky je okolo východu alebo západu Slnka, takže satelit letí v terminátore. Let v terminátore je užitočný pre aktívne radarové satelity, pretože solárne panely satelitov sú vždy osvetlené. To je užitočné aj pre niektoré satelity s pasívnymi prístrojmi, ktoré musia obmedzovať vplyv Slnka na samotné merania. U nich je možné nasmerovať prístroje na nočnú stranu Zeme. Obežná dráha úsvit/súmrak sa používa pre vedecké satelity pozorujúce slnečné žiarenie, ako sú Yohkoh, TRACE, Hinode a PROBA2, umožňuje im takmer nepretržité pozorovanie Slnka.
Orbitálna precesia
upraviťHeliosynchrónna obežná dráha sa dosiahne tak, že orbitálna rovina precesuje (rotuje) každý deň približne o jeden stupeň na východ vzhľadom na nebeskú sféru, aby držala tempo s pohybom Zeme okolo Slnka. Táto precesia sa dosiahne vyladením sklonu a výšky obežnej dráhy (pozri technické podrobnosti) tak, aby rovníkové vydutie Zeme spôsobilo požadovanú rýchlosť rotácie roviny obežnej dráhy družice. Rovina obežnej dráhy teda nie je vo vzťahu k vzdialeným hviezdam fixovaná, ale pomaly sa otáča okolo zemskej osi.
Typické heliosynchrónne dráhy na Zemi sú vo výške okolo 600 – 800 km, s periódami v rozmedzí 96 – 100 minút a sklony okolo 98°.
Heliosynchrónne obežné dráhy sa môžu vyskytovať okolo iných sploštených planét, napríklad u Marsu. Satelit okolo takmer sférickej Venuše bude potrebovať vonkajšiu silu, aby udržal heliosynchrónnu obežnú dráhu.
Technické detaily
upraviťUzlová precesia na jeden obeh pre obežnú dráhu okolo sploštenej planéty je daná
kde
- J2 zonálny geopotenciálny koeficient druhého stupňa, 1,082 626 68 x 10-3 pre Zem
- RE je stredný polomer planéty, pre Zem 6378,137 km
- p je parameter elipsy
- i je sklon obežnej dráhy k rovníku
Obežná dráha bude synchrónna so Slnkom, keď sa miera precesie ρ rovná strednému pohybu Zeme okolo Slnka, ktorý je 360° za hviezdny rok, takže musíme nastaviť ΔΩ / T = ρ, kde T je doba obehu.
Ak je obežná doba satelitu
kde
- a je hlavná polos orbity
- μ je gravitačný parameter planéty
- p ≈ a pre kruhové alebo takmer kruhové obežné dráhy, to znamená, že
alebo keď ρ je 360° za rok
Podľa tohto vzťahu heliosynchrónna orbita s a = 7 200 km, satelit vo výške asi 800 km, má inklináciu 98,696°.
Zaujímavé je, že podľa tejto aproximácie sa cos (i) rovná -1, keď sa veľká polos rovná 12 352 km, čo znamená, že iba dráhy s polosou menšou ako 12 352 km môžu byť heliosynchrónne. Perióda obehu môže byť v rozsahu od 88 minút pre veľmi nízku obežnú dráhu (a = 6 554 km, i = 96 °) do 3,8 hodiny (a = 12 352 km, ale táto obežná dráha by bola rovníková s i = 180°). Dlhšie obežné doby sú možné len pomocou excentrických dráh s perigeom bližším, avšak apogeom vzdialenejším.
Ak chceme, aby určitý satelit prelietal nad určeným miestom každý deň vždy v rovnakú hodinu, možno vybrať z dráh s 7 až 16 obehmi okolo Zeme za deň, ako je uvedené v tabuľke nižšie. (Obežná doba, ktorá by sa mala použiť, je v skutočnosti o niečo dlhšia. Napríklad, retrográdna rovníková obežná dráha, ktorá prechádza cez rovnaké miesto po 24 hodinách, má skutočnú periódu okolo 365/364 ≈ 1.0027 dlhšiu ako je čas medzi preletmi. Pre nerovníkové obežné dráhy je faktor bližší k 1.)
Obehov za deň | Doba obehu (hodín) | Výška nad povrchom Zeme (km) |
Maximálna zemepisná šírka |
---|---|---|---|
16 | = 1 hod 30 min | 282 | 83,4° |
15 | = 1 hod 36 min | 574 | 82,3° |
14 | ≈ 1 hod 43 min | 901 | 81,0° |
13 | ≈ 1 hod 51 min | 1269 | 79,3° |
12 | 1688 | 77,0° | |
11 | ≈ 2 hod 11 min | 2169 | 74,0° |
10 | = 2 hod 24 min | 2730 | 69,9° |
9 | = 2 hod 40 min | 3392 | 64,0° |
8 | 4189 | 54,7° | |
7 | ≈ 3 hod 26 min | 5172 | 37,9° |
Keď niekto povie, že obežná dráha synchronizovaná so Slnkom prechádza zakaždým cez miesto na Zemi v rovnakom miestnom čase, znamená to stredný slnečný čas, nie pravý slnečný čas (nie podľa slnečných hodín). Slnko nebude v priebehu roka presne na tej istej pozícii na oblohe (pozri Rovnica času a Analema).
Heliosynchrónne obežné dráhy sú väčšinou vybrané pre satelity na pozorovanie Zeme, s nadmorskou výškou typicky medzi 600 a 1 000 nad zemským povrchom. Aj keď obežná dráha zostane synchrónna so Slnkom, budú sa meniť ďalšie orbitálne parametre, ako napríklad argument pericentra a excentricita, v dôsledku vyšších porúch v gravitačnom poli Zeme, tlaku slnečného žiarenia a ďalších príčin. Najmä satelity na pozorovanie Zeme preferujú obežné dráhy s konštantnou nadmorskou výškou pre rovnaké miesto na povrchu. Dôkladný výber excentricity a umiestnenia perigea odhaľuje špecifické kombinácie, v ktorých sa perturbácie do značnej miery rušia, a preto je obežná dráha relatívne stabilná - zamrznutá obežná dráha. Satelity ERS-1, ERS-2 a Envisat Európskej vesmírnej agentúry, ako aj MetOp z EUMETSAT, sú prevádzkované v zmrazených heliosynchrónnych obežných dráhach.
Referencie
upraviť- ↑ Types of Orbits [online]. marine.rutgers.edu, [cit. 2019-11-18]. Dostupné online. Archivované 2019-08-22 z originálu.
Pozri aj
upraviťExterné odkazy
upraviť- Sandwell, David T., The Gravity Field of the Earth - Part 1 (2002) (s. 8)
- Sun-Synchronous Orbit dictionary entry, from U.S. Centennial of Flight Commission
- Otázky a odpovede NASA
- Zoznam satelitov na slnečnej obežnej dráhe
Zdroj
upraviťTento článok je čiastočný alebo úplný preklad článku Sun-synchronous orbit na anglickej Wikipédii.