Antineutron
Antineutron je antičestica neutrona sa simbolom n.[1][2][3] On se razlikuje od neutrona samo po tome što neka od njegovih svojstava imaju jednaku veličinu ali suprotan znak.[4] On ima istu masu kao i neutron, i nema neto električni naboj, ali ima suprotan barionski broj (+1 za neutron, -1 za antineutron). To je zato što je antineutron sačinjen od antikvarkova, dok su neutroni sastavljeni od kvarkova. Antineutron se sastoji od jednog gornjeg antikvarka i dva donja antikvarka.
Klasifikacija | Antibarion |
---|---|
Kompozicija | 1 gornji antikvark, 2 donji antiquarks |
Statistike | Fermionski |
Interakcije | Jaka, slaba, gravitaciona, elektromagnetna |
Status | Otkriven |
Simbol | n |
Antičestica | Neutron |
Otkriven | Brus Kork (1956) |
Masa | 560(81) MeV/c2 939,565 |
Naelektrisanje | 0 |
Magnetni moment | +1,91µN |
Spin | 1⁄2 |
Izospin | 1⁄2 |
Pošto je antineutron električno neutralan, on se ne može lako posmatrati direktno. Umesto toga, posmatraju se proizvodi njegove anihilacije običnom materijom. Teoretski, slobodni antineutron treba da se raspadne u antiproton,[5] pozitron i neutrino u procesu analognom beta raspadanju slobodnih neutrona. Postoje teorijski predlozi oscilacija neutron-antineutrona, procesa koji podrazumeva kršenje očuvanja barionskog broja.[6][7][8]
Antineutron je otkriven u sudaru protona-antiprotona u Bevatronu[9] (Larens Berkli nacionalnoj laboratoriji) zaslugom Brusa Korka 1956. godine, godinu dana nakon što je antiproton otkriven.[10][11]
Magnetni moment
уредиMagnetni moment antineutrona je suprotan magnetnom momentu neutrona.[12] On je µN za antineutron, dok je +1,91 za neutron (relativno na pravac −1,91 µNspina). Ovde je µN nuklearni magneton.
Vidi još
уредиReference
уреди- ^ „The Nobel Prize in Physics 1959”.
- ^ „Antimatter Atoms Trapped for First Time—"A Big Deal"”. 19. 11. 2010.
- ^ Weinberg, Steve (1995-06-30). The quantum theory of fields, Volume 1 : Foundations . стр. 14. ISBN 0-521-55001-7.
- ^ Lancaster, Tom; Blundell, Stephen J.; Blundell, Stephen (април 2014). Quantum Field Theory for the Gifted Amateur (на језику: енглески). OUP Oxford. стр. 61. ISBN 9780199699339.
- ^ Dirac, Paul (1930). „A Theory of Electrons and Protons”. Proceedings of the Royal Society A. 126 (801): 360—365. Bibcode:1930RSPSA.126..360D. doi:10.1098/rspa.1930.0013 .
- ^ R. N. Mohapatra (2009). „Neutron-Anti-Neutron Oscillation: Theory and Phenomenology”. Journal of Physics G. 36 (10): 104006. Bibcode:2009JPhG...36j4006M. arXiv:0902.0834 . doi:10.1088/0954-3899/36/10/104006.
- ^ C. Giunti; M. Laveder (19. 8. 2010). „Neutron Oscillations”. Neutrino Unbound. Istituto Nazionale di Fisica Nucleare. Архивирано из оригинала 27. 9. 2011. г. Приступљено 19. 8. 2010.
- ^ Y. A. Kamyshkov (16. 1. 2002). „Neutron → Antineutron Oscillations” (PDF). NNN 2002 Workshop on "Large Detectors for Proton Decay, Supernovae and Atmospheric Neutrinos and Low Energy Neutrinos from High Intensity Beams" at CERN. Приступљено 19. 8. 2010.
- ^ „The History of Antimatter - From 1928 to 1995”. CERN. Архивирано из оригинала 2008-06-01. г. Приступљено 2008-05-24.(The cited page is noted as "3 of 5". The heading on the cited page is "1954: power tools".)
- ^ „The History of Antimatter - From 1928 to 1995”. CERN. Архивирано из оригинала 2008-06-01. г. Приступљено 2008-05-24.(The cited page is noted as "3 of 5". The heading on the cited page is "1954: power tools".)
- ^ Cork, Bruce; Lambertson, Glen R.; Piccioni, Oreste; Wenzel, William A. (15. 11. 1956). „Antineutrons Produced from Antiprotons in Charge-Exchange Collisions”. Physical Review. 104 (4): 1193—1197. Bibcode:1956PhRv..104.1193C. S2CID 123156830. doi:10.1103/PhysRev.104.1193.
- ^ Lorenzon, Wolfgang (6. 4. 2007). „Physics 390: Homework set #7 Solutions” (PDF). Modern Physics, Physics 390, Winter 2007. Приступљено 22. 12. 2009.
Literatura
уреди- Feynman, R. P. (1987). „The reason for antiparticles”. Ур.: R. P. Feynman; S. Weinberg. The 1986 Dirac memorial lectures . Cambridge University Press. ISBN 0-521-34000-4.
- Weinberg, S. (1995). The Quantum Theory of Fields, Volume 1: Foundations . Cambridge University Press. ISBN 0-521-55001-7.
- G. Fraser (18. 5. 2000). Antimatter: The Ultimate Mirror. Cambridge University Press. ISBN 978-0-521-65252-0.
- Schmidt, G.R.; Gerrish, H.P.; Martin, J.J.; Smith, G.A.; Meyer, K.J. „Antimatter Production for Near-term Propulsion Applications” (PDF). Архивирано из оригинала (PDF) 6. 3. 2007. г.
- Lewis, R. A.; Smith, G. A.; Howe, S. D. (1997). „Antiproton portable traps and medical applications” (PDF). Hyperfine Interactions. 109 (1–4): 155. Bibcode:1997HyInt.109..155L. doi:10.1023/A:1012653416870. Архивирано из оригинала (PDF) 22. 8. 2011. г.
- Gibney, E. (2018). „Physicists plan antimatter's first outing – in a van”. Nature. 554 (7693): 412—413. Bibcode:2018Natur.554..412G. PMID 29469122. doi:10.1038/d41586-018-02221-9.
- Blaum, K.; Raizen, M. G.; Quint, W. (2014). „An experimental test of the weak equivalence principle for antihydrogen at the future FLAIR facility”. International Journal of Modern Physics: Conference Series. 30: 1460264. Bibcode:2014IJMPS..3060264B. doi:10.1142/S2010194514602646. hdl:11858/00-001M-0000-001A-152D-1 .
- Antipov, Y. M.; et al. (1974). „Observation of antihelium3 (in Russian)”. Yadernaya Fizika. 12: 311.
- Arsenescu, R.; et al. (2003). „Antihelium-3 production in lead–lead collisions at 158 A GeV/c”. New Journal of Physics. 5 (1): 1. Bibcode:2003NJPh....5....1A. doi:10.1088/1367-2630/5/1/301 .
- Agakishiev, H.; et al. (2011). „Observation of the antimatter helium-4 nucleus”. Nature. 473 (7347): 353—356. Bibcode:2011Natur.473..353S. PMID 21516103. arXiv:1103.3312 . doi:10.1038/nature10079.
- ALPHA Collaboration (2011). „Confinement of antihydrogen for 1,000 seconds”. Nature Physics. 7 (7): 558—564. Bibcode:2011NatPh...7..558A. arXiv:1104.4982 . doi:10.1038/nphys2025.
- Amole, C.; et al. (2012). „Resonant quantum transitions in trapped antihydrogen atoms” (PDF). Nature. 483 (7390): 439—443. Bibcode:2012Natur.483..439A. PMID 22398451. doi:10.1038/nature10942. hdl:11568/757495.
- Madsen, N. (2010). „Cold antihydrogen: a new frontier in fundamental physics”. Philosophical Transactions of the Royal Society A. 368 (1924): 3671—82. Bibcode:2010RSPTA.368.3671M. PMID 20603376. doi:10.1098/rsta.2010.0026 .
- „Ten things you might not know about antimatter”. symmetry magazine. Архивирано из оригинала 8. 11. 2018. г. Приступљено 2018-11-08.
- „Smidgen of Antimatter Surrounds Earth”. 11. 8. 2011. Архивирано из оригинала 26. 9. 2011. г.
- Agakishiev, H.; et al. (STAR Collaboration) (2011). „Observation of the antimatter helium-4 nucleus”. Nature. 473 (7347). Bibcode:2011Natur.473..353S. PMID 21516103. S2CID 118484566. arXiv:1103.3312 . doi:10.1038/nature10079.
- Canetti, L.; et al. (2012). „Matter and Antimatter in the Universe”. New J. Phys. 14 (9). Bibcode:2012NJPh...14i5012C. S2CID 119233888. arXiv:1204.4186 . doi:10.1088/1367-2630/14/9/095012.
- Tenenbaum, David (28. 12. 2012). „One step closer: UW-Madison scientists help explain scarcity of antimatter”. University of Wisconsin–Madison News. Архивирано из оригинала 28. 12. 2012. г.
- Tsan, Ung Chan (2013). „Mass, Matter, Materialization, Mattergenesis and Conservation of Charge”. International Journal of Modern Physics E. 22 (5). Bibcode:2013IJMPE..2250027T. doi:10.1142/S0218301313500274. „Matter conservation means conservation of baryonic number A and leptonic number L, A and L being algebraic numbers. Positive A and L are associated to matter particles, negative A and L are associated to antimatter particles. All known interactions do conserve matter.”
- Tsan, U. C. (2012). „Negative Numbers And Antimatter Particles”. International Journal of Modern Physics E. 21 (1). Bibcode:2012IJMPE..2150005T. doi:10.1142/S021830131250005X. „Antimatter particles are characterized by negative baryonic number A or/and negative leptonic number L. Materialization and annihilation obey conservation of A and L (associated to all known interactions).”
- Dirac, Paul A. M. (1965). Physics Nobel Lectures (PDF). 12. Amsterdam-London-New York: Elsevier. Архивирано (PDF) из оригинала 10. 10. 2019. г. Приступљено 10. 10. 2019.
- „Antimatter”. Science Fiction Encyclopedia. Архивирано из оригинала 28. 7. 2019. г. Приступљено 10. 10. 2019.
- McCaffery, Larry (јул 1991). „An Interview with Jack Williamson”. Science Fiction Studies. 18 (54). Архивирано из оригинала 12. 9. 2006. г.
- Pearson, K. (1891). „Ether Squirts”. American Journal of Mathematics. 13 (4). JSTOR 2369570. doi:10.2307/2369570.
- Kragh, H. (2002). Quantum Generations: A History of Physics in the Twentieth Century. Princeton University Press. ISBN 978-0-691-09552-3.
- Schuster, A. (1898). „Potential Matter – A Holiday Dream”. Nature. 58 (1503). Bibcode:1898Natur..58..367S. S2CID 4046342. doi:10.1038/058367a0 . Архивирано из оригинала 10. 10. 2021. г. Приступљено 31. 8. 2020.
- Harrison, E. R. (2000-03-16). Cosmology: The Science of the Universe (2nd изд.). Cambridge University Press. ISBN 978-0-521-66148-5. Архивирано из оригинала 10. 10. 2021. г. Приступљено 31. 8. 2020.
- Dirac, P. A. M. (1928). „The Quantum Theory of the Electron”. Proceedings of the Royal Society A. 117 (778). Bibcode:1928RSPSA.117..610D. JSTOR 94981. doi:10.1098/rspa.1928.0023 .
- Kaku, M.; Thompson, J. T. (1997). Beyond Einstein: The Cosmic Quest for the Theory of the Universe. Oxford University Press. ISBN 978-0-19-286196-2.
- Stewart, P. J. (2010). „Charles Janet: Unrecognized genius of the periodic system”. Foundations of Chemistry. 12 (1). S2CID 171000209. doi:10.1007/s10698-008-9062-5.
- Canetti, L.; Drewes, M.; Shaposhnikov, M. (2012). „Matter and antimatter in the universe”. New Journal of Physics. 14 (9). Bibcode:2012NJPh...14i5012C. S2CID 119233888. arXiv:1204.4186 . doi:10.1088/1367-2630/14/9/095012.
Spoljašnje veze
уреди- LBL Particle Data Group: summary tables
- -author= -
- Elementary particles: includes information about antineutron discovery (archived link)
- "Is Antineutron the Same as Neutron?" explains how the antineutron differs from the regular neutron despite having the same, that is zero, charge.
- Antiparticle (physics) на сајту Енциклопедија Британика