Genom följande substitution i Navier-Stokes ekvationer för inkompressibel strömning:
u
i
=
u
i
¯
+
u
i
′
,
p
=
p
¯
+
p
′
{\displaystyle u_{i}={\bar {u_{i}}}+u_{i}^{\prime },p={\bar {p}}+p^{\prime }}
Där
f
i
{\displaystyle f_{i}}
är en vektor som representerar externa krafter
så fås följande system
∂
(
u
i
¯
+
u
i
′
)
∂
x
i
=
0
{\displaystyle {\frac {\partial \left({\bar {u_{i}}}+u_{i}^{\prime }\right)}{\partial x_{i}}}=0}
∂
(
u
i
¯
+
u
i
′
)
∂
t
+
(
u
j
¯
+
u
j
′
)
∂
(
u
i
¯
+
u
i
′
)
∂
x
j
=
(
f
i
¯
+
f
i
′
)
−
1
ρ
∂
(
p
¯
+
p
′
)
∂
x
i
+
ν
∂
2
(
u
i
¯
+
u
i
′
)
∂
x
j
∂
x
j
{\displaystyle {\frac {\partial \left({\bar {u_{i}}}+u_{i}^{\prime }\right)}{\partial t}}+\left({\bar {u_{j}}}+u_{j}^{\prime }\right){\frac {\partial \left({\bar {u_{i}}}+u_{i}^{\prime }\right)}{\partial x_{j}}}=\left({\bar {f_{i}}}+f_{i}^{\prime }\right)-{\frac {1}{\rho }}{\frac {\partial \left({\bar {p}}+p^{\prime }\right)}{\partial x_{i}}}+\nu {\frac {\partial ^{2}\left({\bar {u_{i}}}+u_{i}^{\prime }\right)}{\partial x_{j}\partial x_{j}}}}
Genom att applicera kvasitidsmedelvärdesbildningen på systemet så fås följande:
∂
(
u
i
¯
+
u
i
′
)
∂
x
i
¯
=
0
{\displaystyle {\overline {\frac {\partial \left({\bar {u_{i}}}+u_{i}^{\prime }\right)}{\partial x_{i}}}}=0}
∂
(
u
i
¯
+
u
i
′
)
∂
t
¯
+
(
u
j
¯
+
u
j
′
)
∂
(
u
i
¯
+
u
i
′
)
∂
x
j
¯
=
(
f
i
¯
+
f
i
′
)
¯
−
1
ρ
∂
(
p
¯
+
p
′
)
∂
x
i
¯
+
ν
∂
2
(
u
i
¯
+
u
i
′
)
∂
x
j
∂
x
j
¯
{\displaystyle {\overline {\frac {\partial \left({\bar {u_{i}}}+u_{i}^{\prime }\right)}{\partial t}}}+{\overline {\left({\bar {u_{j}}}+u_{j}^{\prime }\right){\frac {\partial \left({\bar {u_{i}}}+u_{i}^{\prime }\right)}{\partial x_{j}}}}}={\overline {\left({\bar {f_{i}}}+f_{i}^{\prime }\right)}}-{\frac {1}{\rho }}{\overline {\frac {\partial \left({\bar {p}}+p^{\prime }\right)}{\partial x_{i}}}}+\nu {\overline {\frac {\partial ^{2}\left({\bar {u_{i}}}+u_{i}^{\prime }\right)}{\partial x_{j}\partial x_{j}}}}}
som förenklas till:
∂
u
i
¯
∂
x
i
=
0
{\displaystyle {\frac {\partial {\bar {u_{i}}}}{\partial x_{i}}}=0}
∂
u
i
¯
∂
t
+
∂
u
j
¯
u
i
¯
∂
x
j
=
f
i
¯
−
1
ρ
∂
p
¯
∂
x
i
+
ν
∂
2
u
i
¯
∂
x
j
∂
x
j
−
∂
u
i
′
u
j
′
¯
∂
x
j
{\displaystyle {\frac {\partial {\bar {u_{i}}}}{\partial t}}+{\frac {\partial {\bar {u_{j}}}{\bar {u_{i}}}}{\partial x_{j}}}={\bar {f_{i}}}-{\frac {1}{\rho }}{\frac {\partial {\bar {p}}}{\partial x_{i}}}+\nu {\frac {\partial ^{2}{\bar {u_{i}}}}{\partial x_{j}\partial x_{j}}}-{\frac {\partial {\overline {u_{i}^{\prime }u_{j}^{\prime }}}}{\partial x_{j}}}}
där den följande termen, Reynolds spänningstensor , måste modelleras med någon form av turbulensmodell:
−
∂
u
i
′
u
j
′
¯
∂
x
j
{\displaystyle -{\frac {\partial {\overline {u_{i}^{\prime }u_{j}^{\prime }}}}{\partial x_{j}}}}