Slika:Prime number theorem ratio convergence.svg

Izvorna datoteka (Datoteka SVG, nominalno 250 × 160 pikslov, velikost datoteke: 87 KB)


Povzetek

Opis
English: A plot showing how two estimates described by the prime number theorem, and converge asymptotically towards , the number of primes less than x. The x axis is and is logarithmic (labelled in evenly spaced powers of 10), going up to 1024, the largest for which is currently known. The former estimate converges extremely slowly, while the latter has visually converged on this plot by 108. Source used to generate this chart is shown below.
Datum
Vir lastno delo
Avtor Dcoetzee
SVG razvoj
InfoField
 
Izvorna koda te SVG-datoteke je veljavna.
 
Ta vektorska slika je bila ustvarjena z Mathematica.
 
 Ta datoteka uporablja vdelano besedilo, ki ga lahko preprosto prevedete z urejevalnikom besedil.

Licenca

Jaz, imetnik avtorskih pravic na tem delu, ga objavljam pod naslednjo licenco:
Creative Commons CC-Zero Datoteka je na voljo pod licenco Creative Commons Univerzalna izročitev v javno domeno CC0 1.0
Oseba, ki je delo povezala s tem dovoljenjem, je dala svoje delo v javno domeno z opustitvijo vseh svojih pravic do dela po vsem svetu pod avtorskim pravom, vključno z vsemi povezanimi in sorodnimi pravicami, v obsegu, kot ga dopušča zakonodaja. Delo lahko kopirate, spreminjate, razširjate in izvajate, tudi v gospodarske namene, ne da bi morali zaprositi za dovoljenje.

Source

All source released under CC0 waiver.

Mathematica source to generate graph (which was then saved as SVG from Mathematica):

(* Sample both functions at 600 logarithmically spaced points between \
1 and 2^40 *)
base = N[E^(24 Log[10]/600)];
ratios = Table[{Round[base^x], 
    N[PrimePi[Round[base^x]]/(base^x/(x*Log[base]))]}, {x, 1, 
    Floor[40/Log[2, base]]}];
ratiosli = 
  Table[{Round[base^x], 
    N[PrimePi[
       Round[base^x]]/(LogIntegral[base^x] - LogIntegral[2])]}, {x, 
    Ceiling[Log[base, 2]], Floor[40/Log[2, base]]}];
(* Supplement with larger known PrimePi values that are too large for \
Mathematica to compute *)
LargePiPrime = {{10^13, 346065536839}, {10^14, 3204941750802}, {10^15,
     29844570422669}, {10^16, 279238341033925}, {10^17, 
    2623557157654233}, {10^18, 24739954287740860}, {10^19, 
    234057667276344607}, {10^20, 2220819602560918840}, {10^21, 
    21127269486018731928}, {10^22, 201467286689315906290}, {10^23, 
    1925320391606803968923}, {10^24, 18435599767349200867866}};
ratios2 = 
  Join[ratios, 
   Map[{#[[1]], N[#[[2]]]/(#[[1]]/(Log[#[[1]]]))} &, LargePiPrime]];
ratiosli2 = 
  Join[ratiosli, 
   Map[{#[[1]], N[#[[2]]]/(LogIntegral[#[[1]]] - LogIntegral[2])} &, 
    LargePiPrime]];
(* Plot with log x axis, together with the horizontal line y=1 *)
Show[LogLinearPlot[1, {x, 1, 10^24}, PlotRange -> {0.8, 1.25}], 
 ListLogLinearPlot[{ratios2, ratiosli2}, Joined -> True], 
 LabelStyle -> FontSize -> 14]

LaTeX source for labels:

$$ \left.{\pi(x)}\middle/{\frac{x}{\ln x}}\right. $$
$$ \left.{\pi(x)}\middle/{\int_2^x \frac{1}{\ln t} \mathrm{d}t}\right. $$

These were converted to SVG with [1] and then the graph was embedded into the resulting document in Inkscape. Axis fonts were also converted to Liberation Serif in Inkscape.

Napisi

Dodajte enovrstični opis, kaj ta datoteka predstavlja

Predmeti, prikazani v tej datoteki

motiv

21. marec 2013

Zgodovina datoteke

Kliknite datum in čas za ogled datoteke, ki je bila takrat naložena.

Datum in časSličicaVelikostUporabnikKomentar
trenutno14:07, 21. marec 2013Sličica za različico z datumom 14:07, 21. marec 2013250 × 160 (87 KB)DcoetzeeChange n to x to match article
13:30, 21. marec 2013Sličica za različico z datumom 13:30, 21. marec 2013250 × 160 (86 KB)DcoetzeeConvert formula from graphics to pure SVG using http://www.tlhiv.org/ltxpreview/
13:23, 21. marec 2013Sličica za različico z datumom 13:23, 21. marec 2013250 × 160 (130 KB)Dcoetzee{{Information |Description ={{en|1=A plot showing how two estimates described by the prime number theorem, <math>\frac{n}{\ln n}</math> and <math>\int_2^n \frac{1}{\ln t} \mathrm{d}t = Li(n) = li(n) - li(2)</math> converge asymptotically towards <ma...

Datoteka je del naslednje 1 strani slovenske Wikipedije (strani drugih projektov niso navedene):

Globalna uporaba datoteke

To datoteko uporabljajo tudi naslednji vikiji:

Metapodatki

  NODES