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A c-ray burst at a redshift of z < 8.2
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Long-duration c-ray bursts (GRBs) are thought to result from the
explosions of certain massive stars1, and some are bright enough
that they should be observable out to redshifts of z . 20 using
current technology2–4. Hitherto, the highest redshift measured
for any object was z 5 6.96, for a Lyman-a emitting galaxy5.
Here we report that GRB 090423 lies at a redshift of z < 8.2, imply-
ing that massive stars were being produced and dying as GRBs

630 Myr after the Big Bang. The burst also pinpoints the location
of its host galaxy.

GRB 090423 was detected by the Burst Alert Telescope (BAT) on
NASA’s Swift satellite6 at 07:55:19 UT on 23 April 2009. Observations
with Swift’s X-ray Telescope (XRT), which began 73 s after the trig-
ger, revealed a variable X-ray counterpart and localized its position to
a precision of 2.3 arcsec (at the 90% confidence level). Ground-based
optical observations in the r, i and z filters starting within a few min-
utes of the burst revealed no counterpart at these wavelengths
(Supplementary Information).

The United Kingdom Infrared Telescope (UKIRT), Hawaii, began
imaging about 20 min after the burst, in response to an automated
request, and provided the first infrared (2.15-mm) detection of the
GRB afterglow. In parallel, observations in other near-infrared (NIR)
filters using the Gemini North 8-m telescope, Hawaii, showed that
the counterpart was only visible at wavelengths greater than about
1.2 mm (Fig. 1). In this range, the afterglow was relatively bright and
exhibited a shallow spectral slope, Fn / n20.26, in contrast to the deep
limit on any flux at 1.02mm. Later observations from Chile using the
MPI/ESO 2.2-m telescope, Gemini South and the Very Large
Telescope (VLT) confirmed this finding. Such a sharp spectral break
cannot be produced by dust absorption at any redshift, and is a

textbook case of a short-wavelength ‘drop-out’ source. The full
grizYJHK spectral energy distribution (SED) obtained ,17 h after
burst gives a photometric redshift of z 5 8:06z0:21

{0:28, assuming a simple
intergalactic medium (IGM) absorption model. Complete details of
our imaging campaign are given in Supplementary Table 1.

Our first NIR spectroscopy was performed with the European
Southern Observatory (ESO) 8.2-m VLT, starting about 17.5 h after
the burst. These observations revealed a flat continuum that abruptly
disappeared at wavelengths less than about 1.13 mm, confirming the
origin of the break as being due to Lyman-a absorption by neutral
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Figure 1 | Multiband images of the afterglow of GRB 090423. The right-
most panel shows the discovery image made using the UKIRT Wide Field
Infrared Camera with the K filter (centred at 2.15 mm) at a mid-time of about
30 min after the burst. The other three images (Y, 1.02 mm; J, 1.26mm;
H, 1.65 mm) were obtained approximately 1.5 h after the burst using Gemini
North’s Near Infrared Imager and Spectrometer (NIRI). The main panels are
40 arcsec to a side, oriented with north to the top and east to the left. Insets,
regions around the GRB, smoothed and at higher contrast. The absence of
any flux in Y implies a power-law spectral slope between Y and J steeper than
Fn / n218 and, coupled with the blue colour at longer wavelengths
(J2H(AB) < 0.15 mag), immediately implies a redshift greater than about
7.8 for GRB 090423.
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hydrogen, with a redshift of z < 8.2. The spectrum and broadband
photometric observations, plotted over model data, are shown in
Fig. 2. To obtain a more quantitative estimate of the redshift, we fit
the spectra in redshift versus log[NH I (cm22)] space, assuming a flat
prior likelihood value for log[NH I (cm22)] of between 19 and 23,
which is broadly consistent with the distribution observed for
lower-redshift GRB hosts7–9. We take the neutral fraction of the
IGM to be 10%, although our conclusions depend only weakly on
this assumption. We find the redshift from ISAAC spectroscopy to be
z 5 8:19z0:03

{0:06. An additional spectrum, recorded ,40 h after the
burst using the VLT’s Spectrograph for INtegral Field Observations
in the Near Infrared confirms this analysis, yielding z 5 8:33z0:06

{0:11

(Supplementary Information). Fitting simultaneously to both spec-
tra and the photometric data points gives our best estimate of the
redshift, z 5 8:23z0:06

{0:07. The low signal-to-noise ratio means we that
are unable to detect metal absorption features in either spectrum—
which would provide a more precise value of the redshift—and pre-
vents a meaningful attempt to measure the IGM H I column density
in this instance. Our three independent redshift measures are con-
sistent with that reported from a low-resolution spectrum obtained
with the Telescopio Nazionale Galileo, La Palma10.

The X-ray and NIR light curves of GRB 090423 (Fig. 3) show a
broken power-law decay, with evidence of flares in both the X-ray
and the infrared bands. The spectral energy distribution is consistent
with the presence of the cooling break between the X-ray and optical
bands. Apart from the unusually shallow spectral slope of the con-
tinuum at wavelengths greater than 1.2mm, its afterglow properties in
general appear to be consistent with the bulk GRB population (see
Supplementary Information for further discussion).

With the standard cosmological parameters (Hubble parameter,
H0 5 71 km s21 Mpc21; total matter density, VM 5 0.27; dark-
energy density, VL 5 0.73) a redshift of z 5 8.2 corresponds to a time
of only 630 Myr after the Big Bang, when the Universe was just 4.6%
of its current age. GRB 090423’s inferred isotropic equivalent energy,
Eiso 5 1 3 1053 erg (8–1,000 keV)11, indicates that it was a bright, but
not extreme, GRB. Thus, we find no evidence of exceptional beha-
viour that might indicate an origin in a population III progenitor.
First-generation stars are thought more likely to collapse into par-
ticularly massive black holes, which in turn may produce unusually
long-lived GRBs12; this seems not to be the case for GRB 090423.

Indeed, we note that the c-ray duration of GRB 090423,
t90 5 10.3 s, corresponds in the rest frame to only 1.1 s, and the peak
energy measured by BAT, 49 keV, is moderately hard in the rest
frame. Two other GRBs with z . 5 (GRB 060927 and GRB 080913)
had similarly short rest-frame durations, leading to some debate13 as
to whether their progenitors were similar to those of the ‘short-hard’
class of GRBs, which are not thought to be directly related to core
collapse. However, in the case of GRB 090423, a more careful extra-
polation of the observed c-ray and X-ray light curves to lower red-
shifts shows that its duration would have appeared significantly
longer than suggested by naive time-dilation considerations14. In
any event, short GRBs probably have their origins in compact objects
that are themselves the end products of massive stars, so the above
conclusions will hold irrespective of the population from which
GRB 090423 derives.

It has long been recognized that GRBs have the potential to be power-
ful probes of the early Universe15. Their association with individual stars
means that they serve as a signpost of star formation, even if their host
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Figure 2 | The composite infrared spectrum of the GRB 090423 afterglow.
SZ-band (0.98–1.1mm) and J-band (1.1–1.4mm) one- and two-dimensional
spectra obtained with the VLT using the Infrared Spectrometer And Array
Camera (ISAAC). Also plotted are the sky-subtracted photometric data
points obtained using Gemini North’s NIRI (red) and the VLT’s High Acuity
Wide field K-band Imager and Gemini South’s Gemini Multi-Object
Spectrograph (blue) (scaled to 16 h after the burst and expressed in
microjanskys; 1 Jy 5 10226 W m22 Hz21). The vertical error bars show the
2s (95%) confidence level, and the horizontal lines indicate the widths of the
filters. The shorter-wavelength measurements are non-detections, and
emphasize the tight constraints on any transmitted flux below the break. The
break itself, at an observed wavelength of about 1.13mm, is seen to occur
close to the short-wavelength limit of the J-band spectrum, below which,

although noisy, the spectrum shows no evidence of any detected continuum.
Details of the data-reduction steps and adaptive binning used to construct
these spectra are given in Supplementary Information. A model spectrum
showing the H I damping wing for a host galaxy with a hydrogen column
density of NH I 5 1021 cm22 at a redshift of z 5 8.23 is also plotted (solid
black line), and provides a good fit to the data. Inset, allowing for a wider
range in possible host NH I values gives the 1s (68%) and 2s confidence
contours shown. The fact that no deviation is seen from a power-law
spectrum at wavelengths greater than 1.2mm, together with its shallow
spectral slope, suggests that there is little or no dust along the line of sight
through the GRB host galaxy (unless it is ‘grey’), consistent with the galaxy
being relatively unevolved, and having a low abundance of metals.
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galaxies are too faint to detect directly. Equally important, precise deter-
mination of the hydrogen Lyman-a absorption profile can provide a
measure of the neutral fraction of the IGM at the location of the
burst16–20. With multiple GRBs at redshifts of z . 7, and the associated
information about the IGM, we could therefore trace the process of
reionization from its early stages21.

The high redshift of GRB 090423 has several crucial implications.
Predictions based on extrapolating the global star-formation-rate
density suggest that the observed rate of GRBs at z < 8 should be about
40% of that at z < 6 (ref. 12). Given the extra difficulty of identifying
afterglows at higher redshifts, our finding is broadly consistent with
these predictions. This is extremely encouraging for the prospects of
future initiatives aimed at finding high-redshift GRBs and using them
to locate and study primordial galaxies and measure the history of star
formation at early times22–24. Furthermore, it is close to the redshift
range in which the bulk of the cosmic reionization is thought to have
taken place25–27. Very high-redshift GRBs for which infrared spectro-
scopy was possible earlier, or which had brighter afterglows, would
provide a direct probe of the progress of reionization. Finding such
events is not an unreasonable hope: the most extreme GRBs have had
afterglows that were intrinsically significantly brighter than that of
GRB 090423 at the same rest-frame time3,4, and our first spectra were
recorded more than 15 h after the burst. Spectroscopy with a high
signal-to-noise ratio would also provide a measure of the metallicity
of the host galaxy, which potentially offers important clues to the

nature of any earlier generations of stars. Because the massive stars
that yield GRBs are also likely to belong to the same population that is
responsible for reionization, this suggests that GRBs will ultimately be
used to constrain both sides—supply and demand—of the cosmic
ionization budget in the early Universe.
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Tecnologia (Brazil) and SECYT (Argentina). This work was also partly based on
observations made using ESO telescopes at the La Silla or Paranal observatories by
G. Carraro, L. Schmidtobreick, G. Marconi, J. Smoker, V. Ivanov, E. Mason and
M. Huertas-Company. The UKIRT is operated by the Joint Astronomy Centre on
behalf of the UK Science and Technology Facilities Council. R.J.F. acknowledges a
Clay Fellowship.

Author Contributions Triggering observations: N.R.T., D.B.F., A.J.L., E.B., J.S.B.,
D.P., J. Greiner, A.J.C.-T., A.d.U.P.; analysis of ground-based data: N.R.T., D.B.F.,
A.J.L., E.B., K.W., J.P.U.F., A.C., J.S.B., J.F., J.D., J. Gorosabel, B.C., D.P., J.R.M.,
T. Krühler, A.J.C.-T., A.d.U.P., C.G.M.; Swift analysis: P.A.E., R.L.C.S., K.P., R.W.,
A.J.L., N.R.T., N.G., D.W., P.S., T.S.; observations at various observatories and their
automation to accept GRB overrides: A.J.A., A.A., T. Kerr, T.N., A.W.S., K.R., T.W.
All authors made contributions through their involvement in the programmes from
which the data derive, and contributed to the interpretation, content and
discussion presented here. Writing was led by N.R.T., A.J.L., D.B.F. and E.B.

Author Information Reprints and permissions information is available at
www.nature.com/reprints. Correspondence and requests for materials should be
addressed to N.R.T. (nrt3@star.le.ac.uk).

NATURE | Vol 461 | 29 October 2009 LETTERS

1257
 Macmillan Publishers Limited. All rights reserved©2009

http://arxiv.org/abs/0902.2419v1
http://arxiv.org/abs/0902.2419v1
www.nature.com/nature
www.nature.com/reprints
mailto:nrt3@star.le.ac.uk

	Title
	Authors
	Abstract
	References
	Figure 1 Multiband images of the afterglow of GRB 090423.
	Figure 2 The composite infrared spectrum of the GRB 090423 afterglow.
	Figure 3 The X-ray and infrared light curves of GRB 090423.

