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Introdu&ion

Suppose Mr. Athos wishes to write a private message to Mrs. Bonacieux while keeping
its contents secret from his Eminence of Richelieu, to whom the courier is mol certainly
beholden; he could put the message in a safe box whose combination is only known to himself
and to Bonacieux, and that would be very coOly to break.

Rather than physical devices, cryptography rel]s on computational power to ensure data
security and integrity. Athosand Bonacieux are each givenablack box: Athos’ is parametrized
by a key and transforms messages into unintelligible data called ciphertexts; with the cor-
reeonding key, Bonacieux’s reverses this operation. Ciphertexts can then be transmitted
openly over any medium. Chapter [ gives a brief overview of such techniques, with an em-
phasis on schemes allowing Athos’ key to be public: they are only a few decades old and make
extensive use of mathematical OruCures.

Abelian varieties are objeCs upon which such schemes can be built very eCciently and
securely; they are formally introduced in Chapter 7, which concisely presents certain of their
theoretical a&eCs, focusing on computations over dnite delds. Subsequent chapters, where
the original contributions of this thesis are located, are concerned with algorithmic prop-
erties related to the endomorphism ring OruCure of abelian varieties; moL of the theoreti-
cal background on this topic forms what is known as complex multiplication theory, which
Chapter [0 covers.

An important application of endomorphism rings is the conOruCion of abelian varieties
with desirable properties. For inOance, many featureful cryptographic schemes have recently
been enabled by pairings; to make these schemes praCical, abelian varieties endowed with
eCcient pairings mul be generated. Chapter 10 discusses this subjeC, including the work of
B. and SO (UU00) and related results.

&e second half of this thesis addresses the problem of computing the endomorphism
ring of a prescribed abelian variety, which can be seen as the inverse problem to variety gen-
eration. Chapter O recalls prior Date-of-the-art methods, all of which have an exponential
runtime in the size of the input. It also describes the general OruCure of isogeny graphs,
which is later extensively relied on.

Our subexponential algorithms for computing endomorphism rings of ordinary abelian
varieties are dr(J described in Chapter 00 in an idealized setting. &ey exploit complex mul-
tiplication theory in its relevance to the OruCure of isogeny graphs. When &ecialized to the
case of dimension-one abelian varieties, this direCly yields highly eJeCive methods which
are essentially equivalent to that of B. and SUOLUOOOU (DOUD). &eir complexity is rigor-
ously analyzed in Chapter 0O, as was done in B. (UUUL); this chapter ends with a discussion
of the results of B. and SUUUUDUOOU (UOOOY in this context, from a diCerent peréeCive
than the original article.
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Chapter 0700 dnally explains how our methods can be adapted to be eJeCive in higher
dimension, and reports on the implementation of B., CUUUUL, and RUUOOL (UUOO) enabling
the evaluation of general maps between abelian varieties (so-called isogenies), which is an
important building block of our algorithms. We conclude by applying our technique to the
computation of several illuQrative and record examples.
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Yanorama of iryptography

HilOorically, cryptography has prevalently been employed for secrecy, although over time
it has come to provide other features, such as integrity proteCion and authentication. Skis
chapter concisely presents Oandard techniques achieving such classical primitives; it serves
as both a motivation and praCical framework for computational number theory.

I.1  Symmetric Primitives

Early cryptography necessitated a secret, called the key, to be shared between the parties
involved. Primitives of that lineage are said to be symmeric; they are in wideeread use and
development today, moCly due to their Eexible and fall implementations.

cloonod
Denote by S = {0,1}® the set of all Drings, that is, dnite sequences of bits.

Definition 1.1.1. Symmetric encryption schemes consgt of two families E and D of funCions,
not necessarily everywhere dened, Eom S to S such TE Dy o Ey = Id o, for ad Orings k.

Intuitively, E and D are the black boxes to provide Athos and Bonacieux: the cipher E
is parametrized by a key k, takes plaintexts m as input, and returns ciphertexts E, (m), while
the decipher D does the converse. His Eminence should be unable to gain any insight on
the message m from the sole knowledge of the ciphertext E, (m); in the OriCel sensg, this is
formalized as perfeC secrecy, which requires that, for all dnite sets of Orings M and M/,

Prob, ,[m € M | E,(m) € M'] = Prob,,[m € M].

0
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Early ciphers, going back to several centuries BC, simply swapped or shiEed bytes of the
plaintext in a regular fashion derived from the key; for inCance, elitting Orings as sequences
of bytes that encode letters A—Z as integers 0—[[, the cipher

E.: (m;) — (m; +kmod 26)
is Oill in limited use today with k = 13. Similar schemes not obviously as weak have also
been designed using larger keys; virtually all have since been broken by the development of
frequency analysis.

SOOO0O0 (U00O) eDablished the exiOence and essential uniqueness of a cryptosylem
achieving perfeC secrecy: the one-time pad — it requires a key to be drawn independently
and uniformly at random from {0, 1}" for each n-bit plaintext, and returns as ciphertext the
bit-by-bit xor of the plaintext and the key. Its praCical use is only limited by the ability to
carry suitcases full of pads around, prior to doing any encryption.

To mimic its behavior while overcoming the need for lengthy keys transmission, Oream
ciphers (also known as pseudorandom number genercors), on input asmall key called the seed,
determiniOically generate pads to be xored with the plaintext; as before, measurable Catili-
cal deviations of such pads from random Orings should be avoided. Nowadays, block ciphers,
which encrypt dxed-length blocks of bits, are the mo widely used, and particularly that
of DUUUOO and RIIOOO (OO0O) later Oandardized as the AES. Procedures for encrypting
sequences of blocks, known as modes of operc€ions, prevent additional information leakage
when handling messages of arbitrary length.

cubobooo shoboto

2 above overview calls for a more down-to-earth discussion of security a&eCs: the
result of SUUUULD (UUU) concerns whether the key can Teorcicagy be recovered from a
certain amount of ciphertext, not how resource-demanding that process is.

One of the cheapel ways of eJeCively compromising the key is to peek at Athos' note-
book, or simply to ask him about it over a nice glass of wine; such side-channel & Tcks will
not be discussed here, as we focus on cryptosyCems themselves, not their implementations.

Definition L.1.2. A cipherE§ gompuTtionatjy secure if, for moO keys k, it § compu Ttionagy
infeCible to derive plaintexts m Eom ciphertexts E, (m).

“Computationally infeasible” means that, with today’s Oate-of-the-art machines, this
computation would take more time than is available, say, billions of years.

Other conditions might be desirable as well; for infance, that the output of E, cannot
feasibly be told apart from that of a random funCion. However, as our intere( will shiE to
the mathematical building blocks of cryptosyCems, this didJinCion will bear little relevance.
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Mo( cryptosyClems do not achieve perfeC secrecy, and are thus susceptible to brute-force
& T cks, which decrypt given ciphertexts by trying all possible keys in turn. For “ideal ciphers?”
this is the bel attack, and for “ideal keys,” which have no €ecial property that reduces the
search range, it takes 2" /2 runs on average to dnd an n-bit key.

With today’s technology, the total number of elementary arithmetic operations realilJi-
cally achievable can be bounded from above by 228; keys bearing (at leaJ) 128 bits of entropy
are thus recommended. Naturally, this should be tempered by several faCors:

— the gravity of the encrypted information;
— the desired lifetime of the cryptosylem;
— the available processing power.

For inOance, a news agency broadcalJing encrypted live reports to its paying subscribers with
dilerent keys each day might only need to with[and limited-resources attacks for 24 hours.

Summing up the above, assessing the security of a cryptosyOem calls for a deep under-
Oanding of the ways and co(s to attack it. MUUDD (UUUU) prediCed an exponential growth
in available computing power which has been verided for the pal four decades; as a conse-
quence, the colds should be considered for increasing key-sizes.

Rather than relying on a rigorous computing model such as the multi-tape universal ma-
chines of [TUUIOU (UUDU), we will simply analyze algorithms by looking at both their aCual
runtime on praCical computations, and their long-term behavior embodied in asymptotic
bit-complexity edimates. In particular, we disregard quantum-computing models.

To emphasize the need for an asymptotic analysis, denote by c(n) the operation count
of the be] method for attacking a cipher E with n-bit keys: if ¢c grows subexponentially,
key-sizes are required to increase more than linearly in time to provide a conant level of
security, which may eventually prove to be quite cumbersome.

HOOO FOOO0I000

One-way funCions formalize the behavior which is expeCed of ciphers parametrized by
unknown keys; they have countless applications, far beyond cryptography, such as hash ta-
bles. Like ciphers, they can be dedned in a complexity-theoretic way, as funCions T¢ can
be evaluc€ed by polynomial-time algori™ms, but for which no polynomial-time algoriTm can
successfugly End preimages on more Wan an exponentiagy smag EaCion of We image.

Since the exiJence of such funCions implies P # NP, we look for amore praCical Oance.

Definition 1.1.3. A funCionh : S — S § one-way if it § compu T tionagy infeCible to End
preimages of moCJ of its image. It § also a hash funCion if its image § conTined in {0,1}" for
some n and it § compu T tionagy infeCible to End two Orings x # X’ verifying h(x) = h(x).
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Again, additional conditions might be required for €ecidc applications. &e random
oracle is a convenient ideal encompassing mol expeCations: it is nothing but the Cartesian
power by S of the uniform diOribution on n-bit Orings, or, more pragmatically, a “map”
whose images are drawn uniformly at random from {0, 1}".

Since there typically are at leal a few funCions (such as conJant ones) that are unsuit-
able, designs using hash funCions h are oEen analyzed by assuming that h has the uniform
diCribution, and proving that the desired properties hold with overwhelming probability.

Traditionally, hash funCions are craEed as a mix of logic gates, but some have also been
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Researches have built cryptographic blocks upon mathematical objeCs of various kinds:
DU0IIO and HOOOOIOO (O00O) used discrete logarithms, MOOOUO and HOOOOOO (OOOO)
relied on knapsacks, RIOOO0, SOOUI, and AOUOOUO (D000) suggeled using integer fac-
torization, MUELIUDU (UUDT) made the case for error-correCing codes, MUJUULOU and
000 (U000) employed certain multivariate polynomials, ZOCTOO (OO0O) exploited Cayley
graphs, AL (OO0 proposed using lattices, etc.

s thesis is concerned with some of the underlying mathematical a&eCs of discrete-
logarithm-based syldems. &e groups G with which they are concerned will be presented in
the next chapter — for now, let us keep motivating their introduCion.

1.2 Asymmetric Primitives

Although ciphers can be implemented e[Jciently, the need for a shared key to be secretly
transmitted prior to any two-party communication is inconvenient. Mol oEen today, a
shared key is drO e0ablished using asymmetric techniques (which overcome this problem)
over Te insecure channel, and then used to encrypt the data via a Oream or block cipher.

PUOODIO-KOD POOOOIOO

DI and HOOOOOO (U00U) introduced the key exchange below, which solves precisely
this problem: making two individuals agree, over an open channel, on a shared secret key (to
be subsequently used for encryption); it proceeds as follows:

0. Athos chooses an element g of some group G and sends it to Bonacieux.

0. Athos picks an integer a and sends g? to Bonacieux.

0. Bonacieux picks an integer b and sends g to Athos.

0. Athos and Bonacieux compute the shared secré g2 as (g2)° and (g°)? re€eCively.

When a passive observer breaks this scheme, they have solved the following.

A~ £

Definition 1.2.1. &e Dille—Hellman problem § T'& of computing g Eom g, ¢, and g°.

It is obviously no harder than the discrete logarithm problem, and is believed to neither
be weaker. Sis key-exchange is hence considered secure in well-chosen groups of order 226

& problem of authentication remains, since Milady de Winter could bribe the courier
so as to intercept and forge messages: she would pick her own integer ¢ and impersonate
Bonacieux to Athos (with secret g) and Athos to Bonacieux (with secret g™), thus €ying
on (and aCively interfering with) the whole communication.
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Definition1.2.2. Asymmetricencryption schemes consgt of two familiesEand D of funCions,
not necessarily everywhere deEned, Eom S to S and a one-way funCion wsuch T€ Dy oE, ) =
Idgom Evo for ag Orings k. 1t § a signing scheme proAided E, ) o Dy = 1d o, p, also holds.

Se map w is the key-gener&ion funCion: it takes a privée key k as input and returns the
corre€éonding public key w(k), to be publicly diCDributed along with E, making anybody able
to encrypt messages that only the holder of k can decrypt. Conversely, if the key holder of a
signing scheme broadcalls D, (m) for some message m, everyone can evaluate E, (D, (m))
and be assured that the signcure D, (m) originates from the holder of k.

In praCice, signing schemes are designed independently from encryption schemes; how-
ever, for our brief presentation, this naive framework encompassing both will suCce.

Asymmetric schemes rarely deal with large amounts of data: for encryption, ciphers are
used and only their keys are encrypted asymmetrically; for authentication, it suCJces to sign
a hash of the message. Without loss of generality, we will therefore now describe primitives
dealing with subsets of S whose coding as bits will be underCood.

EQDOD CcObooooootbon

Definition 1.2.3. In a group G noted multiplicGively, We short produC problem § T¢& of
Ending a subsequence of a given sequence S € G™ whose produC § a prescribed element z.

ProduCs of subsequences of S are caged short produCs; in addition, when S hC no repeGed
elements, W@ problem g known C e subset sum problem in additive groups and C Te knap-
sack problem for G = Z.

Some of itsindances are equivalent to discrete logarithm problems: if S’ isa subsequence
of S= (g% ,¢%, .., g%"*"*) with produC z, then z = g" where the i bit of n is one if ¢? € &’
and zero otherwise. From a cryptographic Oandpoint, this means that the map

|log, #G|
Es @ () € {0, 1}°% ") — l_[ 5 €G
i=1

is a tentative one-way funCion for certain groups G and sequences S of length about log, #G.

MUOOOUT and HOOOOOO (TOOD) proposed an asymmetric scheme which scrambles easy
knapsacks (the private keys) into seemingly harder ones (the public keys): let (5;) € N" be a
sequence such that 37,5 <s; forj e {1,..,n}, putv = > s;, and dedne S as the projeCion
of (5;) to Z /v; the map Eg can then be inverted in polynomial time by a greedy algorithm.
Now, choose an integer u coprime to v, and publish the sequence T = (t;) = (us; mod v). In
the formalism above, we have k = (S, u, V) as the private key, w : k — T as the key-generation
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map, and E, ¢, : (M;) € {0,1}" — 3"m, -t; as the encryption funCion; the greedy algorithm
decrypts a ciphertext m’ by dnding a subsequence of S with sum u=*m’ mod v. SOOI
(0000 later broke this scheme due to the simplicity of its scrambling process.

MUDDUD (UU00) conOruCed a much more conservative signature scheme, built entirely
from a hash funCion h, and certided its security assuming that of h. Jis was achieved by
developing an original idea of COLIOOUN (JOOD): if one seleCs private Orings x and y and
publishes their images h(x) and h(y) by a hash funCion, he may later sign a bit of data by
releasing either x (if the bit is zero) or y (if it is one).

MODOO0O COOobboooiono

ae RSA cryptosylem of RIOUUD, SOOI, and AUDDDOOT (OO00) reds on the problem
of integer faCoring, although subexponential faCoring algorithms were already known at the
time. Nevertheless, it has become widely used deé&ite the large keys and a fortiori computing
resources required by reasonable levels of security.

Let n = pq be a produC of two primes, and pick an integer r coprime to (p — 1)(q — 1);
this ensures that the map m — m" is an automorphism of (Z/n)*. Let the private key be
(p,q,’r), and publish (n,r) as the public key and E(,, : m — m" mod n as the encryption
funCion; decrypting then consiCs in applying the inverse automorphism D : m — m* where
s can be computed from p and g (and conversely) since s = r~* mod (p — 1)(q — 1).

axe key-length of an RSA cryptosylem is the bit-size of n. &e following table shows,
at various levels of security, the key-lengths recommended by ECRYPT TT (UU0U) for RSA,
ElGamal (see below), and equivalently secure symmetric schemes in Te bel ¢Ce, that is, as-
suming well-chosen parameters. & superlinear growth of RSA keys is due to the aforemen-
tioned subexponential faCoring techniques.

0000000 RSA - ElGamal

0o 0ooo 0oo
ooo 0ooo 0oo
0oo 0oooo 0oo

EIGUUUU (UOOO) designed a cryptosylem based on the DilJe—Hellman problem: let
g be a generator of some group G, and pick an integer x. &e public key is (g,h) where h =
g*, and x is the secret key. &e ciphertext of a message m (encoded as an element of G) is
(¢¥,m-h) where y is a random integer; to decrypt it, simply put ¢’ to the power x and divide
itout fromm-h’.

Compared to many other cryptosyCems, the EIGamal scheme Oands out for its elegance
and Eexibility: since the group G it uses is not redriCed to a certain class (such as RSA which
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uses G = (Z/n)”™), it has more latitude to dnd one that has both an eJeCive group law, and
in which no attack is faCJer than generic ones.

AUO00000 POICOOIDOD

Beyond encrypting and signing, many advanced and/or exotic cryptographic schemes
exidJ, moO of which are enabled by the computability of certain mathematical objeCs.

Zero-knowledge proofs are protocols where Athos is to convince Bonacieux that he knows
some secret without revealing anything about it. For inOance, the secret could be a (dedi-
cated) private key; to be convinced of his knowledge of the private key, Bonacieux could send
Athos a random message encrypted with the associate public key and challenge him to reveal
the plaintext — she would learn nothing regarding the private key but that Athos knows it.
Many other conOruCions exil, notably that of GUUOUUIUL, MIJUUL, and WIDOUOUOD
(0O0O) which demonQrated the power of a graph-based approach.

Homomorphic encryption aims at performing operations on plaintexts seamlessly via ci-
phertexts. For inCance, in the EIGamal scheme, the term-by-term produC of ciphertexts for
mand m’ is a valid ciphertext for mm’ since

(¢, m) (&' ) = (&7, ).

Fully homomorphic syCems feature two such algebraic operations; they are far more pow-
erful as they enable the encrypted evaluation of any circuit. GUUUUU (UUUU) described such
a scheme using lattices but its praCicality is Dill a topic of aCive research.

e pal decade also saw a plethora of novel cryptographic schemes exploiting the rich-
ness of pairings, that is, non-degenerate bilinear maps W : G; x G, — H where the groups
G; are noted additively, and H is noted multiplicatively. &e dr was a one-round tripar-
tite Dille—Hellman key-exchange: assume Athos, Bonacieux, and Chevreuse are to derive a
shared secret key over an insecure channel; the protocol of JUU0 (UU00) goes as follows:

0. Athos chooses and broadcals a pairing W and a pair (,y) € G; X G,.
0. Athos picks an integer a and broadcals ax and ay.

0. Bonacieux picks an integer b and broadcals bx and by.

0. Chevreuse picks an integer ¢ and broadcalls cx and cy.

0. Everybody computes W(ax, by)* = W(bx, cy)® = W(cx, ay)’.
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1.3 Generic Methods

ae security of a cryptographic scheme based on a group does not depend on its isomor-
phism type alone, since an explicit isomorphism might be very collly to compute; it depends
on how the group problem is encoded by the funCion E. For inance, discrete logarithm
problems are much easier to solve in Z/(p — 1) than in (Z/p)™ although their underlying
groups are isomorphic.

&is seCion considers algorithms which apply to any group G regardless of its coding;
later, we will come back to which &ecidc codings make which problems easier.

GUOOOIOD ADDOOIDOOO

2e framework of generic algorithms abOraCs group problems (such as the discrete loga-
rithm problem) from €ecidc codings which might render it “artidcially” easier. Beware that
our dednition is not OriCly-&eaking the mo[J classical one, as we assume that elements are
uniquely identided and can be drawn uniformly at random.

Definition 1.3.1. A coding of agroup G § an injeCivemapy: G — S.
A generic group § a black-box interface to a group G which can output y(z) for a random z
and evaluce (x,y) — y(y 2 (x)-y~(y)) and x — y(1/y~1(x)), where e coding y § unknown.
A generic algorithm Tkes C input a sequence of encoded group elements y(x;) and § agowed
cads to e black box; its complexity § meCured by e number of such cags.

Intuitively, a generic group is a group with shuCJed elements, so that nothing is leE to
exploit in their representation: generic algorithms can only compute the group law.

We will see that many hard problems can be solved by generic algorithms in time O (v/#G)
but not less. However, determining the order of an element (a €ecial case of discrete loga-
rithm) and, as a consequence, computing the group OruCure of abelian groups were recently
proved by SOOOUOOOO (OOOO) to require far fewer operations. Nevertheless, for the ee-
cidc problems we are concerned with, namely the discrete logarithm problem and the short
produC problem, the generic algorithms described below are believed to be the bed known
to date.

ROOOOOIOD 0O PUIOD GOOOOO

&e method of PULIIL and HUDULUD (U0 was originally direCed at computing dis-
crete logarithms in (Z/p)™ but, more generally, it reduces many problems on abelian groups
G into smaller prime groups. It combines two ingredients, the dr( of which is the following
consequence of the Chinese remainder theorem.



gd 0o0Doo0o 0o bobobobooobo

Theorem 1.3.2. LE G be an abelian group of order n = [T p% for some primes p and positive
integers a,. e map
n/p’ o0
XeGr— (x )pelpl_nIG[p ]

g an gomorphgm where e p-Sylow subgroup G[p*] denotes Te subgroup of ag elements whose
order § a power of p. Its inAerse § eDeCively given by e Chinese remainder T eorem.

Once the order of G is faCored, this reduces any inCance of a problem compatible with
the group law to several inCJances, one in each group G[p™] of prime-power order.

To get down to prime-order groups, the second ingredient is a liEing approach: assuming
that G has order p°, a subgroup series G = G, — G; — --- — G, = {1} where each arrow
has index p is used to reduce problems into the quotient groups G;/G;_,. &is technique
applies to many problems, such as computing square roots modulo n as [TOOUOOC (OOOO)
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To quickly search for elements of ANB, a data OruCure allowing faCl lookups is required:;
fall insertions are also a mul. W therefore typically use hash tables or red black trees. e
coJ of computing AN B is then (#A +#B)O(log n) for n = #G, where the ladJ term denotes
the complexity of the searching and inserting.

When A and B are not as explicit as above, it might not be possible to prove the exiCence
of a collision. & algorithm can then be randomized to rely on the birT day paradox:

Proposition 1.3.3. LC A and B be uniformly dgtributed subscs of cardinality a,/n and by/n
inasc G of cardinality n; Ten

Prob[ANB =] — e,

Assuming @ and Y are random, ,/n images of each thus suClce to have a 1 — 1 /e chance
of dnding a collision. In the unlucky event there is none, we can repeat this process m times,
adding more images to our red-black tree; this increases the likelihood of success to 1—1/em2.

From now on, we say that a probabil@tic algori™ m has complexity X, or that an algorithm
has probabilgtic complexity X, to mean that it always returns the correC answer (this is known
asa LC \egC algoriTm) and that, with probability at lead 1/2, its runtime is bounded by X.
By the discussion above, up to a conant, it is equivalent to the notion of average complexity.

PUODDDOD ROO

&e baby-Uep giant-Oep method requires Joring O(4/n) elements; an algorithm emu-
lating its behavior with minimal €ace Corage was developed by POUDOUO (OOUD) for integer
faCoring, and later applied to discrete logarithms by POODOUL (DOO0).

Letusdrd unify thingsinamapm : 6 — G equal to ¢ and s on their re€eCive domains,
where 6 denotes their disjoint union. e rho method involves a pseudorandom funCion
p: 6 — 6, thatis, an eDeCive map for which the diOribution of p® (w) (the composition
of i copies of p) is seemingly uniform asw € 6’ is dxed and the integer i varies. It is required
to preserves collisions, that is, (x) = 1(y) = m(p(x)) = n(p(y)).

e map p is thought of as generating A and B under T, and the crucial Cep is to dnd
collisions mp®(w) = mp®(w) without Doring many values; when p®(w) # p®(w) collide
through m, we expeC that one is an image of ¢ and the other is one of |, which gives a proper
coggion — when their sizes are equal, this happens with probability a half.

Avoiding Oorage requires a cycle-d&eCion method on the graph of iterates of p evaluated
at w. &e simplel such method is due to FOOOO who observed that, whenever p®(w) and
p@(w) collide for some integers i and j satisfying i > 2j, then p@i=D)(w) and p@=(w) also
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collide. &ws, it sullces to compute p@)(w) alongside p® (w) for increasing i's and wait for
them to collide; then, p maps are unCacked until the original collision is found. Better cycle-
deteCion methods improve the runtime by a conJant faCor using more memory.

Se dilculty lies in designing a funCion p suited to a given problem; more details will
be given on that later, e€ecially for the short produC problem. To faCor an integer n,
PUNOOO0 (UO00) put 6 = Z/n and chose p to be a polynomial funCion; the map m can
then be the projeCion to any subgroup of Z/n which need not be known: by computing
ged (p(i)(w) —pD(w), n), we can deteC when a collision occurs and hopefully dnd a faCor
of n. &is method is nowadays moOly used for small integers n, as asymptotically faCer fac-
toring algorithms have since been developed.

A current international elJort (UUOO) aims at solving a discrete logarithm problem chal-
lenge in a group of 129-bit order (this group is an elliptic curve where generic algorithms are
the bel available); when completed, it will likely be the record rho algorithm run.

1.4 Cryptographic Groups

Let us now review the cryptographic security of various groups, moOly focusing on the
discrete logarithm problem.

FIOO0OO POOOOD

We advocated for prime-order groups; now let us mention how prime numbers can be
found. &e beld method for this is simply to draw numbers at random until a prime is found;
for numbers of n bits, this requires an expeCed O(n) operations by the theorem below,

Assuming the generalized Riemann hypothesis, MIOUUU (DOO0) drC derived a fad (poly-
nomial time) determinilic primality te(d, later turned into an unconditional but probabilis-
tic method by RULIO (UOOO). Although ADUOOOD, KOOOD, and SOODOO (DOOO) have since
proved that determinilic primality proving need not rely on unproven assumptions, the de-
pendency on the generalized Riemann hypothesis is intereding: this conjeCure prediCs the
behavior of primes in various delds. Fir0 recall the celebrated prime number theorem of
HUOOOOOOO (OOO0) and OO 0O VOOOOO-PUOOO0IO (OOOM).

Theorem 1.4.1. &e number of prime integers less Wan x § Cymptoticady equivalent to

X dt X

, logt logx’
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Proofs of this theorem involve eCJablishing certain properties of analytic funCions re-
lated to integers; more generally, if K is any number deld, dedne, for s € C with R(s) > 1,

k()= Z N(a)™

ael

where J is the set of ideals of the ring of integers of K, and extend {, to C by analytic con-
tinuation. Z&uis funCion encodes the behavior of prime ideals of K; to obtain precise results
on their diCribution, one oEen assumes the extended Riemann hypoTes§ which Oates that
all zeroes s of { in the Orip 0 < Rs < 1 lie on the line $R(s) = 1/2. &xe extended Riemann
hypothesis follows from the Oronger generalized Riemann hypoTesg, and we oEen assume
the latter when only the former is needed.

MIDOOD (UO00) aCually exploited the following result of IROUUDD (UUOT), where the
label “(GRH)” denotes that the Oatement holds under the generalized Riemann hypothesis.

Theorem I.4.2 (GRH). L& p and q be integers such T¢& q divides p — 1. e leCt integer x
which cannot be written C y9 mod p for some y € N § Cymptoticagy O(log? p).

We conclude with a conjeCure of BUDULUU and HUUL (UUUD) generalizing the prime
number theorem; it is useful for generating elliptic curves as we will see later. Essentially,
it asserts that didJinC irreducible polynomials take prime values almol independently, and
that this “almo” is quantided by their values modulo primes p.

Conje&ture 1.4.3. LC F be as¢ of dgtinC irreducible non-conCant polynomials of Z[X]. e
number of integers less Tan x € which ag its polynomials simul Fneo J ly Tke prime values §
Cymptoticady equivalent to

C J‘ X dt
[ Tir degf J, (logt)*

1 1 #F
where C:H<1——#{zer:Hf(z):O}>/<l——> .
p p feF p

10000 Cchoouooo

Since the baby-Cep giant-Cep or rho method use O(,/p) operations to dnd a faCor p of
an integer n, faCors of n can always be found in O(n'/*) time. By iterating this search for
faCors and teJing the primality of the faCors obtained, an integer n can be faCored in prob-
abiliic time O(n/4). When the RSA cryptosyClem was proposed, much faler algorithms
already exilJed and they were subOantively improved subsequently.
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Se simplel such method is due to KDUTOOOIO (UOUD). To €litan integer n, it craEs a
nontrivial relation x> = y> mod n by combining many easier relations so as to eliminate non-
square faCors; the easier relations are of the form zZ mod n = [ p® for primes p less than
some bound L(n). To bound the probability that such a faCorization exiCs, we rely on this
result of CUOUIOOL, EDO0OL, and POOOOOOOO (ODOOO).

Theorem 1.4.4. For any ¢ > 0, Te probability for a random number of {1,...,x} to have no
prime faCor larger Wan L(x)° § equivalent to L(x)~*/%*® € x — oo, where we J ed Te func-
tion

L4(X) = exp ((Iog x)” (loglog x)l_“>
Wi Te conAention '€ omitting Te parameer a € (0,1) means o = 1/2.

Assuming Gaussian elimination takes cubic time in the number of variables, we set ¢ =
1/2 and obtain a nontrivial &litting of n in time L(n)%/2*®,

2 broad family of combining congruences algori ™ ms encompasses methods using faCor
bCes (as the primes up to L(n)); they apply to many integer-based problems such as discrete
logarithms in dnite delds and integer faCoring. Under unproven assumptions, the asymptot-
ically faJe0 such method is the number Eeld sieve of COIIDDUUIO (UUOD), which builds up
on the work of many including COOUOUO and COOUOOO (UOCO), with heuridic complexity

46 +134/13
¢ _ 53 —
Ll“;zs (n) where cyeg=2 BT I 1.902

Recently, KIOIOUOOD € ahir (U0UD) used a similar method to faCor a 768-bit RSA mod-
ulus, thereby deprecating smaller RSA keys; the eCeCiveness of this attack is blatant when
compared to elliptic curves whose discrete logarithms can only be attacked up to 130 bits.
Unconditionally proven faCoring algorithms are slightly slower, with the Date-of-the-
art method of COJUU0D and PULUUUUUD (UUUD) using an expeCed L(n) ™ operations;
it exploits a similar faCor base paradigm in certain class groups. Since these objeCs are built

fromideals it is not surprising that subexponential methods should apply to them aswell, and
we will elaborate on that later as class groups become a building block of our own algorithms.

A0D0I00 vdoooooo

CryptosyCems based on the discrete logarithm problem in dnite delds have been pro-
posed as alternatives to RSA; however, up to certain modidcations, modern integer faCoring
algorithms also apply to this problem, so it provides no additional security.
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Shortly aEer LOOUOOU (UOOD) introduced a novel faCoring algorithm based on elliptic
curves, MIDOOO (O000) and KOOOOOO (OOOO) suggelled their use in cryptography; subse-
quently, KOOOODOO (OOOO) further proposed using the broader class of abelian varieties. &xis
has motivated tremendous developments in computational number theory, and has enabled
awide €eCrum of possibilities in cryptography.

Siese applications are motivated by two faCs: drJ, that the group law of abelian vari-
eties can be computed e[dciently, and second, that no algorithm better than generic ones is
currently known to attack the discrete logarithm problem on mo0 abelian varieties of dimen-
sion one and two. Before formally dedning abelian varieties, we brieEy give loose Datements
highlighting their applicability to cryptography.

Abelian variCies are objeCs endowed with two compatible OruCures:
— ageomcric OruCure: it is the zero locus of multivariate polynomials over a deld k;

— agroup OruCure: it admits a group law given by rational funCions.
When the dedning polynomials have certain forms, the group law can be evaluated eCIciently
using short rational funCions. &is can be done for all varieties of dimension one and two
(the dimension is roughly the number of variables minus the number of polynomials).
Cryptography uses dnite delds k and such forms, allowing fal arithmetic; for inOance,
BUUUDUOIO and LUDOD (UU00) suggeled dedning G as the set of points (x, y) € k? verifying
X2 +y? = 1+ dxy?
for some non-square parameter d € k, endowed with the addition law dedned by

xy’ + x’y yy/ —xx >

+ !/ -
) +0cy) <1 +adxxyy’" 1 —dxx'yy’

Since the number of points of an abelian variety of dimension g dedned over k (that is,
the order of the underlying group) is roughly (#k)? and otherwise behaves quite randomly, a
prime-order one can be sought by drawing varieties at random while their orders are compos-
ite. Alternatively, we will later discuss the theory of complex multiplication which provides
means to generate abelian varieties with a prescribed order.

SU00000 ADODO0oO

We Oated that attacks on the discrete logarithm problem of mo0 elliptic curves are not
known to be faler than generic ones. To conclude this chapter, we give an exhaullive liC
of classes of abelian varieties for which this does not hold, so remaining ones can a priori
be considered secure. Details on these attacks can be found in ACDULT, CUOOL, DOOOL]
FULL, LUUUL, NUDUOH, and VULULDUUUOL (LOUL).
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Index-calculus with subspace as facor base. Grobner basis algorithms can decompose
points of abelian varieties into sums of points in certain subeaces (such as having certain
coordinates equal to zero, or dedned over some OriC subdeld); this enables index-calculus
attacks eJeCive on varieties of dimension g > 2 or dedned over non-prime base delds.

Reduction to finite fields via pairings. &e Weil pairing maps pairs of points of order £
from an abelian variety to the multiplicative group of an extension of degree e(£) of the base
deld k. It tran€orts the discrete logarithm problem, so the value of e(£) mul be large enough
to prevent attacks in the extension deld from being feasible.

Lift to charaiteristic zero. ~ Certain abelian varieties with €ecial properties (such as the
infamous anomalo § curves, whose cardinality is that of their base deld) can be liEed to p-
adic delds, from where discrete logarithm problems can be transferred to Z /p.

Isogenies. Isogenies are morphisms between abelian varieties; they can traneort the dis-
crete logarithm from a variety ./ to about € other varieties in time £°@*) for moO primes €;
if any of those varieties have one of the above weaknesses, then so does .<f .

Since no attack faer than generic algorithms is known to aeC randomly chosen, prime-
order abelian varieties of dimension one or two dedned over dnite delds with p or 2° elements
where p is a prime, we conclude that these are currently the bel choice for public-key cryp-
tography in a cryptosyClem of EIGamal type.
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&=Dbelian zaricies

Having edablished the important role of abelian varieties in modern cryptography, we
turn to formally dedning their properties from a mathematical Dandpoint.

We will present this theory concisely, in a conceptually elementary way which we believe
highlights its eJeCiveness. For details, we refer to AIIIUI, CUUUL, DUDOL, FUOU, COOOD,
NUUUUL, and VUUDDUUDUDL (UUUU), sUUDUbuyitL (Duoh), CUtbidl and SIOUDDLIOO
(0000y, SUrOo00 (U000), MODOU (UO00Y, and MOODOOO (DOUD), in increasing levels of
abOraCion.

1.1 General Theory

AD00000O0O vdoooood

Fix a perfeC deld k, referred to as the bCe Eeld, and a suJciently large integer n =
DIMN MAX.” For any ideal J of the ring k[X] = K[X,,...,X,] of polynomials in n variables
with coelcients in k, dedne the allne variCy ¥, as consiling, over any extension deld K/k,
of the set ¥, (K) of common zeroes of J in K" called points of the variety. HIDOUUO (OO00)
proved the famous NullUellensatz:

Theorem 11.1.1. When k § algebraicady closed, e largeQ ideal of k[x] vanghing on ¥} (k) §
e radical ideal +/J formed by polynomials of which a power liesin J.

&is puts in bijeCion radical ideals with aIne varieties over algebraically closed delds;
computationally, one might therefore use generating sets of +/7J to represent .

YWe dnd it amusingly convenient to dx an integer DIMN_MAX large enough so that all varieties we consider are
embedded in the projeCive €ace with that large a dimension.

0o
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Such varieties are endowed with the Zargki topology whose closed sets are subvarieties.
Via the NullCellensatz, the topological notion of irreducibility corre€onds to its algebraic
counterpart. To avoid unnecessary technical contortions, we shall exclusively consider abso-
lutely irreducible varicCies, that is, varieties irreducible over an algebraic closure.

Alne varieties lie in the aOne gace A(K) = ¥;(K), also written as A"(K) when dimen-
sion n needs to be made explicit. In many contexts, it infead proves advantageous to:

— work with projeCive varieties;
— use Galois aCion to dedne objeCs over extension delds.

Over an algebraically closed deld K, dedne the projeCive gace P(K) (of dimension n — 1) as
the set of lines passing through the origin of A(K), and over any deld K as the dxed subset

P(K) — P(R)Gal(K/K)

under its absolute Galois group. Pragmatically, the projeCive €ace P(K) can be seen as
formed by equivalence classes of collinear (non-zero) veCors, which gives the projeCion

xe A(K)~ {0} — {M:heK | e P(K)

Working in alIne coordinces means representing projeCive points by didinguished elements
of A (typically, by enforcing x, = 1; this covers almoU all of P but requires inversions to
compute the didJinguished element); on the other hand, working in projeCive coordinCes
means representing projeCive points as non-unique n-tuples.

Similarly, projeCive variCies are projeCions of aIne varieties invariant under coordinate-
wise scalar multiplication: if J is a homogeneo § ideal of k[x], that is, generated by sums of
monomials of the same degree, the projeCive variety ¥, C IP consils of equivalence classes
(under scalar multiplication) of the allne variety ¥, C A endowed with the (quotient)
Zariski topology.

From now on, we will exclusively consider absolutely irreducible open subsets of projec-
tive varieties, and refer to them simply as variCies (they are known to part of the literature
as quCiprojeCive varicCies); we will always implicitly assume that they are dedned over alge-
braically closed delds, but say that they are deEned over smaller delds when invariant under
their absolute Galois group.

MOOooomooo

Consillent with the topology, morph§ms are algebraic maps. For the allne e€ace, they
form the ring Hom(A, A) of n-tuples of n-variate polynomials. If ¥ and # are two allne
varieties, Hom(¥, #") consils of those morphisms of Hom(A, A) mapping ¥ to #'.
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Morphisms of projeCive varieties can be seen either conceptually, looking down Eom A,
as equivalence classes of tuples P of polynomials of k[x] of homogeneous polynomials with
the same degree for the relation P ~ P/ < {Pin’ —P;Pi} € 3, or visually, looking up Eom
geciEc hyperplanes of A, as compatible colleCions of allne morphisms.

Two cases are of particular intere[:

— the coordin€e ring Hom(7}, K) = K[x]/3J, with addition and scalar multiplication.

— theendomorphdm monoid Hom(%/, ¥) = End(?), endowed with composition; later,
when we give ¥ a group law, it will become a ring.

R &ional maps are dedned similarly to above from tuples of rational funCions. Mo im-
portant are rational maps from a variety ¥ to a deld of dednition K, which form its funCion
Eeld, denoted K(¥). For projeCive varieties ¥ = ¥, it can be explicitly dedned as the set
of fraCions P/Q of homogeneous polynomials in K[x] of the same degree, with Q ¢ J, up
to the relation P/Q ~P'/Q' <= PQ' —P'Q€J.

Various properties can be read ol direCly from funCion delds, such as:

Proposition 11.1.2. &¢ Krug dimension of an ideal § equal to e transcendence degree of Te
funCion Eeld CsocicCed to its varicy; it § caged Te dimension of Te varicy.

Algebraic extensions have dner indicators: a morphism ¢ € Hom(%,#") induces (by
composition on the right) an embedding ¢* : K(#) — K(¥); the degree of @ is the dimen-
sion [K(¥) : @*K(#)] which is dnite when (%) has the same dimension as #'.

ADD0D00OO GUoond

Combining algebraic varieties with group OruCures yields algebraic groups:

Definition 11.1.3. An algebraic group § an (absolutely irreducible) non-empty algebraic vari-
cyendowed wiT agroup law (noted additively) for which e map (x,y) — x—y § amorphgm.

By non-empty, we mean that it mulJ admit one rational point over its base deld, so that
it contains the neutral element for the group law. Animportant property of algebraic groups
is given by the following algebraic equivalent to the analytic notion of dillerentiability.

Definition 11.1.4. An irreducible algebraic varicy ¥ § nonsingular if Te quotient of {f €
E[”f/] - f(P) = 0} by its square hC Te same dimension (namely g = dim ") for ag P € ”I/(R).

Algebraic groups are nonsingular varieties; indeed, translation maps t, : Q — P+ Q
induce isomorphisms of tangent €aces, whose dimensions are that of the quotients above.
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One simply dednes morphgms of algebraic groups as morphisms of algebraic varieties
preserving the group law, and subgroups of algebraic groups as subgroups that are closed.
From now on, we shall work with categories as a whole: when we consider algebraic groups,
morphisms and subgroups will be implicitly underJood to be of algebraic groups (not juC of
algebraic varieties).

S proposition below argues that this behaves as expeCed.

Proposition 11.1.5. LC ¢ be an (algebraic) normal subgroup of an algebraic group 4. ae
quotient ¢ /. hC a unique OruCure of algebraic group such T¢:

— TeprojeCion map ¢ — ¢/ § amorphgm;
— ag morphgms Eom & wiT kernel conTining . faCor Wrough & /..

For inOance, the group GL,,(K) of invertible n-by-n matrices over K is a quasiprojeCive
variety, a closed subvariety of which is SL,(K) comprising of matrices with determinant one.
In faC, all a0ne algebraic groups are isomorphic to subgroups of GL,(K), and a result of
CUOUOO00O0 (O0OT) Oates that the remaining ones are of the type we shall next discuss.

Proposition 11.1.6. Every algebraic group ¢ hC a unigue normal subgroup .2# gomorphic to
an alnevaricy such T€ ¥ /5 § projeCive and irreducible.

A0D0I0O vdoooood

Definition 11.1.7. Abelian varieties are irreducible projeCive algebraic groups.

Mol of the rich OruCure of abelian varieties Oems from the projeCiveness condition
(completeness, an algebraic equivalent to compaCness, could equivalently be required).

Proposition 1r.1.8. Any algebraic map Eom an abelian varicy to anoWer § a morphgm (of
algebraic groups) composed wiT a translCion.

In other words, morphisms of algebraic varieties are essentially morphisms of abelian
varieties; this means that abelian varieties are entirely charaCerized by their geometry. as
is a crucial faC with the notable consequence that abelian varicies are commu Ttive groups;
indeed, since the algebraic map x — —x dxes the neutral element, it is a morphism, which
implies the commutativity.

Since abelian varieties .o/ are commutative, they admit quotients by any closed sub-
groups 2. We will later be intereCled in the case of dnite subgroups ., which are evidently
closed: in that case, the dimension of the quotient .</ /7 is the same as that of the variety
./, and as we will see later, many other invariants are preserved.
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Asafurther reOriCion to prevent unnecessary contortions, we henceforth assume, unless
otherwise (ated, that all abelian varieties we consider are absolutely simple, that is, do not
contain any proper nontrivial abelian subvariety over an algebraic closure.

1.2 Practical Settings

Let us now focus on two types of base deld: dnite delds, over which abelian varieties
admit e(cient representations, and the complex numbers, over which their relationship to
tori yields a rich theory, part of which descends to dnite delds.

FIO0OO FIO0OO

Let .o/ be an abelian variety dedned over a dnite deld k = IF; its zCa funCion

[ tn
Z,(0=expd #o (Fqn) -

n=1
encodes its number of points, on which WO (OUO0) proved the following.

Theorem 11.2.1. &¢ zCa funCion of a dimension-g abelian varicy .o/ § of Te form

29
n+l
Z,0=] [P.®"
n=0

for some polynomials P,, € Z[t] whose complex zeroes have absolute value q"/2,

AusconOrains cardinalities of abelian varieties. To better see this, consider the Frobeni J
endomorphgm 1, which aCs over any deld extension K/TF, by raising coordinates of points
of .7 (K) to the g™ power; it dxes jul] o/ (IFy), so we have #.¢/ (IF ) = deg(1 — ).

Any endomorphism ¢ of an abelian variety of dimension g has a monic charaCeriCic
polynomial P € Z[t] of degree 2g such that deg Q(9) = Res(P, Q) for all polynomials Q €
Z[t]. For the particular Frobenius endomorphism, denoting by x . its charaCeriDic polyno-
mial, we obtain

#.9/ (Fy) = Res, (4 (1) u" —1)

which makes computing . equivalent to counting points on .o/ over g diCJinC deld exten-
sions of the base deld. Transcribing the theorem above to X, yields the following.

Corollary1r.2.2. &ecomplex rootsof x; ag have absolute value /g, and Te polynomial Py, (t)
in"TezcafunCion § [T (1 — at) where a ranges over produCs of 2 dgtinC such roots.
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Generalizing an algorithm of SOUOUOU (DOOD), PIO0 (UODO) proved that for any dxed
dimension g all the above can be computed in polynomial time in the size of the base deld.

Theorem 11.2.3. &e zCa funCion of an abelian varicy deEned over IF, can be computed in
polynomial time in log(q) where Te implied exponent depends on Te dimension of Te projeCive
@Gace where it § embedded, and on e degrees of its deEning equ€ions and group law equions.

aus result is moUdly of theoretical interel. Improvements on the algorithm of SOOI
(000O) by ADOOD and ECODO0 have made it possible to count points on abelian varieties of
dimension g = 1 far beyond cryptographic range; for g = 2, the praCicality of point counting
methods on varieties of cryptographic size was only recently demonUOrated by GOOUOO0 and
SOO0UT (U00O) who used an extension of the algorithm of SUOTOU (DOOD).

From now on, we shall regard the dimension g as being dxed in complexity Catements, so
asymptotic analyses focus on behavior with re€eC to the base deld; this is partly motivated
by the faC that only g = 1 and g = 2 are cases of cryptographic intere[].

CODO0000 NDODooo

We have noted that abelian varieties are nonsingular. Over C, abelian varieties are there-
fore conneCed compaC Lie groups, which are well-underJood objeCs; such a variety .o/
has the analytic OruCure of a complex torus: since the exponential map folds its tangent
€ace onto ./, there is an isomorphism of Lie groups .e/ ~ C9/A where A = ker(exp ) isa
| Ctice of CY, that is, a discrete subgroup of full rank.

Similarly to the algebraic case, holomorphic maps between complex tori are jul] group
morphisms composed by translations. Holomorphic morphisms ¢ from a complex torus
T = C¢/A to another T/ = C¥ /A’ are induced by C-linear maps, denoted ¢ as well, from
C9 to CY satisfying g(A) C A. Hence, as Z-module, Hom(T, T’) has rank at moQ 4gg’;
this implies that End(.</) is a torsion-free Z-algebra of dimension at molJ (2g)°.

Even if complex abelian varieties have the analytic OruCure of tori, conversely, not all
complex tori correeond to abelian varieties, although those that do are precisely known:

Proposition 11.2.4. DeEne Te Siegel upper half-&ace HY C Tes¢ of g-by-g symmericmcri-
ceswi'T positive deEnite imaginary part. Complex tori CY¥/A corregonding to abelian variCies
are exaCly T ose whose | Ctice A\ can be put under T e form Z? + QZ? for some mCrix Q € HY.

PUODDOCOOOIOOD

Many results on abelian varieties over dnite delds exploit reduCion from charaCerilic
zero delds k, that is, consider varieties arising through maps k — k/p for prime ideals p of k.
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For inOance, the bound of HUUUD (UUOU) which Oates that one-dimensional abelian varieties
-/ dedned over IF,, satisfy

q+1-#/(F)|<2,/q

can be extended, for varieties arising as reduCions from charaCerilic zero, into a precise
description of the diribution of cardinalities: the Sato—Tate conjeCure. Note that recent
work of [TOODOO (DOOO) comes close to proving it.

Conje&ure 11.2.5. LC .¢/ be a non-empty abelian varicy of dimension one deEned over Te
rcionals wiT End(.«) = Z. e Cymptotic dgtribution, C e prime p goes to inEnity, of

p+1—#A(F,)
arccos { ———
2,/p

@ uniform on [0; ] where #.¢/ () denotes Te number of points of Te reduCion of .e7 & p.

When g > 1, abelian varieties have indnite automorphism groups over algebraically
closed delds. For more rigidity, we bundle them with a projeCive embedding or, rather,
the following (simpler) analytic analog.

Definition 11.2.6. LC .o/ = C%/A be a complex tor §. A polarization of ./ § a positive
deEnite Hermitian form &2 on C? s€gfying 22 (A, \) C Z. 1t § principal if its dCerminant §
inAertible, or equivalently if Were § no x ¢ A s&gfying 22 (A, x) C Z.

Principady polarized abelian variCiesare pairs (.ef, &2 ) whose morphisms ¢ : (.</,2?) —
(.e?’,22") are required to preserve polarizations in the sense that ¢* 22’ = A% for some pos-
itive A € Q. WL (UU0U) showed that this has the intended eeC:

Proposition 11.2.7. Polarized abelian varicCies have a Enite automorphgm group.

For inCance, on the torus CY/(Z° + QZ?) for Q € HY, there is a natural polarization
2 (u,v) = E(iu,v) + iE(u,v) where the Riemann form E is expressed, on the block basis
(&;)(€2g;), by the block matrix
0 Id
(e 0)

Proposition 11.2.8. Two mcrices Q and Q' of e Siegel upper half-gace HY yield gomorphic
principagy polarized abelian varicies if and only if Wey are conjugce under Te aCion

< é [B) >eszg(Z):Q»—>(AQ+B) (cQ+D)™.
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Polarizations are needed in aCual computations, as e(Jcient arithmetic (via theta func-
tions or Jacobian varieties) relies on them. Worse, it is nontrivial to determine whether the
varieties corre€onding to two theta coordinates are isomorphic, disregarding polarizations.

Before moving on, we emphasize once more that, in dimension one, all varieties admit a
unique principal polarization — so they can hopefully be forgotten altogether.

JOoOOooooLD vdolooooo

Theorem 11.2.9. Up to Gomorphgm, Were § a unique abelian variCy Trough which any mor-
phgm Eom a given algebraic varicy ¥ to an abelian varicy faCors. It § Te Albanese variety
of V.

General Albanese varieties are hardly praCical: they have no edeCive group law, and are
not naturally endowed with a principal polarization, so there is no simple manner to identify
them such as invariants (as we will see below). Cryptography is only concerned with the
following subclass, on which our exposition shall now focus.

Proposition 11.2.10. Abelian varicCies of dimension one or two are Jacobian variCies of hyper-
egiptic curves.

Before dedning hyperelliptic curves, let us brieEy discuss Jacobian varicCies: these are
juld Albanese varieties of algebraic curves, that is, one-dimensional algebraic varieties. &e
Jacobian variety Jac(6) of a curve 6 has an explicit group OruCure: denote by Div°® the
submodule of degree-zero divisors of the free Z-module generated by points of €, that is,
formal sums of points whose coelIcients add up to zero; it contains Princ, the set of sums of
zeroes and poles (counted with multiplicities) of non-zero elements of the funCion deld.

Proposition 11.2.11. Jac(%’) hC e group OruCure of e quotient Div° / Princ.
We can say much more for hyperelliptic curves; for this, we assume chark # 2,

Definition 11.2.12. Curves € of Te form y? = f(x), for some squareEee polynomial f of degree
29+ 1 or 29+ 2, are caged hyperelliptic, and g § known C Te genus of 6.

By Te Teorem of RIDOUUD (UU00) and RODO (DUCY, g § also We dimension of Jac(6).
InTecCeTE g =1, Teyare known C elliptic curves, and verify Jac(€) = 6.

When deg(f) is odd, there is a unique projeCive, non-allne point (with coordinate z =
0); this point & inEnity oo is oEen used as a didinguished projeCive point. By RIDLUOL
(U00O) and RUOD (UOUD) each divisor class then has a unique reduced representative of the
form > (P; — o) for at moO g aldne points P; € %6, none of which is conjugate to another
under the hyperegiptic inAolution (x,y) — (X, —).
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Assume, for simplicity, that the points P; = (x;,y;) are didinC. &e divisor 3 (P; — )
can be represented by a pair of polynomials (u, v) satisfying

u(x) = H(X =X), V() =Y,

It can be checked that the P, lie on 6 by verifying that u[v> — f. In this representation, the
group law is given by (assuming u, and u, have no common root)

(Ug Vo) + (Uy,vy) = (uoul, (u;* mod v,)u,v, + (u;* mod uz)ulv2> :
To reduce the output to a unique representative, COOOOT (UUOD) iterates the transformation

f—v2

lc(f—v?) u

(u,v) — (U',V) withu' = and V' = —vmod u’

while deg(u) < g, where Ic(-) denotes the leading coelcient. &xis gives Jac(6’) an e[Icient

group law, and an algebraic OruCure. Additionally, the image of the map (P,) € 6%~ —

S°(P; — =) is asubvariety of dimension g— 1 that is the zero-locus of certain theta funCions

which naturally endow the Jacobian variety with a principal polarization 2.
TOOOOOT(O000) showed that this comprises all the information from the original curve:

Theorem 11.2.13. Up to omorphdm, Te polarized abelian varicy (Jac 6, 2?) dcermines
Tecurve 6.

Moduli gaces are varieties whose points represent isomorphism classes of a given type of
variety (we will soon discuss invariants); complementing the proposition above, we have:

Temoduli dimension of genus-g hyperelliptic curves 0 29-1
K genus-g curves " 3(@—1),o0rlifg=1
abelian varieties of dimensiong " g(g+1)/2

”

ae moduli €ace dimension is the same for Jacobian varieties and their underlying curves.
For g = 3, abelian varieties are Jacobian varieties, but not all of hyperelliptic curves.

1.3 Pairings

TOOOO sbooooooo

ae center of the endomorphism ring End(.</) of an abelian variety .e# of dimension g
always contains a subring isomorphic to Z formed by scalar multiplic€ion maps:

[n]:Pe.s/ —nP=P+...+P
N——

n times
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for every integer n. Over an algebraic closure, the kernel of [n] is the fu§ n-torsion subgroup
.o/ [n]; its OruCure is well underCJood:

Theorem 11.3.1. &e degree of [n] § n%. It § separable when n § coprime to p = chark; Ten
.e/[n] = (Z/n)®. When n § a power of p, Ten .e/[n] = Z/n" where r < g § caded e p-rank
of .of .

Axe generic case is that of ordinary abelian varieties which have p-rank g: the moduli
dimension of non-ordinary varieties is OriCly smaller. Unless explicitly Oated, all abelian
varieties will now be assumed ordinary (this is crucial for the next chapter).

We will later compute €-torsion subgroups (for primes £) of abelian varieties ./ dedned
over dnite delds IF,. S&xe embedding degree e ., (€), which is the extension qegree of the small-
e[ deld over which the points of ./ [£] are dedned, is the primary coO faCor of this process.

If x is the charaCerilic polynomial of the Frobenius endomorphism T of ./, the mor-
phism x(m) obviously vanishes on .7 [£]; as this only depends on the class of x in (Z/£)[x],
the embedding degree e(€) mul divide the multiplicative order of x € (Z /£)[x]/(x). Conse-
quently, it is bounded by £2.

When points can be drawn uniformly at random from .¢7 (K®), a basis for .<7 [£] can be
found by taking random points, multiplying them by the cofaCor of £ in #.<7 (k®), and
iteratively applying [£] until a point of &-torsion is found, possibly liEing points already found
along their preimage under [£]. 2xe liEing process can either use simple baby-Oep giant-Oep
computations in .¢7 [€], or faCer discrete logarithm methods in k*® via the pairing. For a
dxed g, the whole method uses polynomially many operations in €; it will be described in
detail in the second half of this thesis.

GUO000C PODOICOD

Definition 11.3.2. A pairing § a non-degenerce bilinear map ¥ : G> — H, where G and H
are abelian groups.

striCly &eaking, pairings can be dedned on modules over any ring; but from a crypto-
graphic Dandpoint, nothing of value is lod by re0riCing to Z-modules. On the other hand,
cryptographic use requires additional properties:

0000 0000000000: — Given (x,Y) € G2, the pairing W(x,y) is easily evaluated.
0000 000000000: — Given z € H, a preimage (x,y) € W~1(2) is hard to dnd.

Qese terms could be given a rigorous meaning by considering a sequence of pairings W, :
G2 — H,, and requeing that there exiCs an algorithm for evaluating W, in polynomial
time in log(#G;) and that no algorithm dnds preimages of W; in subexponential time on a
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positive fraCion of H;; however, we prefer to use the simpler and down-to-earth notion of
computational infeasibility.

Similarly to the discrete logarithm problem, the pairing inversion problem has many
variants, such as bilinear analogs to the computational and decisional DilCle—Hellman prob-
lems, or inversion problems where one of the parameters is dxed, not all of which are OriCly
equivalent to the pairing inversion problem itself. We refer to GUUOULIO, HOM, and VO
OO000000 (0000) for a discussion of these problems.

Out of all known eOeCive pairings, only those that arise from abelian varieties satisfy the
conditions above. In faC, the problem of pairing inAersion, that is, of inverting the map W,
appears to be extremely diCIcult for such pairings. &eir cryptographic use therefore involves
relying on a new hypothesis (alongside the hardness of the discrete logarithm problem) but
they provide elliptic and hyperelliptic cryptography with a unique OruCure, which has led
to the development of many novel features.

EO0DDOIDO POIOOOOO

InOruCional pairing examples include scalar produCs of veCor €aces, and, if (R, +, )
isa ring, the multiplication map from (R, +)? to (R, x). A more interelJing example is

(xy,Xy') € ((Z/n)zg)2 — exp (2% ®y —Vx’))

where xy denotes the concatenation of the row veCors x,y € (Z/n)?, and X denotes the trans-
pose of x. Zis aCually is the general form of the Wil pairing expressed on asympleCic basis
of the n-torsion subgroup of a complex torus.

None is suitable for cryptographic use, as they are typically easy to invert; currently, the
only known cryptographic pairings arise from abelian varieties:

Let .o/ be the Jacobian variety Jac(6’) of a curve 6 of genus g, which we further assume
to be a hyperelliptic curve dedned over a dnite deld. Recall that the full n-torsion subgroup
./ [n] is isomorphic to (Z/n)Zg when n is coprime to the ambient charaCeriDic. For cryp-
tographic reasons we choose n to be prime, and dedne the map

g [ @xaml — oy ck
P = KQ/P

where i, is the group of n™ roots of unity, and f,, and f,, are funCions of k(.¢7) with disjoint
support whose sum of zeroes and poles are the principal divisors nP and nQ, re€eCively. Its
evaluation at a divisor Q = > Q; is explicitly [ [ f(Q;).

Theorem 11.3.3. W,\;; § @ Galog-inAariant antgymmeéric pairing caged Te Wil pairing.



gd 0ooooto boooooioo

MoU of the proof relies on the reciprocity of WO (ODOO).

When .o/ is principally polarized, the polarization gives an isomorphism .¢f =~ Jand
the pairing can therefore be dedned on ./ [n] % <7 [n].

In the case of elliptic curves, points P of the variety are of the form R — co where R is a
point of the curve or the point at indnity itself. MIOOOCD (OUU0) noted that the funCion f;
whose sum of zeroes is the principal divisor iR — [i]R — (i — 1) oo can be computed iteratively
by setting f,,; = f; - f; - u/v, where u is the line containing [i]R and [jIR (it vanishes at [i]R,
[[IR, and —[i +j]R, and has a pole of order 3 at o) and v the vertical line passing through
[i +j]R (it vanishes at [i + j]R and —[i +j]R, and has a pole of order 2 at o).

s yields an algorithm for evaluating the Weil pairing of elliptic curves which can also
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11.4 Isogenies

ADD0000OO 110000000

Definition 11.4.1. Anisogeny § a surjeCive morphgm of abelian varicCies ¢ : ./ — wiT
Enite kernel. 1t § separable if We corregonding funCion Eeld extension k(. ) /0* (k(23)) &.

When ¢ : .o/ — 2 isanisogeny, the abelian varieties ./ and 93 are said to be §ogeno J ;
this is an equivalence relation since there then exils a dual §ogeny @ : 8 — ./, of the same
degree n, which is simply the multiplication-by-n map of .7 faCored through ¢.

0
dego CJZ% TR

~—
9

Proposition 11.4.2. If 7 § e kernel of a separable gogeny ¢ : .o/ — 2, Ten ¢ § Te
projeCion map under Te omorphgm 8 = .o/ / 7, in particular, we have deg(g) = #.¢.
ae group OruCure of 5 § caged Te type of @.

From now on, the word “isogeny” should implicitly mean “separable isogeny;” this is the
case for all isogenies whose degree is coprime to the charaCeriDic of the base deld.

Since composition of isogenies corre€onds to inclusion of subgroups, and the latter are
abelian, we deduce that all isogenies can be written as the composition of isogenies of prime
degree. In dimension g > 1, although there is currently no known method for computing
general isogenies of type Z /€ where € is a prime, there are algorithms for evaluating isogenies
of type (Z/®)° which we call £-gogenies.

Recall that we assume isogenies between principally polarized abelian varieties .o/ to
preserve polarizations. &e induced polarization on .ef / ¢ for a dnite subgroup ¢ is prin-
cipal ifand only if 2# isa maximal isotropic subgroup for the Weil pairing; when we compute
isogenies from their kernel, we will drJ Oart by enumerating all such subgroups.

HOOOO-TOOO TODOOO

Over dnite delds, there is a bijeCion between isogeny classes of abelian varieties and their
zeta funCions. We have already explained the relationship between the zeta funCion of an
abelian variety and the charaCerilJic polynomial of its Frobenius endomorphism, and the
following description of isogeny classes is due to [TOOC (OOCD).

Theorem 11.4.3. Two variCies are gogeno J if and only if Weir regeCive Frobeni J endomor-
ph§ms have Te same charaCerdtic polynomial.
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A monic polynomial with integer coe(Jcients and 2g complex roots, each of absolute
value /g, is called a g-Weil polynomial. Recall that this is the case of the charaCerilic poly-
nomial of the Frobenius endomorphism. As a reciprocal to that Oatement, HOOOO (O000)
proved:

Theorem 11.4.4. Each g-Weil polynomial § Te charaCerdtic polynomial of We Frobeni J en-
domorphgm of a cer Tin simple ordinary abelian varicy of dimension g deEned over Fy.

TOOU (O000) presented these two theorems in a combined way, and this has become
known as Honda—Tate theory.

&e next chapter will be concerned with an explicit form of this theory which aims at con-
OruCing explicit abelian varieties whose Frobenius endomorphisms have prescribed char-
aCerilic polynomials. 2kis enforces certain properties on the abelian variety, such as the
cardinality.

E0O0D0O00 100000000

For elliptic curves &, VOO (OJ00) gave explicit formulas for computing an isogeny ¢ :
& — &' dedned by its kernel ker(9) C &: if x,y are coordinates in which an alIne equation
for & isy? = f(x), then there exiCl coordinates X, Y in which an equation for &’ has the form
Y? = g(X) and the isogeny can be written as

(p:Peé*’.—>< X‘P(P)iZX”Q_XQ >
Yor) = 2¥prq ~ Vo

where the sums range over all points Q of ker(), with the convention that x,, =y_ = 0.

s relies heavily on properties of the Weier[rass coordinates for elliptic curves, and
a higher-dimensional analog was only found recently by COOIO0 and ROOOOO (OCOO), and
later made praCical by CUIIUD and RUUOOO (UUUY; it relies on the OruCure of theta func-
tions, which we now brieEy describe.

Geometric invariants identify isomorphism classes of abelian varieties. For in(Jance, iso-
morphism classes of elliptic curves are identided, over an algebraic closure, by the canonical
j-inAariant. It is eJeCive as j(&) is a rational funCion in the coe[cients of a Weier(rass
equation for &, and conversely the coe[cients of such an equation are rational funCions in
i®).

In arbitrary dimension, a syClem of invariants for principally polarized abelian varieties
is given by T €a conlants, which not only identify the isomorphism class of a variety but also
part of its torsion. Seta conants are the conCant terms of T ¢a funCions which yields a
convenient coordince sylem for points on the variety it identides.
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In the particular case of abelian varieties of dimension g < 4, which are all, up to iso-
morphism, Jacobian varieties of algebraic curves, invariants can be expressed, via Torelli’s
theorem, on the curves themselves, as funCions of the coeCcients of their equations. For
g = 2, a popular set of invariants are the Ig J a inAariants, which consils of 10 coordinates
(this bears some redundancy since the dimension of the moduli €ace is 3); they can be e[J-
ciently computed from the equation of a curve, but conversely, to retrieve such an equation
from the invariants themselves, a €ecidc method of MUOUUU (OO0 is required.

ae relationship between the invariants of a curve and the theta conOants of its Jacobian
variety are given by formulas of [TOOOOD (UOO0O).

Let.of =~ C9/(Z% + QZP) be a complex torus with Q e H?. Dedne the T ¢a funCions

0 :2eC— > expin(%ﬁQu+2ﬁ(z+b))

(u+a)ez?

where aand b are veCors of Q¢ and U
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the complex number with juld enough precision so as to identify its integer coedcients. Re-
cently, BUODOU, COOUOM, and SOUOUO0OOO (UO0U) demon(rated the competitiveness of
a method based on the Chinese remainder theorem which exploits the OruCure of isogeny
volcanoes that we will Dudy later.

& higher-dimensional case is not as Oraightforward: GUUUOU (UO00) described an
analog conOruCion for g = 2, and the computation of explicit polynomials was later done
by DUOOOO (OO00) and improved by BOOOOO and LOOOOD (OO0OM). However, the height of
the polynomials (dJ‘E) makes their use prohibitive; currently, Oate-of-the-art algorithms for
explicitly evaluating isogenies remain a faler alternative.

We note that this dillerence between elliptic curves and higher-dimensional abelian va-
rieties is the main reason why point counting algorithms are much faler for the former than
for the latter.
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tomplex v ultiplicCion

Qe theory of complex multiplication describes endomorphism rings of abelian varieties;
this thesis will inveCigate two of its applications, inverse of each other:

— conDruCing abelian varieties equipped with eClciently computable pairings;
— computing the endomorphism ring of prescribed abelian varieties.

aere are many facets to complex multiplication theory; here, while trying to be some-
what general, we will focus on eJeCive a&eCs in the case of dimension g = 1,2, which are of
primary intere(d to cryptography. For details, we refer to COU (CUCU) for g = 1, to SUOUOO
(0000 for g = 2, and otherwise to SOILTUD (UU0D), COUOUO0 and SIDOO0OOO (UO00),
and MIDOU (0000).

1.1  Endomorphism Rings

A000I00 vJOoooooo 0iob cuboiio MUboionoooooeg

Let us dr0 consider the endomorphism ring OruCure of abelian varieties; via the follow-
ing theorem of POIODDO0D and MOIO (DUUD), it sullces to consider simple varieties.

Theorem 1ir.1.1. Every abelian varicy § gogenoJ to a produC of powers of non-gogeno J
simple ones.

2 endomorphism ring of a perfeC power .<7™ is naturally the matrix algebra of dimen-
sion m? over the endomorphism ring of .<7; therefore, the endomorphism ring of a produC
11 % of non-isogenous simple abelian varieties .7, is [ [ Mat,, (End ).

Slnce isogenies need not preserve endomorphism rings, the above does not completely
rule out the case of non-simple varieties. Nevertheless, we will now assume that .7 isasimple

0o
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abelian variety of dimension g. Its endomorphism ring End(.</) contains at leal] the scalar
multiplication maps, which form a subring isomorphic to Z. To better comprehend the ring
End(.</), dr0 consider the algebra Q@ ® End(.</): if it contains a deld K of degree 2g, the
variety .</ is said to have complex multiplic€ion by the number deld K or, more precisely, by
the order KN ENnd(.e?). Over number delds, this is a rare situation; but over dnite delds, all
ordinary abelian varieties have complex multiplication.

Recall that, over dnite delds, the Frobenius endomorphism m of a dimension-g abelian
variety .e/ admitsamonic charaCeriDic polynomial Xo of degree 2g, and that this polynomial
uniquely identides the isogeny class of .e/. [TUOD (CCCUU) further eQablished the following,
of which a proof can be found in WOOOOOOUOO and MIOOO (OOOD).

Theorem 11L.1.2. If .o/ § asimpleabelian varicy, WecharaCergtic polynomial of its Frobeni J
endomorphgm g some power m*® of its minimal polynomial, whence Q®End(.<7) g adivgion
algebra of dimension 2eg, and its center K § e Eeld Q(m) = Q[x]/(m(x)) of degree 2g/e.

Se number deld K is known as the complex multiplicGion Eeld of .e7. &e OruCure of
such delds can easily be inveligated since they are quotients of Q[x] by g-\\eil polynomials
X-(X): under the embedding to QQ ® End(.</), the deld K is an extension by the polynomial
X2 — (m+T)X +q of the totally real deld K, = Q(+T). Serefore, complex multiplication
delds are totally imaginary quadratic extensions of totally real number delds K, of degree g.

So far, we have not been too concerned about delds of dednition; we will continue not
to be, due to the following proposition.

Proposition 111.1.3. Endomorphgm rings of simple ordinary abelian variCies deEned over
Enite bCe Eelds are unaleCed by bCe Eeld extensions.

CcUO0ubo ToOl Lot cobiiod MUtoiooooooneg

Complex multiplication also concerns complex tori, and due to their simpler OruCure it
yields a rich theory; many results concerning abelian varieties over dnite delds are reduCions
of results on complex tori. For now, we assume that the base deld isk = C.

Let us drD dx a particular embedding 1 of the complex multiplication deld K in Q@ ®
End(.</). & exponential map sends .</ to a complex torus C?/A, and 1 to an embedding
(" : K — End(C"). Using representation theory, one can prove that, up to isomorphisms of
C?, the map 1 is of the form
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for a certain set ® of g diJinC embeddings of K in C, no two of which are complex conju-
gate of each other, so that all 2g embeddings are in @ LI ®. &is set @ is called the complex
multiplic€ion type of the abelian variety .</.

Isogenies traneort the embedding 1 and type ® from one variety to the next; by the fol-
lowing result, found for inCance as Proposition 0.00 of MIOUD (UUUD), dxing one is equiva-
lent to dxing the other.

Proposition 111.1.4. &ere § a bGeCion bcween e s¢ of Gogeny clCses of simple ordinary
pairs (.¢7,1) and Te s¢ of gomorphgm clCses of primitive types (K, ®).

We will now consider abelian varieties .</ endowed with an embedding 1 or, equivalently,
a complex multiplication type ®.

Conversely, acomplex torus with complex multiplication by a prescribed complex mul-
tiplication deld K and type @ can be conOruCed as follows. Let a be an integral ideal of K;
the g-tuple of embeddings ® maps it to a certain lattice of C? and we may consider the com-
plex torus C%/®(a). To obtain a polarization as a Riemann form E on it, take an algebraic
integer ¢ that generates K/K,., whose imaginary part is totally positive, and whose square is
a totally negative element of K, then dedne E by

ES, (P(x), D)) =tr (£:X )

which takes integral values on ®(a)? and thus induces a polarization on the complex torus
CY/d(a); it is obviously principal since & is invertible. Integral elements x of K can be seen
aCing as endomorphisms of the torus by

(z) e C*— (z,0;(%))

where an ordering on the embeddings ¢ of ® has been dxed by indexing them byi € {1, ...,g}.
Since didJinC orderings yield isomorphic complex tori, @ can be simply thought of as a set.

Other transformations of the type yield isomorphic varieties as well. In the case (where
we assume to be) of simple varieties, we have:

Theorem 111.1.5. A principagy polarized complex tori wiT complex multiplicCion by aring
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&xe complex multiplication deld K embedded in Q®End(.<f) isanimportantinvariant;
however, it fails to capture the exaC isomorphism type of End(.<?), which is precisely what
the order & = KN End(.</) does.

Generally-€eaking, an order @ in a number deld K is a lattice that is also a subring of
the ring of integers 0, — the latter is therefore commonly called the maximal order. In our
context, there is also a minimal order due to the following result of WOOUOTOOOO (UOOM).

Proposition 111.1.6. LC K be Te complex multiplicion Eeld of some ordinary abelian va-
ricy deEned over a Enite Eeld k wiT Frobeni §J endomorphgm . &e orders of K conTining
Z[n,T] are exaCly Tose T¢E arge C endomorphdm rings of abelian varicies deEned over k
wiT complex multiplic&ion by K.

e \krschiebung endomorphgm T can also be written as g, since &xeorem [0 will
show that the degree of an endomorphism is the norm of the corre€onding number deld
element.

Now consider an abelian variety ./ dedned over a number deld k. If p is a discrete place
of k its residue deld k/p is dnite, and we might obtain an abelian variety .<,, over k/p, of the
same dimension as ./, by pushing ./ forward through the quotient map k — k/p; when
we do, we say that .</ has good reduCion at the prime p. Mol things independent from p
reduce nicely:

Proposition11r.1.7. LC .o/ and 98 be two abelian varicCies of Tesame dimension deEned over
anumber Eeld wiT good reduCion € some dgcrce place p. @e n€ural map Hom(.</, 98) —
Hom(.e/,,, 98,) g injeCive and preserves Te degree of Gogenies.

Specialized to an abelian variety .o/ = 98 with complex multiplication, this Dates that
reduCion leaves the complex multiplication deld unchanged and can only make the endo-
morphism ring larger.

When the reduCion 0 of an isqgeny ¢ € End(.&) is separable, tha:[ is, whenever its
degree is coprime to p, then the reduCion map ker(¢) — ker(¢,) is a bijeCion.

NOO-O0000000 VaoIooooo

For completeness, we brieEy address the case of non-ordinary abelian varieties .c/ over
adnite deld IF; the charaCeriCic polynomial of the Frobenius endomorphism is then some
proper power mé with e > 1 of its minimal polynomial.

Contrary to the ordinary case, the endomorphism ring of non-ordinary abelian varieties
might be smaller over the base deld than it is over an algebraic closure.
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Foranelliptic curve, not being ordinary coincides with being supersingular, and also with
the charaCerilic of the base deld dividing the integer 1+ T. Sen, all endomorphisms are
dedned over IF, if and only if g is a square and m =+, /q.

Over delds with square cardinalities, there are thus two isogeny classes of supersingular
curves with all endomorphisms dedned, correeonding to the two g-Weil numbers + /g
Over a quadratic extension, those two become isogenous, but another isogeny class appears.
Supersingular curves with not all endomorphisms dedned can form up to three more isogeny
classes. &uis has been rigorously Oudied by WOOOOOUOUO (UO0OM), and to conclude we sum-
marize his result concerning endomorphism rings of supersingular curves.

Proposition 111.1.8. Endomorph@m rings of supersingular e§iptic curves are
— ifag endomorphgms are deEned: Te maximal orders;
— oTerwge: e p-maximal orders con Tining T;
in Te qucernion Q-algebra ramiked ¢ inEnity and p (Te charaCergtic of e bCe Eeld).

1.2  Orders and Ideals

For a moment, let us turn to topics of algebraic number theory with a computational
Eavor; they will later be put to use when we need to apply complex multiplication theory.

ACl00CDOO obobdd

Orders of a number deld K are lattices (that is, discrete subgroups of full rank) with an
induced ring OruCure; inclusion therefore yields a partial order on orders of K, where the
italicized word is meant in the set-theoretic sense. From now on, we consider orders of a
dxed complex multiplication deld K, and refer to them jull as “orders”; they are contained in
the maximal order 90T = g, and we are particularly intereCed in those containing a certain
minimal order m of the form Z[n, 7]. Since K = QQ(1), there are dnitely many such orders.

Ais induces a dnite 1&tice OruCure (again, in the in the set-theoretic sense) and we will
oEen be &eaking about orders located above or below from others, meaning re€eCively that
they contain or are contained in others. s OruCure extends to ideals: assuming 0 c 0’
are two orders, we have natural maps

3(0") J(0)
a — anao
(Y7 —— b

and while the latter is a right inverse to the former, the converse is not true in general.
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A more satisfying setting arises when we redriC to inAertible ideals of an order @, that
is, fraCional ideals a for which there exiOs another fraCional ideal b satisfying ab = @. All
non-zero fraCional ideals of the maximal order are invertible, but as we go down the lattice
of orders, fewer and fewer are. To measure this notion of depth, we introduce the conduCor,
which measures how far @ is from its integral closure 91.

Definition 11r.2.1. &¢ conduCor of an order 0 § Teideal f, = {xe M : xM C O}.

&e conduCor gives a sullcient condition for invertibility: prime ideals that are coprime
tof, areinvertiblein @. Conversely, up to principal ideals, all invertible ideals are equivalent
to one coprime to the conduCor. As a result, invertible ideals coprime to the conduCor
always have a unique decomposition into invertible prime ideals.

10000 COUll Ghoood

Similarly to class groups of ring of integers, ideal class groups can be conOruCed from
general orders. s conOruCion resembles that of Jacobian varieties in terms of divisors, but
the resulting group diCers in various subtle a&eCs.

Definition 111.2.2. 8¢ Picard group of an order &, denoted by Pic(&), § Te quotient group
3(0)/ Princ(0) of inAertible ideals by principal ideals; it § Enite and abelian.

e Picard group of an order ¢ with conduCor f is related to that of the maximal order
I = Gy via the exaC sequence

1— 0% — M — (M/)* /(6 /§)* —> Pic(6) —> Pic(N) — 1

which shows that Picard groups grow roughly linearly in the norm of the conduCor §; more
precisely, the sequence yields the following formula (wr]ich generalizes the well-known ex-
plicit formula for imaginary quadratic orders) for the cICs number:

#PIC(I) #ON/5)"

#PIC(0) = ——— .
[0 0] #(O[7)

Qe asymptotic growth of the class number of the maximal order h = #Pic(I%) obeys the
following conjeCure of SITDUUI (UUUU) proved by BOOUUD (UU0D).

Theorem 111.2.3. For any sequence of number Eelds K whose cICs number, regul Gor, and dg-
criminant we re@eCively denote by h, R, and A, we have:

logh+IlogR . [K:Q]
— 1 C —0
log /] log|A|
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And we note that, for the delds K we are moO intereCJed in, namely quadratic and quartic
complex multiplication delds, the regulator is re€eCively R = 1 and R = O(log |A|).

Picard groups are compatible with the lattice-of-orders OruCure:

Proposition I11.2.4. LC & C 0" be two orders. &1e map a — a0’ for inAertible ideals a of
O coprime to f,,, induces a surjeCive morphgm of Picard groups.

Qeerefore, if some set 9B of ideals of the minimal order m generates its Picard group, it
can be mapped into generating sets for each order above m. We form the free abelian group
7B, and let A, denote the I Ctice of relions of &, consilling of tuples (\) g for which the
produC [l 0)" is a principal ideal of @. &is gives a description of the Picard group as

Pic(0) = ZB /N,

and when one order is contained in another, their lattices of relations are too.

cuoobobo oboodd

To lid all possible endomorphism rings, that is, all orders containing m = Z[n,T], one
could simply focus on the lattice OruCure: subgroups of the quotient group 9t /m can easily
be enumerated, and each yields a lattice that contains m; elementary techniques can then tel]
whether such a lattice is closed under multiplication.

Ausapproach is inelcient as mol lattices are not orders, but also inadequate since there
might be exponentially many orders above m. We can bound the conduCor gap as follows:

Lemma11L.2.5. @eindex [0 : m] § bounded Eom aboAe by 29¢-Dg%/2 where q § Te norm
of mand 2g its degree.

Proof. Recall that [90% : m] is the square root of disc(m)/ disc(9t). &e discriminant of the
maximal order 2t can be small so we simply bound that of the minimal order m using

|disc(m)| = |disc(Z[n])|/ [Z[n,ﬁ] : Z[rr]]2 .
Ze numerator can be bounded by (2,,/g) ™"
For the denominator, we have [Z[n,ﬁ] : Z[n]] = q@ from which the result follows. [

since X isa g-\\eil polynomial of degree 2g.

InOead of enumerating all orders, we will navigate the lattice of orders and locate the en-
domorphism ring using complex multiplication theory. &e proposition below shows that
it sulces to go up or down by small powers of primes. Due to the lemma above, only poly-
nomially many descending Ceps in g and log(q) are needed to reach m from 9.
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Proposition 111.2.6. Consider two orders 0" C 0 of rel€ive index divgible by a prime £.
aere exgts an order ©” in b&ween whose index in @ @ in {€,€2,...,0%971} where 2g = deg K.

To prove this, let @” be the order generated by £ and @”: since 0 has index €% in @
and both contain Z, its index in @, and therefore also that of @”, muO divide €22,

Consider now the problem of going down, that is, enumerating all orders contained in a
prescribed order @ with index n (to go up the process would be entirely equivalent).

In discussions with EOOD, we devised a simple method to enumerate all orders contained
inaprescribed order @ with index n. &e integer n should preferably be a small prime power
to limit the size of the output; this amounts to considering the lattice of orders locally at
this prime. When we only consider endomorphism rings of principally polarized abelian
varieties, we can further reriC to those orders that are closed under complex conjugation.

Fix a Z-module basis (w;) of & so that each sublattice is uniquely identided by a basis
(0= Za” .) in Hermite normal form, meaning that the mtegral matrix (a;;) is upper trian-
gular has non-zero coe[cients on the diagonal, and satisdes a; < a;; for i # j; see Chapter [1.[
of CUUUO (UUUD) for details. Such a sublattice is an order if it contains all produCs

oy = Za”aumw/—z Zauaum Wy

/
bl @)

where the veCor m'” expresses w,w; on the basis (w, ); this veCor and the polynomial bﬂ only
depend on @. &erefore, aisan order if and only if, for all j and j/, the preimage of the veCor
bl by the matrix a has integral coordinates; for sublattices of index det(a) = n, this gives:

Proposition 111.2.7. Ag ordersconTined in & wiT index n corregond to solutions of e poly-
. _ i’ a —— . — .
nomial sydem (n-a) b’ = 0 mod n¥Z% in e coecients of Te mcrix a.

Unless there are 0 or Q(n) such orders, this syllem is nonsingular and its solutions can
be liled by a Grobner basis algorithm in time polynomial in log n albeit exponential in g.

cUDooonoo cboot Ghoooo

Fix an order @ and consider computing its Picard group; this requires a generating set
of ideals for Pic(&), an e[cient ideal multiplication algorithm, and a way of dnding a dis-
tinguished representative of the class of a prescribed ideal, which we call reducing an ideal.
Under the generalized Riemann hypothesis (GRH), BUULT (UOOU) solved the dr0d problem:
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Theorem 111.2.8. Assume e GRH and I¢ @ be e ring of integers of a number Eeld of d-
criminant A. &e clCs group Pic(@) § generced by prime ideals of norm & moll 12log? |A|.

Note that a less explicit, but more precise result of [, MIOOUO, and VOOUOOOOOC
(0O00), which also assumes the GRH, implies that, for any € > 0, the class group of any
order O is generated by prime ideals of norm less than O(log?**|A|), where A = disc(©).

Let B be the set of prime ideals with norm less than some bound B, and dedne

o, { z® — Pic(ﬁ)n
n — Jlesp™
By the results above, when B is big enough, the map o, is surjeCive and therefore we have
Pic(0) =~ ZB N,
where the lattice A, is the kernel of o,
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1n1.3 Plain Complex Multiplication

We have seen that endomorphism rings of ordinary abelian varieties are isomorphic to
orders in number delds, and have then considered their ideals from a computational Oand-
point. Let us now explain how these ideals can be seen as aCing as isogenies.

Ais aéeC of complex multiplication theory will be referred to as the plain aCion, as
opposed to the polarized aCion to be discussed later. s seCion, does not assume that iso-
genies preserve any polarization OruCure of abelian varieties, and borrows many results of
WOOUUOOOOO (Oooo).

FIOIOC FIOOO sboonoo

Let @ be an order isomorphic to the endomorphism ring of a simple ordinary abelian va-
riety .o/ of dimension g dedned over adnite deld IF,,. e additionally consider an embedding
1: K — Q®End(.¢/) of the number deld of 0 its elements are then seen asendomorphisms
of .</. An isogeny ¢ sends the variety .« to the variety 2 = ¢(.«/), and also maps an em-
bedding 1 for ./ to an embedding for 28 given as (1) = Klg@(p olo 6 where 6 denotes the
dual isogeny. In faC, we have:

Proposition 111.3.1. I 1§ an embedding of K into Q ® End(.</), ag o1 er embeddings 1'are
of e form @(1) for some endomorphgm ¢ of .</.

Let ./ be such an abelian variety endowed with an embedding 1 of & into its endomor-
phismring, let a be an invertible ideal of @, and consider the isogeny ¢, : .o/ — .o/ / ker(¢,)

with kernel
ker (9,) = ﬂ ker (1(a)) .

aea

ForinOance, if a isa principal ideal (a), then the kernel of g is simply that of a; therefore, @,
is nothing but an endomorphism whose separable part coincides with that of a (recall that
the totally inseparable part of an isogeny is not charaCerized by its kernel).

Now consider the composition of two such isogenies: let .o be an abelian variety, a be
an invertible ideal of & = 1=*(End .</), and denote the corre€onding isogeny by ¢,, : .o/ —
A; then, let b be an invertible element of p(1)~(End 98), and denote the corre&onding
isogeny by @, : 98 — €; in that situation, the isogeny @,, o ., corre€onds canonically to
Qap - & — 6. Insimple terms, composing isogenies corre€onds to multiplying ideals.

As a consequence, there is a well-dedned map

aePic(0): & e AV ,4(K) — 0,(27) € AV(K)



(00.0. 00000 0DO0Coo Looooooibtoion go

where AV(k) denotes the set of isomorphism classes of abelian varieties dedned over k, and
AV (k) the subset of such classes with endomorphism ring @'. Since the above is an isogeny,
the complex multiplication is unchanged and we have Q ® End(.</) = Q ® End(¢,(.«/));
note that, for elliptic curves, End(g,(.</)) is aCually always equal to End(.</) as Proposi-
tion [IZ0.0 will show, but in general we might only have End .e/ C End(¢,(.</)).

CUD0000 ECCIDUID TODOOD

For elliptic curves, WOOUUOUOUD (UUOD) proved that the image of the map above is
aCually AV, (K), and that the aCion of Pic(©) on AV ,(K) this dednes is transitive, which
means that for any elliptic curve ./ with endomorphism ring &, the map a — ¢_(.</)
induces a bijeCion between Pic(0) and AV, (k). Se €ecidc approach that he used then
enabled him to eablish a similar result for (non-polarized) abelian varieties. Here, let us
describe a more Oandard way of seeing this on elliptic curves, using complex tori.

In the elliptic case, the use of complex tori to obtain results over dnite delds greatly ex-
ploits the following liEing theorem of DUOLIOT (DOOD).

Theorem 111.3.2. L€ o be an endomorph@m of an ediptic curve .o/ deEned over a Enite Eeld
F,. axere exgts an endomorphgm { of some abelian varicy 98 dekned over a cer Tin number
Eeld which, modulo some prime p aboAe p of good reduCion, reduces precgely to a € End(.<7).

In the case where End(.«/) = Z[a], the variety 98 of the above theorem has Z[f}] as en-
domorphism ring and reduCion induces an isomorphism End(28) =~ End(.<?), since we saw
earlier that endomorphism rings of abelian varieties dedned over number delds are mapped
injeCively into that of their good reduCions at prime ideals. Endomorphism rings of ordi-
nary elliptic curves are always of the form Z[a], so in this case there always exil liEs with the
same endomorphism ring.

Conversely, for the ordinary case, we need to reduce modulo primes totally €litin 0

Proposition 111.3.3. LC ./ be an egiptic curve wiT endomorphgm ring 0 deEned over a
number Eeld. Take an unramiked prime p, and ICp=pNZ. aen:
— ifp glits complcely in @, Ten Te reduCion -/, g ordinary and deEned over F,.
— ifpginertin @, Ten TereduCion -/, § supersingular and deEned over Fp.
Now, over the complex numbers, an elliptic curve with endomorphism ring & always

corre€onds to a complex torus C /b where b is a certain ideal of @. e aCion of invertible
ideals a of & on AV ,(C) can then be seen as

a:C/beAV,(C)— C/(a"b) € AV, (C).
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&is aCion is obviously transitive, and two ideals a and a’ aC identically if and only if they
are homothetic, that is, if and only if they belong to the same class of Pic(&). &erefore, this
aCion faCors through the Picard group into a faithful and transitive aCion of Pic(&) on
AV ,(C); modulo prime ideals p of norm p, it reduces to the aCion of Pic(&) on AV, (F,).

Theorem 111.3.4. LC O be an imaginary quadrcCic order. For egiptic curves deEned over a
Enite Eeld k, Te aboAe deEnes a faiTful and transitive aCion of Pic(€) onto AV, (K).

We mul dnally mention that this aCion can also be seen on inAariants of elliptic curves:
if B € AV ,(C), its invariant j( 28) lies in the ring cICs Eeld of @, which is an abelian exten-
sion of K = Q(&) with Galois group Pic(€). &e aCion of Pic(0) on AV ,(C) is then that
of the Galois group via the Artin symbol.

GUO0O0000 ADDOIDD vdOoooooo

Ae situation in higher dimension is far from being as nice as in the elliptic case. Certain
properties nevertheless hold as they should, such as the following one of GIDUO (OOOD).

Theorem 111.3.5. LC .o7 beasimple ordinary abelian varicy deEned over a Enite Eeld; if a §

an infertible ideal of its endomorphgm ring, Te degree of We §ogeny ¢, § Tenormof a.

Ae transitivity of the aCion of the Picard group, which would generalize the result on
elliptic curves above, has only been shown to hold in the case that the endomorphism ring
of ./ is maximal by WOOUOOUOUO (U000); to prove this, he drd argued that all invertible
ideals are, in his terminology, kernel ideals, which implies the following.

Theorem 111.3.6. LC .of beasimple ordinary abelian varicy deEned over a Enite Eeld k, and
Csume T¢€ End(.</) § a maximal order 6, ; Ten, for any inAertible ideal a of 0 :

— Teendomorphgm ring of ¢, (.</) § exaCly T€ of .o/,
— Teinduced aCion of Pic(6, ) on AV (k) § faim ful and transitive.

& number of isomorphism classes of simple ordinary abelian varieties with endomor-
phism ring some maximal order g can thus be edimated using the conjeCure of SIOOOC
(U00O) proved by BOOUUU (UOOD); as a direC consequence of Lemma [0, we have

disc(Z[n, ) < 2290-Dg¢

which gives, as g is dxed and g goes to indnity, the asymptotic behavior

#AV,, (F,) = #Pic(0y) < g /2@,
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In our application, we wish to use the above theory for maximal orders as well as non-
maximal ones. &xerefore, we rely on the following consequence of the results above, com-
bined with the observation that, if the norm of an invertible ideal a is coprime to &, since it is
also the degree of the isogeny ¢, then the index [End(¢,.<7) : End(.e?)] cannot be divisible
by €. Note that we proved the contrapositive Oatement earlier.

Proposition 111.3.7. L€ ./ be a simple ordinary abelian varicy deEned over a Enite Eeld k,

IC 1 be its Frobeni § endomorphgm, IC K= Q(m), and IC & C K be its endomorphdm ring.
ae infertible ideals of @ of norm coprime to e dgcriminant of Z[, @ aC on AV, (k) C

gogenies of degree Teir norm, and T deEnes a fai T ful aCion of Pic(€) on AV, (K).

To make this proposition eJeCive, we need to compute the isogeny 0, Denoteitsdegree
by £; since £ = N(a), we can Oart by enumerating all subgroups of cardinality £ of the full
£-torsion subgroup ./ [£]. Recall than even when @, is rational, the points of its kernel need
not be individually, but they are colleCively invariant under the Galois aCion. Still, we need
apraCical way of telling ¢, apart from other isogenies of degree €.

ae improvements of ADOIO and EDOIOC to the elliptic curve point counting method
of BUOUUD (UUUU) exploit certain a€eCs of complex multiplication theory. In particular,
they give a means to determine which €ecidc isogeny of degree £ correeonds to @,,. It was
also written as Stage [ of the algorithm by GUUUUUIOL, HUOU, and SCTOOU (TOOT).

s result aCually holds for general abelian varieties, which follows elementarily from
the theory of Tate modules (from which mo[J of the results that we Cated above are derived);
we therefore Oate it in its full generality.

Proposition 111.3.8. LC .o/ be asimple ordinary abelian varicy deEned over a Enite Eeld, 0
its endomorphdm ring and 1 € & Te element corregonding to its Frobeni § endomorphgm.
L& a be an inAertible prime ideal of @, written C 0 + u(m) @, where £ § its norm and u
§ an irreducible faCor modulo £ of e charaCergtic polynomial X, Of e primitive element m.
Assume T C £ § coprime to Te dgcriminant of Z[m, T].
aen, Te charaCerdtic polynomial of We Frobeni § endomorphdm aCing on ker(g,) g u.

aus proposition cannot be readily applied to non-prime ideals a, but we will explain
later how this issue can be dealt with.
111.4 Polarized Complex Multiplication

In praCical computations, abelian varieties are represented as Jacobian varieties of hy-
perelliptic curves or as theta-coordinates. Since both naturally work with principal polar-
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izations, complex multiplication theory needs to be adapted to take this extra OruCure into
account. Mol of this theory originates from SUILOO0 and TOOIOOCIO (OOOO).

Asin the plain case, we (art by considering complex multiplication delds before focusing
on the €ecidc endomorphism ring order and the aCion of its ideals.

ROO00D FIDOOC DO0 MO0

Recall that if .e7 isan ordinary abelian variety of dimension g, its complex multiplication
deld K = Q ® End(./) is a totally imaginary quadratic extension of a totally real number
deld K, of degree g, and that a complex multiplic€ion type on K is a set of embeddings of K
in C satisfying @ LI ® = Hom(K, C) where the union is disjoint.

Here, there is aCually no need to involve C, or even the algebraic numbers @ since the
image of any embedding of K is necessarily contained in its normal closure K®. From now
on, we therefore consider complex multiplication types given as sets of embeddings of K to
its normal closure; this is equivalent and allows for a simpler exposition.

Definition 111.4.1. LC ® be a type of K. &e reEex deld K" § Te Exed Eeld of
{oeGal (K" Q) : ®=do0},

“Te automorphgms of K° leaving ® globady inAariant. It admits a unique reEex type ®" which

g e re0riCion of automorph@ms of K whose inAerses yield & when re0riCed to K, T€ §,
{oeAut(K°) gl e @'} = {o! e Aut (K°) : | € P}.

More generally, for any deld extension K’ /K, the type {¢ € Hom(K’,K") : | € ®} is
called the induced type by @ on K’. Types ® which are not induced from a OriCly smaller
subdeld are said to be primitive. Simple abelian varieties have primitive types, and in that
case, we canonically have K'" = K and ' = @,

Dedne the type trace try, : X € K — 3 ¢(x); its image aCually generates the deld K"
and this can be used as an equivalent dednition for the reEex deld; more importantly, dedne
the type norm

Ny :xe K [ Jox) eK'
Ped
(it is elementary to verify that the images of both these maps are in K"). &ere is also a regex
type trace tr,r and a regex type norm N, : K' — K.

Qe latter is particularly important to us, as we will make great use of it via the map it
induces on Picard groups: if a is an ideal of g, there is a unique ideal of &, , which we write
Ngr (a), such that

Ngr(@)0¢: = | Jo(a) o
PP
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(see for inOance Proposition 00 in Chapter 11 of SOICOOO (OCOC)). By the above, the map
Ngr : I(Or) — T(G) induces a morphism of Picard groups, which we also write similarly:

Ngr : Pic(Gyr) — Pic(0y)

TOO POOOOIOCD COOOO GLODO oo soioood

Fix a primitive type @ of a complex multiplication deld K of degree 2g, and denote the
totally real subdeld of K by K.

Recall that a triple (P, a,§) yields the principally polarized complex torus C¢/®(a) with
the polarization ES, ; Zeorem [IIT11] explained that all tori arise in this way and gave neces-
sary and sulJcient conditions for two triples to yield isomorphic polarized varieties.

Following SeCion 00 of SUILIUM (UU0W), a group €(0) can be conOruCed so as to
naturally aC on this set of triples representing isomorphism classes of principally polarized
abelian varieties:

0. Let P be the group of pairs (a,p) where p € K, is totally positive and a is a fraCional
ideal of @ satisfying aa = p&, endowed with component-wise multiplication.

0. Let I be the subgroup formed by the (u@, ) for e K.
0. Let €(@) be the quotient group P/1.

As a consequence to &eorem [IL.0.1, we therefore have:

Corollary 111.4.2. For 0 = 0, Te group €(0) aCs faiTfugy and transitively on ¢ s¢ of
gomorphgm clCses of principagy polarized abelian varicies having complex multiplicGion by
O Wit type ®. In particular, Tey have Te same cardinality.

It might be easier to underCand the group &(0) as part of the exaC sequence
U(K) — U*(K,) — €(0) — Pic(0) — Pic*(0,)

where the implied maps are, re€eCively, the norm of K/K,, the embedding p — (0, p),
the projeCion (a,p) — a, and the map a — aa N K,; also, U*(K,) denotes the totally
positive units of the totally real subdeld K, and Pic* (&, ) denotes the quotient of the group
of fraCional ideals of @ NK, by those that admit a totally positive generator.

Intuitively, the class group Pic(&) aCs on the set of abelian varieties up to isomorphism,
as proven by WOOOUUUUUU (UULU) for @ = 0; the subgroup Pic* (0, ) encodes the dif-
ferent ways an isogeny can alter polarizations, and the group U* (K, )/ Ny /K, (U(K)) corre-
eonds to isomorphism classes of principal polarization.
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For in0ance, in the case of dimension g = 2, when the totally-real subdeld K. contains
aunit of norm —1, which exaCly means that its fundamental unit is not totally positive, the
quotient U™ (K, )/ Ny /K, (U(K)) is trivial so we have a one-to-one map:

€(0) — ker (Pic(0) — Pic*(0,))

Although the computation of the polarized class group €(&) of Shimura is a much less
classical topic than that of Picard groups, it is not more diCJcult; for inOance, we note that
similar groups have been Oudied from an algorithmic viewpoint by COUUO, DIOO T DO
and OUJUIUL (UULL).

PODOOIDOD ADOIOO

AQereisaparticular subgroup of the polarized class group of Shimura formed by elements
arising as Galois aCions. Here, we give asimplided exposition of this general theory and refer
to SeCion 00 of SUILUUL (UUUT) for a more robul conOruCion.

Let ./ be a principally polarized abelian variety dedned over C with complex multipli-
cation by the maximal order 0, of a deld K with type . In faC, the abelian variety ./ can
be dedned over the Hilbert class deld .7 which is the maximal abelian unramided exten-
sion of the reEex deld, and in particular its inAariants lie in that deld; the aCion that we now
describe can be seen as that of the Galois group of s via the Artin symbol.

Theorem 111.4.3. InAertible ideals of K™ aC on polarized tori wiT complex multiplicGion by
Ok WIT type @ via

v I(K"): C/ (@), B}, — C/ (Ngr (1) a) £, ™,

anideal gaCs triviagy when its reeex type norm ideal N () §aprincipal ideal of 0} generced
by an inAertible element p € K™ which s€§Ees puji = NKr/Q('C).

Recall that the set of principally polarized abelian varieties with endomorphism ring 0
is aCed upon faithfully and transitively by the polarized class group €(6,) of Shimura. Se
isogenies that arise via the reEex type norm (by theorem above) therefore aC as the subgroup
of &() formed by the elements

(No®): Ny /()

where v ranges over ideals of 0. We emphasize that other elements of () also aC as
isogenies, but that they might not be rational.

For indance, in dimension two, if (a,£) € €(0;), and £ totally €lits as ppqq in K, then
the possible values for a are pq, pg, and their re€eCive conjugates; in that case, £ also €lits
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completely in K" and the reEex type norm maps the prime faCors of £6 onto those four
elements of € withwnorm €2, In other cases, elements of €(&) of norm €2 might not be in
the image of the reEex type norm.

ROOOODIO0 DO FIOOOO FIooDo

We brieEy review how the aCion that we have jul) dedned tran€orts to dnite delds, in
the case of simple ordinary abelian varieties of dimension two. For details, we refer to the
work of GOUUO (UUOU) and GUUOO and LOOOOO (OO0M).

We drlJ consider a principally polarized abelian variety .</; dedned over a dnite deld of
charaCeriDic p; given any embedding 1, of O into End(.</;), implying that .7, has complex
multiplication by &y, there exils an abelian variety .e/ dedned over a number deld and an
embedding 1 : G — End(.</) which, at a certain prime, reduce to .<7, and 1, re&eCively.

Conversely, if .o/ is a simple polarized abelian variety with complex multiplication by
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solely exploiting the aCion of (&) under the type norm, or that of certain elements (g, £)
for primes £ elitting in K as qq. In other cases, this requires additional hypotheses, which
we will then &ecify.
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Yairing-Uriendly ZaricCies

1v.1  Cryptographic Requirements

e use of pairings enables many cryptographic protocols; as we have mentioned before,
cryptography-grade pairings, that is, pairings which can be evaluated e[Jciently and are hard
to invert, are only known to be dedned on abelian varieties.

Here, we drJ review cryptographic requirements for pairing-based conOruCions, and
then consider how abelian varieties satisfying these conditions can be generated.

GUOC0OC coOoitbooonnan

Let ./ be an abelian variety dedned over a dnite deld IF, and containing a cyclic sub-

group of order r. &e embedding degree e(r), also written e when there is no ambiguity on the
subgroup, is dedned as the smallel integer such that the Weil pairing

Waneil - A [M1(F ) x A [1](Fe) — 1, C F;e

is non-degenerate; extending a result of BUUUUUUOUOUUIOD and KOOOIOO (U00D), RTH
HI0 and SIDOUOOOO (UOOO) proved that, if r does not divide g — 1 and the degree of the
polarization of .<7 is coprime to r, then e divides the order of g modulo .

Using this pairing for cryptographic purposes imposes the following:

0. It muld be computationally infeasible to solve discrete logarithm problems in .e/[r].
0. Itmul be computationally infeasible to solve discrete logarithm problemsiny, C IF;.

0. 1t muO be praCical to compute over the deld Fe.

0o
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ae lal condition ensures that the algorithm of MIJOUO (UUO0) evaluates the Weil pair-
ing eCciently. Note that many conOruCions do not direCly use the Weil pairing but rather
variants of it that enable evaluation €eedups by small faCors; however, from avariety genera-
tion point of view, this makes little diClerence: so long as deld operationsin I can elciently
be computed, pairings with embedding degree e can be evaluated with more or less eCort.

Later, it will be convenient to allow r to be a prime times a small cofaCor; this does not
invalidate the above: the security simply re(s on the larged prime faCor of r.

Qiere are two big decisions to be made:

Binary or prime fields? Fields of charaCerilJic two (also known as binary delds) are suited
to elJcient hardware implementations; on the other hand, soEware implementations
work equally well with prime delds.

Supersingular or ordinary varieties? Supersingular varieties are easy to generate and read-
ily have small embedding degrees; however, they are quite €ecial and have an easy
decisional DiCJe—Hellman problem.

We choose to work with ordinary varieties dedned over prime delds. Some authors argue
that prime powers with exponent greater than one have density zero amongQ prime powers,
but here we julify this choice by its convenience and the faC that it avoids Weil-descent
attacks altogether. Although attraCive for the design of cryptographic protocol, the prop-
erties of supersingular curves can be seem unnecessarily €ecial; they are moCly interelding
over delds of small charaCeriOic, and it is not so challenging to generate them.

To avoid walJing bits, we wish to balance the expeCed hardness the discrete logarithm
problem in the abelian variety .o/ (F,,) and in the group y, C IF; as they are rendered equiv-

alent py the pairing. When q is a prime power, HIOD (O00T) warned that . might reside in
a 0riC subdeld of IF;:, leading to faller attacks on its discrete logarithm problem. However,

this problem does not arise when q is prime.

Al00O0000000

Suppose .¢/ is an ordinary abelian variety of dimension g dedned over a prime deld I,
of which the discrete logarithm problem and pairing are considered for cryptographic use.
By the Pohlig—Hellman reduCion, it is sulJcient to consider its large[) prime subgroup .#;
we denote its order by r and its embedding degree by e. In order avoid attacks on high-genus
varieties, we furthermore assume that g = 1,2; this conveniently enables us to use the fall
arithmetic of Jacobian varieties of hyperelliptic curves.

To measure the cryptographic eCciency, dx g and let q go to indnity: the complexity of
additions in .</ (I, ) is polynomial in log g; disregarding the pairing, the discrete logarithm
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problem in .</ () achieves an expeCed security of %Iog2 r bits. Hence, we introduce the
quantity
_glog,q
log, r

which, since #.¢/ (F,) ~ ¢, also indicates the proportion of bits used to represent points

of ./ (F,) that aCually contribute to the security of scheme: if p = 1 then nearly all of the

variety is put to use; if p = 2 then only half of the bits are needed to identify points of 2.
Recall the bed-known bounds on the complexity of solving discrete logarithm problems:

0. Discrete logarithm problems in .</ (F,,) can be solved in O (r1/2+°(1) log q).
0. Discrete logarithm problemsin ]F;e can be solved heuriCically in L“l/3 (9f).

To solve the drd problem, in general, no better algorithm than generic ones is known, for
which a lower bound of /¥ is proven; the other term in the complexity denotes the colJ of
operationsin .o/ (IF,). Many variants of the number deld sieve can be used to solve the second
problem: the method of MUJUUUUII (UUOT) applies to prime delds, and that of [0 and
LOOOOOO (OO0 is particularly adapted to extension delds such as here.

In the moCJ eCeCive case that p = 1, balancing the two complexities above requires

1
L loggloglogg=c (elog q)l/3 (loge +log log q)z/3

which implies e ~ (%)3 (% log q>2 loglogq and shows that the embedding degree should
grow quadratically in the size of the base deld; this is another reason to avoid supersingular
varieties: since their embedding degrees are uniformly bounded as ¢ is dxed (see below), they
do not scale well to higher levels of security.

POCOOOCOO

To seleC the parameters g and e according to the level of security chosen (or equivalently
the desired date until when the cryptosyllem should with(Jand attacks), the col of attacks
on the discrete logarithm problems in both dnite delds and abelian varieties mul] be care-
fully considered. Various agencies and organizations regularly publish updated tables liJing
parameter tuples for various security levels, such as ECRYP T TT (UUO0) whose table was fea-
tured in the dr{d chapter. Mo0 agree that pairing-based cryptosy(Jems aimed at being secure
beyond 0000 should have a 256-bit r and a 3248-bit g°; as usual, more is better.

2 praCical col of an attack can be eCimated by using timings of previous attacks to
calibrate the big-O (and possibly other) conOants in the asymptotic complexity; this usually
gives a fair edimation for larger inances. Here, we need to control both the hardness of
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e/p=36
efp=12

! ! !
4 128 192

ONFS loglﬁ (4 10g2/3 log(4)

FIODOD 0. &e abscissa bounds the security level of the discrete logarithm problem in IF;
while the ordinate does the same in 6"/]Fq. &e diagonal represents the optimal case that
these are balanced. Zxe curves plot what elliptic curves achieve for seleCed values of e/p.

the discrete logarithm problem in the curve and the embedding deld. Figure [] does such a
rough analysis for the parameters (p, e, q) of pairing-friendly curves. It shows, for inJance,
that 128 bits of security are be( achieved by elliptic curves for which e/p = 12, with the moC
preferable choice of p = 1 implying that e = 12 and q = 22%,

Before explaining how to generate elliptic curves and abelian varieties with the above
properties, let us drd say a bit more on supersingular varieties.

SOO0boIobOoon voooooooo

While ordinary varieties are the generic case, supersingular varieties are the other ex-
treme: recall that supersingular abelian variCies are dedned as being isogenous to powers
of supersingular elliptic curves (elliptic curves with zero p-rank) or, equivalently, as having
Frobenius endomorphisms that satisfy " = +q"/2 for some integer n.
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aeir cryptographic intered Oems from the following result of GUOOOOIOO (UOOO).

Proposition1v.1.1. &¢embedding degree of any subgroup of any g-dimensional supersingular
abelian variCy deEned over a Enite Eeld § uniformly bounded by some quantity e,.
We have for inJance e; =6, e, =12, e; =30, ¢, = 60.

For certain types of base delds, the bound e, can be lowered: the optimal bound for e is
4 in charaCerilic two, 6 in charaCeriDic three, 3 in higher charaCerilic, and 2 over prime
delds with more than three elements.

An intere0ing feature of supersingular varieties is the exiOence of dgtortion maps, that is,
non-rational endomorphisms. For ordinary varieties, we have seen that all endomorphisms
dedned over an algebraic closure are also dedned over the base deld, so their deld of dednition
makes no diCerence. However, for supersingular varieties, there exild endomorphisms which
do not commute with the Frobenius endomorphism.

Such dgtortion maps g are useful in cryptography because they send points of the ra-
tional r-torsion subgroup to points of .¢/ [r](F) which might not be rational. &en, the
application

(P.Q) € . [rI(F,)* — Wy (U(P), Q) € 1,

is a “self” pairing which is a very attraCive objeC to build cryptographic primitives on, as
its domain is the Cartesian produC of two copies of the same cyclic group of order r, rather
than the Cartesian produC of two diCerent ones.

On the other hand, this makes the decisional DiCJe—Hellman problem easy, since for any
triple of integers (a, b, ¢) and point P on .</, one can verify whether ¢ = ab given P, aP, bP, cP
by checking whether

Wineit (W(@P), bP) = Wyeiy (W(P),P);

from a security viewpoint, this can be seen as an undesirable property. Naturally, many pro-
tocols take advantage of that situation as well.

Since embedding degrees of supersingular curves are bounded, the base deld size muOd
grow more than linearly in the desired security level in order to avoid discrete logarithm
attacks in IE‘;e via the pairing; this lack of scalability is unpraCical in the long term, and we

now shiE our focus to the ordinary case.

1v.2  Complex Multiplication Method

&e problem of conOruCing ordinary abelian varieties dedned over a dnite deld on which
pairings are eClciently computable (meaning that the embedding degree is small) is an aCive
topic of research.
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&is seCion describes the so-called complex multiplicGion méhod for generating ordi-
nary abelian varieties with prescribed endomorphism rings; as a consequence, it also gener-
ates varieties whose Frobenius endomorphism have prescribed polynomials. Since the exis-
tence of a subgroup of order r with embedding degree e only depends on this polynomial,
the next seCion will exploit this method to generate pairing-friendly varieties.

SO000000 00 POIOIDO-FONDOO0D VOOIODooO

As we have argued before, abelian varieties of dimension g = 1 and 2 are the mo[J suit-
able for cryptosylems which rely on the discrete logarithm problem. When no additional
OruCure (such as a pairing) is required, abelian varieties need jul] have a near-prime group
order, and are be[d generated by random search, which additionally reduces their likelihood
of having undesirable &ecial properties. For elliptic curves, such computations are classical,
and for g = 2 it was recently demonDOrated praCical by GUOUUD and SULOUD (UO0D).

When, on top of a near-prime group order, one seeks a small embedding degree, this
approach is not feasible anymore due to the scarcity of abelian varieties with the desired con-
dition. More precisely, BUIUDOUUUOOOUOD and KOUOUOD (UOCO) proved the following.

Theorem 1v.2.1. Gereare & mol) MY/2°® gogeny clCses of egiptic curves & /F, wiT prime
order and embedding degree less Wan log? p, where p § a prime in {M/2, ..., M},

Since there are roughly M3/2 isogeny classes of elliptic curves dedned over IF, withp €
{M/2,...,M}, thisis a pretty slim fraCion of the total. COOU00 and SUUOO (U000 recently
gave a similar result for dimension-two abelian varieties:

Theorem 1v.2.2. LC H and K be positive integers, Te number of pairs (p, N) where N § Te
order of a dimension-two abelian variCy dekned over F, wiT p € {M/2,..,M}, such TC

N = hrwhere h < H, r § prime and hC embedding degree less Tan K § & moll M3/2(MHK?
for M large enough.

Since there are roughly M>/2 pairs (p, N) arising as orders of two-dimensional abelian
varieties, this gives, similarly to the one-dimensional case, a probability of p=**°® of dnding
a pairing-friendly abelian variety by random search over F,.

e theory of complex multiplication provides a method for generating such varieties
e[ciently. &uis involves two Oeps: we will drld describe how varieties with prescribed en-
domorphism rings and prescribed delds of dednition can be conOruCed using the so-called
complex multiplication method, and we will then consider charaCerizing pairing-friendly
varieties in terms of their endomorphism ring and base deld.
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CDhOC00 0hooooooooo

Since abelian varieties of dimension three or more are not intere(Jing for cryptogra-
phy, we redriC to Jacobian varieties of hyperelliptic curves < since all principally polarized
abelian variety of dimension one or two are of this type. &is allows to use invariants which
uniquely identify the isomorphism class of such a variety and are expressed as rational func-
tions of the coe[Jcients of an equation for €.

Fix a genus g and a family of invariants (1,) that uniquely identify birationally equivalent
classes of hyperelliptic curves. For inCance, in dimension one, the j-inAariant

28333
2%a +3%p?
(where we have assumed the charaCerilic to be diCerent from 2 and 3) alone suCJces. In
higher dimension, as we have mentioned before, more invariants are necessary.
Let @ be the order of a complex multiplication deld K of degree 2g, that is, a totally
imaginary quadratic extension of a totally real number deld. SUOUOU (DOCO) drO proposed

to encode the information about all abelian varieties .¢/ of dimension g dedned over the
complex numbers into the following polynomial

#°0=" 1 =1,

(.o End .o/ =0}

Gy =x3+ax+h— (€)=

where .¢f ranges over isomorphism classes of abelian varieties. In dimension one, they are
usually called Hilbert cICs polynomials when @ is the maximal order of K, as their roots, the
invariants of abelian varieties with endomorphism ring @, generate the Hilbert class deld of
0’; for non-maximal orders and in higher dimension, these lie in the ring class deld of & and
the polynomials are simply known as cICs polynomials.

WO (OOOO) later developed this theory and explained how these polynomials could
be used to generated abelian varieties over dnite delds with prescribed endomorphism ring,
as we will soon explain. When there are two invariants or more (that is, for g > 1), these
polynomials do not encode which root of %”lﬁ correéonds to which root of 3@@ fori>1;
in other words, the invariant tuples we are intereCJed in are loOd among [ tuples of unrelated
invariants.

To address this issue, GUOUOL, HOOOOOOL, KOOU, RICOOOOOOO0O, and WO
(U0UD) interpolated the values I;(.e7) at the 1, (.e/): they dedned

A= D ) [T x=1(8))
End.o/=0 End B=0
Bof.of

for i > 1. &uis encodes exaCly the information wanted.
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ROOOOOIO0 0O PUIOC DOOOOO

Let .o be an ordinary abelian variety with complex multiplication by ¢ dedned over
some number deld, and let p be a prime of degree one at which the reduCion <y, of o is
itself an ordinary abelian variety dedned over IF, where p is the rational prime below p. Since
invariants are compatible with reduCion, we have () = 1i(-),.

As the endomorphism ring of .</ is mapped |njeC|ver into that of ./, we have 0 C
(End .¢/p); when @ is the maximal order, equality mull hold, and this is also the case for any
order When -/, is an elliptic curve, due to the Deuring liEing theorem.

onsequently an abelian variety with complex multiplication by & dedned over a dnite
deld can be found using the following algorithm.

Algorithm 1v.2.3.
I0000: A prime p, and an order @, eiwer imaginary quadrCic
or maximal in a quartic complex multiplicGion Eeld.
O00io0:  Anabelianvaricy .o/ /IF, wiT End.o/ = 0.

0. Compute Te cICs polynomials 7 (X).

For each root I, of 72,7 (x) mod p:
Foragi>1,Icl; = %’ﬁ(ll)/%lﬁ(ll).
Use Te mchod of MOIOOU (UOID) to compute a hyperegiptic
curve whose Jacobian varicy hC inAariants (1;).

] 3

Note that the output of this algorithm might be empty; for inance, when there are no
abelian varieties with endomorphism ring @ dedned over the deld with p elements. In other
cases, the number of curves returned might not be conOant as @ is dxed and p varies. &xe
conceptually simple[] case is that where p completely elits in the ring class deld of &': then,
the ¢ &litinto linear faCors modulo p.

CUUb00ouion Lo cubit POCDDOLIDOT

Before making use of the method above, let us brieEy describe the current methods avail-
able for computing class polynomials in dimension one and two.

Since the class polynomials %’ﬁ are dedned over the complex numbers and have good
reduCion to dnite delds, there are, as with modular polynomials, two methods to compute
them: a complex analytic method and one based on the Chinese remainder theorem.

Qe complex analytic version evaluates the invariants |;(.e/) for complex tori verify-
ing End.«/ ~ 0 to sulcient precision to identify the coe[Jcients of the class polynomial;
it requires tight bounds on the height of these coe[cients. COOOOIOOND and HOOOOC
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(UO00) also proposed a p-adic version which proceeds similarly but uses the canonical liE of
an abelian variety dedned over a small extension of IF, to tran€ort the computation to Q.

&e Chinese remainder theorem version recondruCs the polynomials jﬁﬁ € Q[x] from
their reduCion to many small prime delds IF, by enumerating the abelian varieties with en-
domorphism ring @ in each such deld; typically, a drO variety with complex multiplication
Q® 0 is found by sheer luck (this requires computing the endomorphism ring of many ran-
dom curves), and isogenies are then used to dnd a curve with endomorphism ring exaCly @
and to enumerate all other such varieties.

When the dimension of & is dxed, the complexity of all methods mainly depends on the
order of the Picard group of @, which diCates the number of roots of the class polynomials.

For elliptic curves, all methods have a quasi-linear runtime in the size of the output; see
the careful analyses of EDUU (UDUW), BUUUUL (UUDU), and SUDDUOOUUU (UUOD). A praCical
advantage of the Chinese remainder theorem version is that it need not keep the full poly-
nomials jﬁﬁ € Q(x) in memory: only their reduCions modulo many primes are required;
from these, ,%ﬁﬁ can be direCly reconOruCed in the prime deld where we seek an abelian
variety with endomorphism ring @. &uis is particularly useful as memory requirements are
the current bottleneck of the other two methods.

In dimension two, WOOU (OUCU) introduced the complex analytic method, COUD, MU
000, KOIOOOOOOW, and TOOUIT (OOOO) the Chinese remainder theorem one, and GUOOOL]
HOOOOOOH, KOO, RIDOOOUOOO00, and WOOL (DOOT) a 2-adic method. All have since
been improved by many researchers. Seir reéeCive €eeds do not support a range of or-
ders 0 as wide as for elliptic curves, but quite a fair number of class polynomials have been
computed and made available, for inOance in the EDCUOO0 (DO00) package.

1v.3  Elliptic Curve Generation

Let us now explain how to apply the material of the previous seCion to generate pairing-
friendly elliptic curves; very satisfying results can be obtained in this case. &tis is however
not the case for higher-dimensional varieties, as the next seCion will discuss.

TOO COO000-PIDDD MOOODO

We have explained how an ordinary elliptic curve with prescribed order & can be gen-
erated over a prescribed dnite deld IF, when &' has small class number or, equivalently, small
discriminant. We now consider which parameters p and & should be chosen in order for the
resulting curve to be pairing-friendly.
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Let & bean ordinary elliptic curve over the prime deld with p elements; the charaCerilic
polynomial X, (x) of its Frobenius polynomial is of the form x? — tx + p where the integer t
satisdes [t| < 2,,/p. Conversely, for each such nonzero integer, there exils an ordinary curve
& [IF, with cardinality p + 1 — t (we assume p # 2,3). If r is the larged] prime faCor of #&,
we require that its embedding degree be small, that is, r | p* — 1 for some small integer e.

Additionally, for the complex multiplication method to be praCical, there mul exiCl
orders of small discriminants in Q(m), that is, the squarefree part of 4p — t muO be small.

Serefore, we require that:

0. pbeaprime number.

0. tbe anonzero integer less than 2,./p in absolute value.

0. rbeaprime faCor of p+ 1 —tsuch that r | p* — 1 for a small e.
0. the squarefree part A of t? — 4p be small in absolute value.

Since A and e need to be small, we dr0 dx them: if an integer p can be derived as a
funCion of A and e and it is not prime, we can always rerun the algorithm on a dilJerent
input and hope that it takes a prime value aEer roughly logp trials; however, dxing p and
deriving A or e would have little chances of producing small numbers.

Once A and e have been dxed, the method of COUUD and PIOUL (OOUD) consils in
rewriting the above set of conditions to the equivalent one:

2 —4p=Vv2A
rlq)e(t_l)
r|vA —(t—2)°

where ®, denotes the e™ cyclotomic polynomial; the second condition asserts that e is the
smalled integer such that r | p* — 1 but this Oronger condition is not as important as the
conOruCion that it enables: since @, is irreducible it yields a number deld where to work.
&us gives the following algorithm.

Algorithm 1v.3.1.
I0000: A negCive and a positive integer, A and e.

ooooom: - A prime p and an order @ such T € Tere exdts a pairing-
Eiendly egiptic curve wiT endomorphgm ring & over I,

Choose a prime Eeld ¥, conTining +/A and an e™ root of unity Z,.
Putt=1+Zandv=(t—2)/v/AinT,

LiGtandvto Z and put p = 3 (t* — V?A).

Unless p § prime, go back to Step L.

Outputpand Teorder 0 =Z + uz%(ﬁ) where u § any divgor of v.

s s [ s s B s |
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Due to p being a sum of squares liEed from IF, the resulting elliptic has p = 2 on average.

FOOO0ooo0 OO POOOIDO-FOCDOOOC chooog

Better p values are achieved by families of curves with a conOant embedding degree e and
discriminant A over delds I, for increasing primes p. Families of elliptic curves are given by
tuples (A, e, p(x), t(x), r(x),v(x)) where the lad four parameters are polynomials in a formal
variable x; additionally to the conditions above, since pand r

]
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TOO BODOIDO-WOOD MOOO0OO

BOOOIOO and WOOO (D0U00) adapted the method of COOO0 and PIOOO (UO0U) to gen-
erate families of polynomials as dedned above. &eir condruCion follows the above except
that the arithmetic is done over polynomial rings rather than over the integers.

Algorithm 1v.3.2.
I0000: A negCive and a positive integer, A and e.
o0oo0d: A pairing-Eiendly family of curves given by p(x), t(x), and r(x).
0.  Choose an irreducible polynomial r(x) wit positive leading coe[Icient
such W& Te Eeld Q(x)/r conTins VA andane" root of unity L.
Putt=1+{ andv = (t—2)/+/A, C elements of Q(x)/r.
LiG tand v to Z[x] and put p = 3 (t* — V2A).
Unless p § irreducible, go back to Step [.
Output p(x), t(x), and r(x).

1 3 3

Since the polynomial p(x) is conOruCed as a sum of squares of IiEs from Q(x)/r, its
degree is roughly twice that of r. However, when deg(r) is small, the degree of p(x) can be
much smaller and yield p values below 2; note that deg(p) being smaller is not a problem:
curves dedned over large prime delds can Lill be obtained by evaluating p(x) at large integers

x; in faC, this is preferable since the slower increase of polynomials gives more Eexibility.

LOD000 couoouooon

To conclude this seCion, we discuss the results of B. and SUIUL (UU0).

In this paper, we noted that the two methods described above only dx the complex multi-
plication deld or, equivalently, the isogeny class, but not a @ecidc endomorphism ring order
O which the complex multiplication method takes as input. ACually, our presentation of
the Cocks—Pinch method above already showed that faC, since it Dated that the order to be
output could be of the form Z + udy for any divisor u of v, where t? — 4p = V?A is the
discriminant of the minimal order Z[m].

&uis means that, once parameters for a pairing-friendly curve or family have been com-
puted, before applying the complex multiplication method and obtaining an aCual elliptic
curve, there is Oill some choice to be made on the €ecidc endomorphism ring desired. In
the Brezing—Weng method, since v(x) is conOruCed as (t—2)/+/A, its degree as polynomial
is likely to be roughly that of r; this typically gives a large (and prediCable in size) pool of
faCors to choose from as the conduCor of the endomorphism ring.

Qerefore, pairing-friendly curves with non-maximal endomorphism rings & can be gen-
erated as easily as maximal ones as long as @ is in the range of the complex multiplication
method.
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Denote by &, and &, the elliptic curves with trace tand endomorphism rings re€eCively
Ogmand 0 =Z+ uﬁQ(n); there is an isogeny of degree u going frqm &, to &,. Computing
this isogeny takes essentially quadratic time in the largel] prime faCor of u, as we will see in
subsequent chapters. Serefore, as it takes u2*°A time to generate the curve &, via class
polynomials, using dilJerent values for u does not yield fundamentally new cryptosyClems; it
simply shows that a small range of conduCors is readily available from pairing-friendly curve
generation methods.

IV.4 Variety Generation

As a natural generalization of the problem of pairing-friendly elliptic curves generation,
we now consider generating higher-dimensional pairing-friendly abelian varieties. We will
dr0 give general Oatements before mentioning Oate-of-the-art results.

MOOIOOOIOD OO0 stoooed

From a mathematical viewpoint, it is only natural to switch our focus to abelian varieties
when we feel the pool of intereding elliptic curves has been depleted, since abelian varieties
with an e[dcient arithmetic (such as Jacobian varieties of genus-2 hyperelliptic curves) have
equally eDeCive and secure pairings; they can even be evaluated faCer than that of elliptic
curves as FOOU and COUOU (DOUO) demonUrated.

Originally, abelian varieties were proposed for cryptographic use not only as alternatives
to elliptic curves but also as a potential improvement: since the size of the group is g times
the size of the base deld, where g is the dimension, the parameters of a cryptosylem based on
dimension-two abelian varieties need only be of half the size of an equivalently secure elliptic
cryptosyCem:; in addition, the smaller base deld can possibly be exploited to yield a faCer (or
at leal] competitive) arithmetic to that of elliptic curves.

Although abelian varieties readily provide a good framework for cryptosyCJems based on
the discrete logarithm problem only, other faCors need to be taken into account for pairing-
based cryptography. Before explaining how the situation degrades for ordinary varieties, let
us recall that two-dimensional supersingular abelian varieties have an embedding degree of
at moJ 12 and p values which can be close to 1; they are currently the only kind of two-
dimensional abelian varieties suitable for cryptographic use.

All known conOruCions of ordinary pairing-friendly varieties of dimension two have
large p values: we will see that none has p < 2, and that p values close to 2 are only achieved
by &ecial conOruCions; generic conOruCions feature p > 4, at the time of this writing.

It therefore appears as if genus-two conOruCions had a lot of room for improvement.
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CcUO0000 MOODIoDIoooonnO MOooooo

We have seen that the computation of class polynomials, although harder for abelian
varieties of dimension two than for elliptic curves, can be done (and has been done) for a
limited number of orders @, all of which are ring of integers of quartic complex multiplica-
tion delds with relatively small discriminant.

Serefore, it is even more important to dx & as a dr0 Oep of any conOruCion than it
was with elliptic curves. We diCinguish two types of conOruCions:

0. Generic condruCions, which take an arbitrary maximal quartic complex multiplica-
tion order as input, and output generic pairing-friendly abelian varieties.

0. Specidc conOruCions, which focus on varieties of a particular form (usually implying
that 0 is dxed too) and exploit explicit results due to this form.

Here, by “generic” we mean that the former methods output varieties with no particular
properties other than those required; in particular, the varieties are usually absolutely simple
and ordinary. &uis is to be compared to the varieties obtained by the latter method which
are typically simple but not absolutely simple.

GLOD0IT cOoboooooonbad

&e dr0 conOruCion of ordinary pairing-friendly abelian varieties of dimension g > 1
with cryptographic size are due to FOOOOOO (UO0UD). It can be considered a genus-two analog
to the Cocks—Pinch method, and proceeds by solving explicit equations which arise by writ-
ing the charaCerilJic polynomial of the Frobenius endomorphism in terms of parameters for
the desired complex multiplication deld. &e abelian varieties it generates have a typical p
value of 8.

Later, FOOOOOO, SOOOOOO0000, and SOOOOO (OOOO) provided a cleaner framework
for conOruCing pairing-friendly ordinary abelian varieties of dimension two by using more
of the theory of complex multiplication.

Let © be the Frobenius endomorphism of a simple ordinary abelian variety .</ over a
dnite deld. &eir idea was to write the condition that ./ has a subgroup of order r with

embedding degree e as
F| Nogmyg(™—1)
r | &,(m) '

Now let @ be a type on the complex multiplication deld K, and denote by @" and K"
their reeeCive rekexes. e key observation is that, if r is a prime congruent to one modulo
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e that elits completely in K, and if

l_[ (é mod tq,) =1 and H (E mod q) =,

Ped" Ped’

where Z, is an e root of unity and I Tgeor Tot, denotes the faCorization of r in K", then the
type norm 1 = N, (§) of & is a g-WWeil number (that is, a root of a g-Veil polynomial) sat-
isfying the conditions above asserting that it represents an ordinary pairing-friendly abelian
variety.

Computationally, numbers & can be conCruCed from their reduCions modulo the prime
faCors of r so as to satisfy the above requirement; aEer suCJciently many trials, the integer
4 = Nyr/g(8) is expeCed to be prime, and when it is additionally unramided in K and 1t
generates K, this yields, by Honda—Tate theory, an isogeny class of ordinary pairing-friendly
abelian varieties with complex multiplication by K.

ae method above Oill produces varieties whose embedding degree is 8 or more, but
FOOOOOU (O0UO) soon adapted it to generate families of pairing-friendly varieties similarly
to the Brezing—Weng method for elliptic curves. He applies it to dnd many families with p
less than 8, and a particular one with an asymptotic p value of 4 for e =5.

SU000ooo choibobooiogo

To improve on the p values obtained by conOruCions applicable to arbitrary complex
multiplication delds, one way is to consider abelian varieties .e/ of a particular form and
exploit explicit results regarding this form as much as possible. Usually, .¢f is taken as the
Jacobian variety Jac(6’) of a hyperelliptic curve %6 of genus two with a particular shape of
WeierOrass polynomial.

For indance, consider curves 6 of the form y? = x° + ax for some number a e IF, where
p is a prime congruent to one modulo eight; in that situation, the associated Jacobian variety
Jac(6) is ordinary and simple, and KUOOOOU and TOOOOUOO0 (OO0OM) exploited explicit
formulas for the charaCeriic polynomial of the Frobenius endomorphism in terms of a
and p to obtain an analog of the Cocks—Pinch method for that eecidc type of curves. 2ey
obtained a p value of 3 with the embedding degree e = 24.

A varieties they conOruCed are not absolutely simple: over an extension containing
fourth roots of e, they &lit as produCs of two elliptic curves. FOUOOUO and SUOUL (UU00)
Oudied such varieties from a much more general per&eCive: from an elliptic curve & which
is pairing-friendly over some extension of its base deld, they explain how to derive a simple
ordinary pairing-friendly abelian variety which becomes isomorphic to a power of & over
some extension of the same base deld. As an application, they conOruC families of such
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abelian varietieswith p = 2.22 and e = 27, which are to date the bed known ordinary pairing-
friendly varieties of dimension two.
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& lal chapter was concerned with conOruCing abelian varieties with prescribed endo-
morphism rings and we now turn to the inverse problem: that of computing the endomor-
phism ring of a prescribed variety. Our contribution is covered by the next three chapters;
here, we review prior Oate-of-the-art algorithms, all of which have a worl case running time
exponential in the size of the base deld.

All seCions but the lad solely consider ordinary varieties, and our complexity analyses
concern a dxed dimension g and a cardinality g of the base deld going to indnity.

If .o isan ordinary abelian variety with complex multiplication deld K, an isomorphism
Q(m) = K between the deld of fraCions of End(.</) and K will be underJood throughout
this chapter; this identides endomorphism rings uniquely as orders of K.

v.1  Isogeny Volcanoes

Let us dr describe the OruCure of the conneCed component of the isogeny graph con-
taining a prescribed simple ordinary abelian variety over a dnite deld; we will emphasize
vertical isogenies and their role in the algorithm of KOO (OUOO) for computing endomor-
phism rings in the dimension-one case.

Viooiooo 10booond

Following FUULUDD and MUDDID (UOOM), we say that an isogeny is horizon T1 when
its domain and codomain have isomorphic endomorphism rings, and that it is vertical oth-
erwise; we drJ focus on the latter kind, in the context of computing endomorphism rings.
Later, we will use horizontal isogenies, via complex multiplication theory, as the key to our
subexponential-time algorithm for computing endomorphism rings.

0o
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To put to light the relationship between endomorphism rings and vertical isogenies, we
use an observation of KODOC:

Lemmav.r.1. LC @ .o/ — 8 bean gogeny of type (Z/%)® b&ween ordinary abelian vari-
Cies deEned over a Enite Eeld. &e order End(93) § bounded below by Z + £End(.</).

Indeed, since @ €lits multiplication by €, we have £End(.¢f) C End(98), and since the
latter is an order it mulJ also contain Z. Note that applying this lemma to the dual isogeny
$ gives a bound on End(43) from above. To encompass both bounds, we generalize the
inclusion index to the following diCJance on the lattice of orders.

Definition v.1.2. For any two orders @ and @’ of Te same Eeld, deEne Te order diCance
dist(o,0")C[0:0no"1+[0": 0N 0.

Corollary v.1.3. LC ¢ : .o/ — 3 bean gogeny of type (Z/€)! b&ween ordinary abelian
variCies deEned over a Enite Eeld. &e d§ Tnce dist(End .</,End 28) § divgible by 8492,

&is follows from the lemma, since Z + £0 has index £~ in @, for any order @. By
exploiting the symmetry of the lattice of orders, the diJance could even be proven to divide
£2~1. However, this simple result is suCIcient for us; as a consequence, there can only be
dnitely many vertical isogenies of a given type leaving from any given variety .o/ since:

— only dnitely many orders of K are endomorphism rings, that is, contain Z[m,T];
— therefore there are only dnitely many possible degrees for vertical isogenies;

— since ./ [€] = (Z/%)* there are dnitely many suitable subgroups.

Recall the results of [TUOU (UUO0) and WOOOUOUOOD (OOOO):

Theorem v.1.4. Isogeny clCses of abelian varicCies deEned over a Enite Eeld are identiEed by Te
charaCergtic polynomial of “Teir Frobeni § endomorphgm. Endomorphgm rings of ordinary
varicies .o/ are exaCly Tose orders of e complex multiplicGion Eeld K T¢ conTin Z[m, ).

&is shows that the OruCure of vertical isogenies is quite rigid: the possible degrees
are dxed per isogeny class by the index of the minimal order Z[m,T] in the maximal one
of K. Worse, they can be as large as [0 : Z[r, T]] which Lemma [II:0.0 showed can only be
bounded by qu/ 2+o(1) where q is the cardinality of the base deld and g the dimension of the
variety. &is does not give much Eexibility for working with vertical isogenies, and can make
it quite collly to evaluate them.

On the other hand, we will later argue that horizontal isogenies are convenient to work
with, as there are indnitely many with domain any given variety.



0.0, 00Looo 0bouooooo go

/ \

Ore, Or
\ /
Z(m, 7]

FIDO00 0. StruCure of the graph of vertical isogenies and of the lattice of orders.

GUO0oO shoodoooo

As a consequence to the above, the OruCure of the vertical-isogeny graph can be de-
scribed as resembling that of the lattice of orders which contain the minimal order Z[m,T].

Corollary v.1.5. LC G be Te graph whose vertices are clCses of variCies wiT Frobeni J en-
domorph@m m, up to horizon T Gogenies, wiT edges e vertical gogenies of type (Z/2)°. Sim-
ilarly, I H be Te graph whose vertices are e orders con Tining Z[m, 7], wiT edges bGween
two orders 0 G 0’ whenTere § no 0" s€gfying o c 0" c 0'.

aemap («/ —» .)€ G— (End./ — End.</’) € H § bGeCive on Te vertices, and
glits edges into sequences of € mol 2g — 1 edges.

Figure [] is probably worth all the above words: it depiCs the graph of vertical isogenies
(the big circles denote horizontal isogenies classes) to the leE, and the corre€onding lattice
of orders to the right. In faC, this is a simple case, similar to the situation in dimension one:
each order above Z[m, ] is uniquely identided by its index in 0, and vertical isogenies are
in bijeCion with edges of the lattice of orders, that is, they do not jump orders.

Computing the endomorphism ring of a variety is therefore equivalent to determining
its location up to horizon T1 §ogenies in the isogeny graph.

To see how big this OruCure can be, consider the typical case of ordinary varieties of
dimension g = 2 dedned over the prime deld with p elements. From the conditions on p-\\kil
polynomials, we deduce that there mul be p3/2*°® isogeny classes. Since there are p3*o)
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isomorphism classes of curves, each isogeny class contains, on average, p*/2*°® isomorphism
classes.

From now on, we will assume that the discriminant of Z[n, TT] (and therefore its index in
the maximal order) has been faCored, so that we can make use of the various algorithms for
lattices of orders developed earlier.

From acryptanalysis viewpoint, if .¢/ isan abelian variety of which the discrete logarithm
problem is to be used in a cryptographic scheme, and ./’ is a variety in the same isogeny
class for which this problem is known to be weak; it should be ensured that it is infeasible to
compute any isogeny .o/ — .o/’

By the theory of complex multiplication, there are many horizontal isogenies of small de-
gree going from any abelian variety ./ to others with the same endomorphism ring; there-
fore, horizontal isogeny classes can be “walked around” quite easily. Note, however, that
dnding an explicit path from a prescribed variety to another might be a diCJcult task when
the horizontal isogeny class is big, since only generic methods are available.

However, when .ef and .e¢” have diJerent endomorphism rings, denoting by £ the largel
prime faCor of dist(End .</,End .</"), any isogeny chain going from ./ to ./’ m } t contain
anisogeny of degree £. Since current isogeny-computing algorithms require exponential time
in log(®), this bounds below the time needed to tran€ort the discrete logarithm problem.

LOO00 SO00000bo it bidboooug odo

FOOLOUO and MOUOUIT (UO00) gave a metaphorical interpretation of the work of KT
(00 (0000) on the OruCure of the graph of isogenies of type Z /¢, for adxed prime €, between
ordinary elliptic curves dedned over a dnite deld. In dimension one, a number of properties
which we sum up in the proposition below indeed give graphs of degree-£ isogenies a dillinc-
tive Aolcano look.

Recall that the complex multiplication delds of ordinary elliptic curves are exaCly the
imaginary quadratic number delds; orders of such delds are of the form Z + 0}, where f is
the index in the maximal order .

A following rephrases Proposition 00 of KUOUU (UUOU) and, for short, refers to iso-
morphism classes of elliptic curves as curves and to the valuation at a dxed prime £ of the
conduCor of their endomorphism ring as their depT.

Proposition v.1.6. Consider Te graph of §ogenies of prime degree € bcween gomorphgm
clCses of egiptic curves deEned over a Enite Eeld wiT complex multiplicGion by Te imaginary
quadréic Eeld K = Q(JB) of dgcriminant D, and denote by v Te valucion of [0 : Z[n]]
C L. ge fogowing exha J tively describes ag edges of T§ graph.
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FIOOO00 O. Typical volcano OruCure in dimension one when the discriminant is a square
modulo £ (the prime degree of isogenies); here, in the case that £ = 3.

0. Fromacurve € depT u >0, Tere § one §ogeny going up toacurve & dep¥ u— 1.

0. Fromacurve € depT u <v, Tereare € gogenies going down to £ curves € depT u+1,
unlessu = 0 inwhich cCe Tereare £—1, £, or £+ 1 when D § regeCively a square, zero,
or a non-square modulo £.

0. Fromacurve € depT O, Tere are two §ogenies going to curves € dep¥ Owhen D § a
square modulo £, and one when D § div§ible by £.

Again, Figure[]is likely worth the above words: it di€lays one conneCed component of
the graph that we discgssed; note that by the proposition and results of complex multiplica-
tion theory, all conneCed components of this graph are isomorphic.

e algorithm of KOUUU (UUUU) computes the endomorphism ring of an ordinary curve
& by determining the valuation of its conduCor at certain primes £, for which it probes the
location of & in the graph OruCure that we have ju] described.

&Ais relies on the vertical OruCure of this graph being that of trees rooted on the (pos-
sibly degenerated) cycle of curves with locally maximal endomorphism rings. Note that this
OruCure is lod in higher dimension, as we will later see.
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KODOrD ADDOomood

KOOOO (UO00) introduced many ideas and results related to the computation of endo-
morphism rings of elliptic curves over dnite delds. Let us jul describe two of them which
lead to his determiniOic algorithm for computing the endomorphism ring End(&’) of an or-
dinary elliptic curve & over F in time g*/3*.

Aedr0 idea direCly exploits the OruCure of the volcano discussed above: the valuation
of the conduCor of End(&) at some prime £ can be found by determining on which level of
the graph of degree-£ isogenies & lies. To this extent, compute three chains of degree-£ isoge-
nies Oarting from &'; one chain necessarily descends to levels of higher depth, and eventually
hits a leaf, that is, a curve with depth v from which no isogeny leaves but the dual of that with
which we arrived. &xe set of leaves is called the eoor of r€ionality; its curves only have one
rational subgroup of order £ (whence the expression), and the £ remaining subgroups dedne
isogenies over an extension of the base deld. &us gives the following algorithm.

Algorithm v.1.7.
10000:  Anordinary egiptic curve & /IF,.
o0o00d:  ae conduCor of its endomorphgm ring.

0. Count e points of & and deduce its complex multiplicGion Eeld K.
0. Foreach prime £ dividing [0 : Z[n]]:

0. Compute T ree curves £-gogeno ] to0 &.

0. Keep walking a non-backward chain of £-gogenies Eom each.
0 Denote by u, Te lengT of Te chain T ¢ ends Er0.

0. Réurn[gy:Z[n]]/TTe"

By non-backward, we mean that we avoid duals of isogenies already computed. Se drC]
Oep uses polynomially many operations in log(q). Each isogeny can then be computed in
time £2+°®) ysing the independent improvement of DUUUDUU (UUU0) and KOOOD (UO0D),
SeCion 0.0, on the formulas of VOU (U0D); this process will be detailed in the next chapter.
Since € can be as large as /g, the overall complexity is only bounded by gt+od,

Qe second idea then comes to the rescue by trading ol vertical isogenies for horizontal
ones; the concise presentation below is largely ineired by a talk of KOOUD (UOOO).

Recall from complex multiplication theory that there are exaCly #Pic(&) curves with
endomorphism ring @, and that they form a conneCed component of the horizontal isogeny
graph. &erefore, when £is large, the value of u, can be teed by comparing the class number
of the order & with valuation u, to the number of curves in the horizontal isogeny compo-
nent. Formally, this gives the algorithm below.
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Algorithm v.1.8.
I0000:  Anordinary egiptic curve & /.
o000o0:  &e conduCor of its endomorphdm ring.

0. Count e points of & and deduce its complex multiplic&ion Eeld K.
0. Foreach prime-power faCor €' < q*/® of [0, : Z[n]]:

0. Apply Te former algoriTm.

0. Foreach prime-power faCor £ > q*/® of [0, : Z[n]]:

0 Count e number of curves having horizon T1 §ogenies to &.
0 Dcermine e order whose ¢l Cs group m&ehes.

2 horizontal isogenies of Step [ can be conOruCed as chains of isogenies of degree up
to 1210g? A, where A = disc(K), by Zxeorem [T In addition, not the whole horizontal
isogeny class need be enumerated: it is sullcient to compute enough of it so as to rule out
other orders with smaller class number.

KOOUOO (0000) concludes that:

Theorem v.1.9 (GRH). For any real number ¢ > 0, endomorphdm rings of ordinary egiptic
curves can be computed in déermingtic time gt/3+¢,

v.2  Higher Dimension

Before presenting methods for computing endomorphism rings in arbitrary dimension,
let us describe more of the OruCure of isogeny graphs. We Dart by formalizing the localiza-
tion of the lattice of orders at a prime; this isolates a subgraph of the corre€&onding isogeny
graph OruCure. Z&en, we move on to describing those €ecidc a&eCs of the isogeny graph
which diCer from dimension one to dimension two and more.

LOO00 ObOoo stogooooo

Fix a number deld K and consider the lattice L of orders &' that contain a prescribed
minimal order m, which will be Z[m,T] in our applications. &e index of any such order in
the maximal order 9t = g then obviously divides w = [T : m].

Now if £ is a prime faCor of w, we can localize the lattice of orders via the map

L — L,={0eL:[M:0]|L}
0 — 0,=0+m,

where m, is the smalledJ order of the codomain, that is, the smalled order with index in
M1 a power of £. &s projeCs @ onto the maximal order 901 locally at all primes but €, thus
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isolating the local information at £. &is information can be recombined by the isomorphism

L = HE Le
0 — O0+m,
mg ﬁe «— (ﬁe)

which can be evaluated in time polynomial in log |A|, where A = disc(m), using the classical
algorithms from Chapter [,

For us, K is the complex multiplication deld of an ordinary abelian variety ./ over a
dnite deld, and m = Z[m, 7). We will oEen say that we consider the endomorphism ring of
</ locagdy € £ to mean that we consider the localization End(.</),; by the above, knowing
End(.</), for each prime faCor £ of w is suCcient to identify End(.<7) exaCly.

Since isogenies of degree £ can only move endomorphism rings by diCJances that are
powers of £, the endomorphism rings of abelian varieties in a conneCed degree-€ vertical
isogeny class are injeCively projeCed to L,. Serefore, for the purpose of identifying the
endomorphism ring using vertical isogenies, those of degree £ can be considered one prime
Latatime.

In dimension one, K is an imaginary quadratic deld in which orders are uniquely identi-
ded by their index in 0. &e local lattice L, is then the chain

ﬁKDZ'FQﬁKDZ"'ezﬁKD"'DZ+E"a|€WﬁK.

Consequently, it is really worthwhile for many algorithms dealing with imaginary quadratic
orders to work locally, so as to benedt from this simple OruCure: this usually yields concep-
tually simpler algorithms. However, from dimension two on, the local lattice is not a tree
but a general lattice itself, so it makes no conceptual diClerence whether one works locally or
not, although it is advantageous for performance reasons.

LOOO0 1000000 sbooooooo

Let us now brieEy present the major diCJerences between the degree-£ isogeny graph
OruCure for elliptic curves and for higher-dimensional abelian varieties. Part of the lad]
chapter will be devoted to giving details and results of computations on these a&eCs.

Let & be the endomorphism ring of an ordinary elliptic curve dedned over a dnite deld.
&e dilinCive look of its isogeny volcanoes ems from two properties:

— Rational primes £ €lit in at moO two ideals of 0.
— ldeals of prime norm dividing the index [0} : €] are not invertible in 0.
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FIOO00 0. Graph of isogenies of type (Z/3)? containing the Jacobian variety of the curve
y? = 8x8+3x% + 7x* +5x3 + 12x? + 5x + 5 over the deld with 23 elements. Red circle varieties
have maximal endomorphism ring, and blue triangle ones have index 9 in the maximal order.

By the theory of complex multiplication, the dr( property implies that elliptic curves
with locally maximal endomorphism ring lie on (possibly degenerated) circles: the cr€er of
the volcano. When the prime £ is inert, these circles degenerate into single vertices; when
it elits as pp, then each circle has length the order of p in Pic(&). &e second property
implies that there are no horizontal isogenies of prime degree between elliptic curves with
locally non-maximal endomorphism rings, that is, other than at the crater of the volcano.

Both properties are lo[] in higher dimension; indeed, if & is an order in a complex mul-
tiplication deld of degree 2g for g > 1, then:

— Rational primes £ can e€lit in up to 2g ideals of .
— ldeals of prime norm not coprime to the index [0y : €] may be invertible in 0.

Qs implies that horizontal degree-£ isogenies between varieties with locally maximal
endomorphism rings now have a slightly more involved OruCure than a cycle, and that they
might also exit other than at the top of the volcano. Both features are di€layed on Figure [J.

We shall say more on this topic in the laD chapter. In the meantime, the reader should
not be misled into thinking that all higher dimensional local isogeny graphs portray the same
OruCure as this €ecidc one; however, this gives an idea why generalizing the algorithm of
KOOUU (OO0 for computing endomorphism rings cannot be done Oraightforwardly.
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Although endomorphism rings of higher-dimensional abelian varieties cannot be deter-
mined by their vertical isogeny graph OruCure alone, other OruCures can be involved in a
hope to adapt the method of KUUUU (UUUU) to this generalized setting.

00000 and JOUO (UOOU0) recently gave a method for dnding subgroups of order £ in
ordinary elliptic curves over dnite delds that are kernels of ascending or horizontal isogenies,
meaning that they lead to curves with larger (or equal) endomorphism rings. Essentially,
they exploit the relationship between the rational £°-torsion subgroup OruCure of an elliptic
curve and the valuation at £ of itsendomorphism ring. To obtain the subgroup OruCure, they
rely on pairing computations and on the algorithm of COOUUIOUNT (DO00) for computing
the torsion, which will be discussed in the next seCion.

s permits one to navigate in the volcano not juld blindly relying on the tree OruCure
of vertical isogenies, but with “some sense of orientation.” Since we believe their method
should be, to some extent, applicable to higher dimension varieties, we brieEy present it.

A theorem of COOUOOD (OOOO) Cates the following.

Theorem v.2.1. L& 1 be Te Frobeni J endomorph@m of an ordinary egiptic curve & deEned
over IF, and put 0 = End(&). &3¢ 0-modules & (IF ) and 0 /(n" — 1) are omorphic.

Since @ is a quadratic order, the group OruCure of the elliptic curve &(FF,) is therefore
of the form Z /N, x Z /N, where N, | N,. In particular, its £°-torsion subgroup OruCure
is of the form Z /€% x Z /€% and IOUICT and JOUU (UUOD) derive explicit formulas for the
integers o, and o, which show that they only depend on the valuation at ¢ of the conduCor
of End(&).

To give an example of the €ecidc way in which a, and a, are aleCed by vertical isogenies,
let us reproduce Proposition O of ITOIO0 and JOOU (TOOM).

Proposition v.2.2. LC & be an egiptic curve of r€ional £-torsion subgroup Z /€% x Z /£%
WiT o, > 0, If P §apoint of order €%, Ten Te gogeny wiT kernel generced by £%~1P g
descending.

e computational ingredients are simple: we will present a torsion-dnding method in
the next chapter, as it is needed in our own algorithms, and pairing evaluations are used to
tel relations between the order of £*-torsion points. 2 erefore, we believe this method has
agood potential of being generalized to higher dimension, at lea partially.

Since it is based on vertical isogenies, this approach is probably not bel] suited to com-
puting endomorphism rings, as we argue below. Nevertheless, it has other intereQing appli-
cations which can be found in the original article.
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Isogeny computation is currently a topic in aCive development for abelian varieties of
dimension g > 1. &e Oate-of-the-art algorithm of COIUCO and RUDOOU (UUOO) can only
compute isogenies of type (Z/€)° and requires the prime £ to be reasonably small: although
the asymptotic complexity is polynomial in £ and exponential in g, the conOant faCors and
exponents are such that only amuch more redriCed range of isogenies can be computed than
in dimension one.

We have argued before that vertical isogenies have conlrained degrees; if certain iso-
genies are not within reach of known isogeny-computing methods, then their local vertical
isogeny volcano is simply not computable. AEer our review of previous methods, the next
chapter will present an algorithm which addresses this issue by relying on horizontal isoge-
nies, whose degrees can be chosen with much more Eexibility.

Another obOruCion arises from the type of the isogenies that can be evaluated: consider
achain of orders

Ox=0,>---D0,=Z[nT]

where each order is contained in the following one with prime order £; this is a simple case,
as we have mentioned that there are others for g > 1, but it suClces to make our point.

WOOOOOOOOC (OUOD) proved the exilence of abelian varieties .e7; with endomorphism
ring &; and [TOOU (UUOC) proved that there exill isogenies between all of the .ef;; the degrees
of these isogenies are necessarily powers of £.

However, the kernels of these isogenies need not be of type (Z/€) or a combination of
such subgroups. In other words, in dimension g, we might “skip” up to g — 1 orders when
computing vertical isogenies. In the case that g = 2, for inOance, Oarting from an abelian
variety with endomorphism ring &, and following isogenies of type (Z/{Z)2 we might only
reach abelian varieties with endomorphism ring &; for i even, and fail to reach those with i
odd. &e la0 chapter will give several examples illuCrating this.

v.3 General Methods

Two methods were previously known for computing endomorphism rings of general
abelian varieties .</ dedned over dnite delds. Both ted whether elements a of the complex
multiplication deld K = Q(r) correeond to endomorphisms of .<7; doing so for generating
sets of orders permits one to eventually recover the full endomorphism ring.

To dnd whether o € End(./), the method of EIUDUUDUI0O0N and LOUOOO (UUCUD) teds
if some easy-to-evaluate multiple na kills the full n torsion subgroup of ..
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Recently, WOOOUO (OOOT) designed a new method which can loosely be underCood as a
Chinese remainder theorem variant of the latter: to determine whether o € End(.<7), it tries
to interpolate the potential corre€onding endomorphism over small torsion subgroups.

EC00000I0O0 EDOODOOOOOINDOO

Let ./ be a simple ordinary principally polarized abelian variety dedned over the deld
with g elements. Singe the endomorphism ring of ./ always contains the order Z[m, ], let
us explain how the aCion on .¢/ of an endomorphism a of this subring can be evaluated.

Evaluating the Frobenius endomorphism m is Oraightforward: it suCJces to put the coor-
dinates of a point to the g™ power, which, using a double-and-add approach, only requires a
number of base deld multiplications that is polynomial in log(q). On the other hand, evalu-
ating the Verschiebung endomorphism T = q/m is more involved but can be avoided, unless
p divides the conduCor of Z[, ] where p is the prime of which q is a power.

Since K = Q(m), any element a € K can be written as a rational polynomial in the Frobe-
nius endomorphism Tt: if 2g is the degree of the deld, there exill an integer n and integers o,

forie {0,...,29 — 1} such that
1 _
o= - E oG,
n<

Computing a therefore amounts to evaluating the Frobenius endomorphism, scalar multi-
plications, endomorphism compositions, and one division. Note that division by n is easily
computed on torsion subgroups of .e7 of order coprime to n: simply multiply by the inverse
of n modulo the order. Subgroups of order not coprime to n will soon be addressed.

In the following, a will always be an algebraic integer of K, and we assume this from now
on. Putw’ = [0 : Z[n]]; as a group, M%Z[n] then contains 0. &erefore, o can be written
in the form above for some integer n dividing w’. And this is in faC always the case when the
above expression is reduced, meaning that gcd(o;, n) = 1.

Recall from Lemma [IT01] that w'/w = [Z[n, T : Z[r]] = ¢°@~Y/2 where w = [0 :
Z[n, ] as before. As a consequence, the prime faCors of the denominator n are those of w
(that is, the degrees of vertical isogenies) plus, possibly, g.

TOO EINODOODO0O-LE0O0D MEOOBO

We now present the method of ENDD0U00000 and COOOOU (UOUD); it was dr0 targeted
at teJing whether endomorphism rings of abelian varieties over dnite delds are maximal, but
it applies to other orders as well. It relies on Corollary O which reads as follows.
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Proposition v.3.1. LC .¢/ be an abelian varicy deEned over an algebraicady closed Eeld. Ifa
g anendomorphdm of .e7 and n § coprime to T e ambient charaCer@tic, Ten .o [n] C ker(q) if
andonlyifa/n e End(.«/), TC §, if Tereexdtsan endomorph@m B such T€ a = nof = on.

In other words, the endomorphism corre€onding to the algebraic integer a kills the full
n-torsion subgroup if and only if a/n belongs to the endomorphism ring.

As we have mentioned before, when ./ is ordinary, assuming the base deld to be alge-
braically closed does not aJeC the endomorphism ring; it only demands that we compute
the full n-torsion of .<7, possibly over an extension of the aCual (dnite) base deld.

Consequently, an order & of the complex multiplication deld K of .e/ can be te[Jed to
be contained in End(.¢/) by computing a generating set for &, writing its elements a in the
form %Zi o;mt', and teding whether 3, oy’ Kills the full n-torsion of .7 for all such a. A
module basis for @ has cardinality 2g, but since Z is contained in both ¢ and Z[n], only
29— 1 teOs are really required; furthermore, as only an algebra basis is required, much fewer
elements aCually need to be teCJed.

Qe proposition requires denominators n to be coprime to the order g of the base deld.
When the index [0 : Z[n,T]] is coprime to g, this can always be made the case: since the
index of Z[m, T, qa] in Z[n, T, a] divides g and both orders contain Z[m, T, this index mul be
one, which means that qa and o belong exaCly to the same orders above Z[m,T]; therefore,
the faCor of n divisible by a power of g can simply be dropped.

Aus method is suited to local computations: similarly to what we did above, if £ is a
prime, one can show that End(.</), = &, can be determined only using elements whose
denominators are powers of £. Ve will later rely on this local version to determine the endo-
morphism ring locally at small primes € where our own algorithm fails to compute it.

When g is dxed and we work over base delds of increasing prime cardinality g, it becomes
increasingly rare for g to divide the index Z[n, ], although this can be seen to happen. In
those cases where we want to determine the endomorphism ring locally at a large prime, the
present method is probably not the bel suited in the dr0 place.

Two building blocks remain to be explained: computing the full €-torsion, and eCIciently
dnding the endomorphism ring by teCJing whether & C End(.¢/) for chosen orders O; al-
gorithms for both will be described and analyzed in the next chapter. When g is dxed and g
goes to indnity, we deduce that the wor-case overall complexity of this method is

€2g+0(1) |ogz+0(l) q where p= qg2/2+0(1).

Note that in the case that we only wish to teD whether End(.¢/) is maximal, FOOOCIOC
and COOOOO (OO00) subsequently improved this method using €ecidc probabiliCic teds.
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Let us now brieEy introduce elements of the theory of corre€ondences as background
material for the work of WOOUUO (DOOT), which will be discussed below.

Fir0 dedne afunCion Eeld K over k (which we write K /k) asa dnitely generated extension
of transcendence degree one. In Chapter 17, we saw that funCion delds arise from algebraic
varieties, but here we will work with them abOraCly. For details on the following, we refer
to Chapter 00 of the colleCion of leCures by DUDUIOO (UU0).

Definition v.3.2. L& K/k be a funCion Eeld, and K’/k an extension Eeld. &ere exgts a
funCion Eeld L/l such T¢E L conTins K, INK =k, and L § Te composite extension of K and a
subEeld of | T¢& § k-§omorphic to K’

ae funCion Eeld L/1 § caged Te con(Jant deld extension of K /k by K’ /k.

DUOUIOU (U000) introduced corregjondences as ideals of maximal orders of funCion
delds L/, up to both principal ideals and conJant ideals, that is, ideals with nontrivial inter-
seCion with I. When L is the conJant deld extension of a funCion deld k(6)/k by another
k(6”)/k where 6 and 6" are two algebraic curves dedned over a dnite deld k, he showed
that corre€ondence classes represent isogenies from the Jacobian variety of <6 to that of 6.

In the particular case that 6 = €, this gives a bijeCion

C : End(Jac 6) — {corre€&ondence classes} = J(0,)/ ~

which is compatible with the ring OruCure in the sense that for all endomorphisms a and
we have C(a + B) = C(a) - C(B), and similarly there exills a computational way of deriving
the composition C(a o ) from C(a) and C(p).

For in0ance, corre€ondences representing the Frobenius endomorphism m, the Ver-
schiebung endomorphism T, and the identity | are easily obtained; multiplication-by-n is
then represented by C(1)", and so on.

Finally, and this is maybe the moO crucial point for what follows, the aCion of a corre-
€ondence onapoint, that is, that of the endomorphism it represents can be evaluated simply
in terms of elementary funCion deld operations.

WOOOooT ADOODIoao

To determine whether some prescribed algebraic number of QQ ® End(Jac 6’) represents
an endomorphism, Oart as before by writing it as an element a € Z[] divided by some inte-
ger n; the corre€ondence class C(0) is easily computed from C(m), so it remains to determine
whether it can be divided by n.
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ae main idea of WLUOUU (UUOO) is to interpolate the hypothetical corre€ondence class
C(a/n) overa set’of small-torsion points: let P; be a point of Jac(%’) of order m;; if it exils,
C(a/n) should aC as

P, — (n~! mod m,)C(a)(P;);

and we can write equations asserting that a formal corre€ondence class D aCs this way.
WOUOUOD (UOOO) gives an upper bound on the number of points P; required to completely
charaCerize the aCion of a/n, that is, ensuring that if the syCJem admits a solution D, then
we mulJ have D = C(a/n), and as a consequence a/n € End(Jac 6).

He exhibits corre€ondence class representatives which are compatible with the above
operations and therefore allow e(cient corre€ondence class computations. &wese repre-
sentatives are written in Hermite normal form and are almo[J entirely determined by their
norms due to the re0riCive conditions required for being a representative.

Qerefore, WIIUOU (U00O) focuses on interpol €ing T e norm, which is of the form

=
N ) (C(a/n)) = X+ Z g_'xl
=0

for some degree | < g, where the indeterminates f, and g; are polynomials of bounded degree
with coeCcients in K(6'); see “Abschétzung der Grade der Polynome in x,” in SeCion [.0
on page 00.

ae whole procedure is summarized in “Algorithmus 0: Approximation” of the same
seCion on page 000. &at algorithm takes as input a Z-basis B of an order @ of which C()
is known, an element o of some order &, and an integer n; if a/n is an endomorphism, it
returns a corre€ondence representing it, or returns false otherwise.

As we will describe in the next chapter, being able to tedJ whether prescribed orders &
are contained in the endomorphism ring suClces to determine it in a polynomial number of
Oeps in the size of the base deld.

A short analysis of the method can be found in SeCion [.0; in brief, the degree of the
norm of a/n is polynomial in n and it thus requires interpolating a number of points which
is polynomial in n. In the wor(l case, the overall algorithm therefore uses exponential time
in the size of the base deld.

Nevertheless, it has the intereing feature that, as n grows, teCling whether a/n is an en-
domorphism becomes easier; indeed, the size of the hypothetical corre€ondence represent-
ing it then gets smaller, so a shorter sydem of equations can be used. Note that all methods
we have previously seen showed the reverse phenomenon.
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v.4 Supersingular Methods

For the sake of completeness, let us address the case of supersingular elliptic curves in this
seCion (and this seCion only). Known methods for computing endomorphism rings of such
curves all have an exponential asymptotic running time in the size of the base deld; however,
contrary to the ordinary case, we are quite pessimilic about the possibilities of improvement.

In addition to the methods presented here, we note that KLU (UUUD) has an algorithm
that gives some information on the endomorphism ring of supersingular curves which suf-
dces to determine it only in €ecidc cases; however, we are unaware of further developments
of this technique.

100000000 sOibioioubooo chooad

We dr present background results on supersingular elliptic curves, their isogeny classes,
and their endomorphism rings. Mol results originate from DUOOION (OCOD).

Recall that an elliptic curve & dedned over a dnite deld of charaCerilic p is supersingular
when it has no p-torsion. As a meager compensation for the troubles ahead, we have;

Proposition v.4.1. Up to Gomorphgm, every supersingular egiptic curve deEned over a Enite
Eeld of charaCergtic p g deEned over I ..

As a consequence, it is simple to enumerate all such isomorphism classes. Endomor-
phism rings of supersingular curves can similarly be enumerated simply.

Proposition v.4.2. Endomorphgm rings of supersingular curves corregond bGeCively to max-
imal orders of @, ., Te quCernion algebra ramiked only € p and co. Two such curves deEned
over IF > have Te same endomorphgm ring if and only if ey are conjugCe under Gal(F 2 /).

&s is why we are sceptical as to the possibilities of subOantial improvements on the
computation of endomorphism rings in this case: since all orders are maximal, and there are
exponentially many of them, there seems to be no way around considering each, one at a time.
Although we have not yet presented our method which exploits the OruCure of the lattice of
orders in the ordinary case, the localization that we have described earlier (and which suCJces
in dimension one) should convince the reader of the benedt of having such a OruCure.

As for ordinary curves, there is a theory of complex multiplication; however, care mu
be taken due to its non-commutativity.

Proposition v.4.3. Fix asupersingular curve &. For any leG ideal a of End(&) coprime to p,
Te degree of We gogeny @, wiT kernel ker(gp,) = Ny, Ker(a) § Te norm of a; ag §ogenies
b&ween supersingular curves arge in T ¢ way.

aea
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If & = ¢,(&), Ten End(&’) § Te right order of a, T€ §, {x € Qpo 1 aX C alb. If
additionady &” = ¢, (&), Tecurves & and &” are gomorphic if and only if a and b are in Te
same leG ideal cICs.

Much more can be said on the OruCure of this isogeny graph: for indance, when p =
1 mod 12, it is a Ramanujan graph, a particular case of expander graph with desirable prop-
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Repeating the above for various primes € diCerent from the charaCerilJic rules out orders
0 from the candidate li(J, so that eventually the endomorphism ring alone remains. &is
formally proceeds as the following procedure.

Algorithm v.4.4.
10000:  Asupersingular egiptic curve é*’/IE‘pz.
Oouoooo: — Anorder gomorphic to its endomorphgm ring.

LC L be e Igt of maximal orders of Q, ..
Until L § asinglcon:
Pick a prime £, and count T e degree- endomorphgms of &.
Rule out orders of L wiT a diCerent count of elements of norm &.
RcurnTeonly elementin L.

| s R s s R o |

For Step 0 MUMUUDD and LUDUOD (UDUD) derive an explicit method in SeCion 0.0; it
boils down to dnding integer solutions of a quadratic equation.

Ais procedure behaves quite well in praCice: its bottleneck is the enumeration of iso-
genies of degree € from & to &; MUMUUUL and COOUOM (UOOT) give explicit formulas for
£ = 2and £ = 3, and the isogeny-computing machinery for elliptic curves is nowadays at a
Uage of development where such operations can be performed quickly for a large range of €.

However, we Oress that its termination is not guaranteed, as two diCJinC maximal orders
of @, ., Might have the same number of ideals of norm € for indnitely many primes €.

chooiot ADDODIDOO

Although teOing the norm of ideals alone is not suldcient to guarantee the termination
of the endomorphism-ring identifying process, COOOIOU (UUUD) observed in his Proposi-
tion 0.0 that considering both the norm and the trace yields a suCJcient amount of informa-
tion aEer dnitely many te(Js. More precisely, he proved the following.

Proposition v.4.s. No two maximal orders of Te qucCernion algebra Q, ., have Te same sC
{(tr(a),N(@)) : o€ 0,N(0) < b}
where b § a cer Tin bound which § O(p).

Se norm and trace of such numbers map to the norm and trace of the charaCerilic
polynomial of the corre€&onding endomorphism: we have

0P —tr(9,)0, +N(9,) =0
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since the degree (or norm) of an isogeny is always known (as we conOruC them from their
kernels), the trace of ¢ can be found by teling the possible values in turn over a suCIciently
large extension of the base deld.

&s gives the following algorithm.

Algorithm v.4.6.
10000:  Asupersingular egiptic curve é”/Isz.
ouoood: — Anorder omorphic to its endomorph§m ring.

0. LcLbeTrelgtof maximal orders of Qpo-
0. For successive primes £, Darting Eom £ = 2:
0. Compute Te multgc | = {tr()},
where ¢ ranges over degree-£ endomorphgms of &.
0. Rule out Eom L "Wose orders @ for which I # {tr(B)}
where {3 ranges over T e elements of norm €in 0.
0. RcurnTeonlyelementin L.

By the proposition above, this algorithm terminates aEer O(p) operations. Nevertheless,
since computing the trace of the endomorphisms is extremely collly, the former procedure is
more suited to a large range of praCical problems, although it is not guaranteed to terminate.
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We have so far discussed endomorphism-ring computation methods with an exponential
wor[J-case runtime, and will now present one of subexponential complexity.

Qs method was dr{J introduced in B. and SUOUUOOOOO (UOOO) under a form quite
ececidc to elliptic curves, and relying on several unproven assumptions. All assumptions but
the GRH were later removed in B. (UOOO) by modifying parts of the algorithm. Here, we
present a variant of this algorithm which applies to general abelian varieties.

We Oress that this chapter considers abelian varieties without taking polarizations into
account, which is not an eJeCive approach in dimension g > 1, but allows for a conceptually
simpler presentation. For g = 1, where polarizations are unneeded, it is highly eJeCive, and
the next chapter will be devoted to rigorously proving its probabiliCJic runtime under the
generalized Riemann hypothesis, and its unconditional correCness.

Modidcations that make our method praCical for g = 2 will be presented in the lal]
chapter; they are expeCedly slower and rely on more unproven hypotheses.

vL.1  Algorithm Overview

Let ./ be a simple ordinary abelian variety dedned over a dnite deld; denote by K its
complex multiplication deld and dx an isomorphism 1 : K — Q ® End(.</), which will be
implicitly underCood from now on.

To locate End(.</) among candidate orders of K, the main idea to our subexponential
method is to compute certain properties describing the Picard groups of candidate orders,
and to te[] them via complex multiplication in the horizontal isogeny graph. Since there
exill subexponential algorithms for computing Picard groups we are done... Almo(l so.

We now give the main ingredients enabling this approach. Computational details are
given in subsequent seCions, while proofs and rigorous analysis are in the next chapter.

0oo
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Let us dr brieEy recall results that express where the endomorphism ring is to be sought.

Let .o/ be a simple ordinary abelian variety of dimension g dedned over a dnite deld
with g elements. S Frobenius endomorphism 1 aCs on geometric points of .7 by raising
their coordinates to the g™ power; its charaCerilic polynomial X (X) isag-Weil polynomial,
which means that it is monic, has integer coelIcients, and has 2g complex roots, each of
absolute value ,/g.

Computing this polynomial isequivalent to counting the number of points on the variety
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dedned over the dnite deld k with endomorphism ring 0 by a : .o/ — ¢,(.</) where ¢,
denotes the’isogeny with kernel ﬂuea ker(a). Ve assume that this induces a faithful and
transitive aCion of Pic(0) on AV ,(k); by complex multiplication theory, this is always the
case when @ is an imaginary quadratic order, or a ring of integers.

Intuitively, the OruCure of the Picard group of End(.c7) therefore diCates that of the
horizontal isogeny graph component containing .. Our approach is essentially to look at
the latter and deduce information on the former, which might eventually lead to the identi-
dcation of End(.<7). We formalize the notion of OruCure by the following concept.

Definition vi.1.1. Anideal a of Z[r,T] § said to be principal in & if Teideal a& § principal;
it § said to be principal in the isogeny graph when e §ogeny ¢, § an endomorphgdm of ./

In faC, we meant ¢, ¢4, rather than g, since we want it to aC on .</ even though a s
an ideal of Z[m,T]. Obviously, since we are looking for End(.</) we cannot really compute
aEnd(.¢/), but we will see later that PaEnd(.o) €N be computed regardless.

Qerefore, an ideal is principal in End(.¢/) if and only if it is principal in the isogeny
graph, which gives a way to tell the endomorphism ring apart from other orders of the lattice.
To avoid telJing all orders, we rely on this simple result.

Lemma vr.1.2. Ifanideal § principal in some order, it § principal in ag orders con Tining it.

Indeed, if & c @ are two orders containing Z[m, ], the map a € J(0) — a0’ € 3(0”)
induces, as we have mentioned before, a surjeCive morphism of Picard groups. Intuitively,
this means that more and more ideals become principal as we ascend the lattice of orders, or
equivalently that Picard groups get smaller. &xis is why we chose Z[m, ] to be the ring of our
ideals: via the morphism a — a@ we can map ideals of Z [, T] to any order of the lattice.

Computationally, the lemma above implies that by verifying whether principal ideals of
O are also principal in the isogeny graph, we can convince ourselves that @ is contained in
End(.<7). However, this approach does not prove anything (in faC, it fails in certain rare
cases that we will cover later); to rigorously assert the location of the endomorphism ring,
we use the following concept.

Definition vi.1.3. A certidcate for We order & consgts of:
— afamily of orders &, and ideals a; principal in &; but notin 7,
— afamily of orders & and ideals o; principal in 0 but notin g,

such T¢€ 0 § Teonly order aboAe Z[m, ] s€@fying 0, ¢ 0 and 0, 7 O for ag indices.
It § said to be verided on 'Te abelian variCy .</ if Te ideals a; are principal in its Gogeny
graph whereC e q; are not.
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If a certidcate for the order @' is verided on the abelian variety ./, by the contrapositive
of the lemma above, then we have End(.e/) = @. In faC, the family (0, a;) is eDeCively
conOruCed when one executes the lattice-ascending walk that we are about to describe; the
family & is then typically chosen to consilJ of all orders immediately below 0, that is, jull
one level below & in the lattice of orders.

A next seCion will address the search for ideals and, as a consequence, show that it
takes L(q%)*4**® time to generate a certidcate that can subsequently be verided within
L(q92)39V+°‘1) operations, as g goes to indnity and y is any positive conlant real number. &uis
eliminates the need to carefully ensure the correCness of our algorithm: we can simply run
an algorithm that is only proven to return a correC result with probability £ > 0 and, when
it does return a result, verify it using our certidcate method; if it proves to be incorreC, we
Oart over. 2e expeCed overhead on the complexity is 1 /.

cufooboobo bhoo BOobL

To search for the endomo,rphism ring End(.¢/) in the lattice of orders, we tel] whether
orders O lie below it by seleCing principal ideals of them and checking whether they are
principal in the isogeny graph.

It remains to design a general Orategy to seleC the orders to be teCed.

We shall say that an order @ lies direCly above another 0" if we have @ > 0" but there
exis no order @” dierent from & and ¢’ satisfying @ > 0" > 0’; we also dedne the
corre€onding notion of “direCly below” where inclusions are reversed. Asan example, when
an order contains another with prime index, then it mu(J lie direCly above it.

To ascend the lattice of orders, we proceed one Oep at a time: each Oep consiCs in enu-
merating all orders lying direCly above a prescribed order &’. We have seen that the index of
0’ inany order direCly above itisadivisor of €2~ where € is a prime faCor of [0, : Z[n, T]].
By faCoring A we therefore obtain the possible values of €, and we can then use the algorithm
described earlier that lis those orders containing ©” with a prescribed index.

Our Orategy to locate the endomorphism ring in this lattice by te(ling orders and ascend-
ing in corre€onding direCions works as follows: given some order ¢’ contained in End(.</)
(we Dartwith @’ = Z[n,T]), dnd some order & direCly above &’ which lies below End(.<7);
then replace @’ by ¢ and iterate the process. 2 ascension ends when no & is found to be
contained in End(.); then, we mull have End(.<f) ~ 0. See Figure [] where we Uart from
the bottom and ascend towards orders & for which the Oatement & C End(.</) holds.

Formally, we obtain the following algorithm.
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FIODOOO 0. Locating End(./) by ascending a te(-sequence of orders.

Algorithm VI.1.4.
10000:  Asimple ordinary abelian varicy .</ over a Enite Eeld IF,.
O0ooood:  Anorder gomorphic to its endomorphdm ring.

Compute Te Frobeni § polynomial X, (x) of .</.
FaCor Te dgcriminant A and conOruC “Te order ¢/ = Z[n,T].
For orders @ direCly aboAe 0"
If 0 c End(.&/) s¢€ 0’ « € and go to Step 0.
R¢urn o',

I sy sy |

To te0d whether an order lies above & we compute sulIciently many principal ideals of it
and telJ whether they are principal in the isogeny graph. Before detailing this process, let us
present an alternative approach to locating the endomorphism ring in the lattice of orders.

&e next seCions will show that it requires L(JA[)Y/4*°® time to dnd random principal
ideals & whose associated isogenies can be computed within L(|A|)39V+°(1) operations; to
balance these colls, we sety = 1/./22g and since |A| < g **®) we dnd an overall runtime of

L(q)g1/3_9/2+0(1).

Note that for ¢ = 1 we can do better by using a faller isogeny computing method whose
exponent is jud 2y inClead of 3gy for the arbitrary-dimension method.
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Rather than Oart at the bottom of the lattice and ascend towards the endomorphism
ring, we can generate certidcates for each order arting from the top and attempt to verify
them; to ensure this only uses subexponentially many operations, we trim the lattice of orders
as we go. &e runtime is then bounded in the size of the output, rather than the input. &e
method of WOUOUU (UUD0) had a similar feature; however, our bound is subexponential.

In molJ cases, there are only polynomially many orders in log|A|, but to give a subexpo-
nential bound on the complexity of our algorithm when there are exponentially many, we
elimince small branches of orders as we go; these branches corre€eond to small prime power
faCors £ of the index [0} : Z[n,T]]; by “eliminating them.” we mean computing the endo-
morphism locally at € using the method of EIDD0U0O000 and COOUOO (OOUO). Formally,
we proceed as follows.

Notation. Let b, (f(x)) denote any funCion satisfying f(x) < b, (f(x)) < f(x)**°® that can
be evaluated in essentially linear time in f(x).

Algorithm vIL.1.5.
I0000: A simple ordinary abelian variCy .o/ over a Enite Eeld IF,.
O0oooo: — Anorder §omorphic to its endomorphg@m ring.
Compute Te Frobeni § polynomial x_ (x), and faCor [0, : Z[n, ] C [T £%.
SCS—@andr« 2.
For ag primes £ wiT €2 <b, (exp v Iog(r)):
If€¢ S, compute End(.e/), and add £to S.
For ag orders 0 wiT Ve €S, 0, = End(.«/), and | disc(0)| <r:
TeOwhcher End(.e/) = 0; if yes, Tenrcurn 0.
SE 1 r+*1/%(0%99) and go back to Step L.

{ s s I s A s R s N S ) |

Step 0 applies the method of Eisen;réger and Lauter locally at £; its complexity is there-
fore £29*°) omitting polynomial faCors in log(q). e inequality of Step 0 thus ensures
that no more than L°®(r) operations are €ent there.

e coll of generating a certidcate for @ is bounded by L(disc(¢))***® when the
veridcation time is bounded by L(disc(&))*¥*°®: to balance these, Step D usesy = 1/ /129
which gives it a complexity bound of L(disc(&))v3¥/2*°®) Step [ ensures that:

— only orders that match the local information obtained in Step O are telled;

— teling them all uses at moO L°®(r) computing time.
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Step Oincrementsr little by little so that, on the one hand, it never goes much beyond the
discriminant of End(.<7), and, on the other hand, it takes only O(glog q)? iterations for r to
reach | disc(Z[m, )| = O(g¥"+*W) and thus for our algorithm to have considered all orders.

To bound the number of orders to be teJed in Step O, assume that there are at moll
n'*°@ orders contained in @ with index n; this is a classical faC for g = 1 (since orders are
identided by their index in 0y ) and it has been proven by NOOUUOOO (OOOU) for g = 2. We
thus dnd that for r = n? the number of orders satisfying the condition of Step [ is bounded,
up to exponent 1 + o(1), by the number of divisors of

[ﬁK:Z[n,ﬁ]]/ 1_[ A
€9V€<exp‘/@

that are less than n, where the denominator removes prime powers from S; a crude calculation
shows that this number is bounded polynomially in log(q).

Ignoring the co of faCoring the discriminant A, and omitting polynomial faCors in
log(q), we obtain an overall complexity of

L (disc(End .c7)) V20

vi.2 Finding Principal Ideals

To te whether some prescribed order & lies below the endomorphism ring of a sim-
ple ordinary abelian variety .ef, we drC compute principal ideals a that discriminate the
OruCure of Pic(¢) from that of other orders containing Z[m, ). Sen, we evaluate the cor-
re€onding isogenies; for this reason, we compute the faCorization a = ] p? and then
evaluate @, as the composition of z,, times the isogeny @, for all p.

We therefore consider smooth ideals with small exponents, which we call short ideals.

GUooo Mmoboooo

Let B be a generating set of ideals for the Picard group of an order @ in a number deld
K; for inOance, under the generalized Riemann hypothesis, we can take for ‘B the set of
prime ideals of norm less than 12 log? |disc 0. By computing relCions of 953, we mean dnding
produCs of ideals of B that are principal.

For convenience of the exposition and of the implementation, let 8 aCually generate the
Picard group of the minimal order m; this way, the set {b& : b € B} generates the Picard
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group of any order @ containing m, and its relations are veCors under the produC map

0.{ 7B — J(m)
X  — HpeBpo

If we let oy (x) denote the ideal clags of Pic(©) containing the ideal (x) @, then the set of re-
lation veCors x € ZB for ¢ is exaCly the lattice A, = ker(d,,). Note that since B generates
the Picard group, the map a,, is surjeCive and we have

Pico ~ZB A,

which means that computing relations is essentially equivalent to computing the group Cruc-
ture of Pic(0). &e principal ideals of & we search for will be obtained in the form o, (2),
where z € A, is arelation veCor to be found.

To dnd kernel veCors of g,,, we dr0 need to identify a dnite subset of ZB which is
big enough to contain a generating set for A,. Let n denote the class number of &’; since
Pic(0) is generated by B and its elements have order n at mo0, the box {0,...,n — 1}B
maps surjeCively onto the Picard group via g,,. As a consequence, there exiCs a generating
set for A, contained in the box B = {0,...,n}B. We &are the proof to the reader, since a
much better bound will be derived (and proved) shortly.

Note that the class number n satisdes n = | disc @|*/%*°®; however, analytic methods
can be used to derive eJeCive, tighter bounds on n.

To dnd relations of the group G = Pic(&) on B, one can use the baby-Oep giant-Oep
method. It consils in elitting the basis ‘5 into a disjoint union B, LI B, of two sets of
approximately equal size, so that this elitting carries over to box B and decomposes it as a
direC produC By, x B, where B; is the set of veCors of B with support in B,

Algorithm vr.2.1.
10000:  Abox B where to look for rel€ions under o, : B — G.
Oo00000: — Arel&ion, TE §, aveCor of ker(a,,).
0. Split B CTedireC produC By, x B,.
0. ForveCorsx € By: Dorex in a Tble indexed by 6, ().
0. ForveCorsyeB;:
0. If (0,(y)) " =0,X réurn TerelGion x +y.

A table condruCed in Step [ is typically implemented as a hash table, so that the col]
of the lookup in Step O is negligible. A Gray code can be used to enumerate elements of
B, and B, so that each evaluation of o, jul requires O(1) operations. &is algorithm then
requires an expeCed O(,/n) number of group operations and Corage €ace.
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Note that a @ace-e[dcient generic method for dnding relations in arbitrary dnite groups
will be presented in the next chapter; it can be used in Picard groups in particular. For the
moment, let us discuss a simple application of such generic algorithms to the computation
of endomorphism rings.

ROOOOIODOO 00 000 EDROOOO0DOINO RIOD

Let us brieEy present an alternative to our approach to computing the endomorphism
ring End(.<¢) of a simple ordinary abelian variety .</ dedned over a dnite deld: we dr(J gave
amethod for computing End(.</) Eom below by dnding principal ideals of candidate orders
and teJing them in the isogeny graph; then we gave a method which works Eom aboAe by
attempting to prove that @ = End(.</) for orders & of increasing discriminant.

Amore direC way of computing End(.</) Eom aboAe is simply to reverse our dr method
which proceeds Eom below: rather that dnding relations of orders and evaluating them in the
isogeny graph, we can dnd relations in the isogeny graph and evaluate them in Picard groups.
as gives the method below.

Algorithm vI1.2.2.
I0000:  Asimple ordinary abelian varicy <7 over a Enite Eeld F,.
Oo0pood: — Anorder gomorphic to its endomorph§m ring.

Compute Te Frobeni § polynomial X, (x) of .</.
FaCor Te dgcriminant A and conOruC Te order 0/ = 0.
For orders @ direCly below 0

IfEnd(.¢/) C 0 s¢ 0’ < 0 and go to Step .
R¢urn 0.

s [y s [ s [y |

To te whether End(.</) lies below some order &, we dnd isogeny chains from .o/ to
itself: in the baby-Oep giant-Oep algorithm above, it sullces to replace o, by the map

XGNB._)(pplo...o(pplo(ppz0...0(pp20...(42{)

XPl times sz times

(better yet, use the Pollard approach of the next chapter); once a principal ideal of the isogeny
graph is found, it suCJces to check whether it is principal in the order & as well.

Ais approach has the advantage that, quite oEen, only one relation of the isogeny graph
sulces to rule outall orders but one, so the endomorphism ring is computed in jud one shot.

As before, this is a probabilidic process: the ideal we dnd in End(.<?) might aCually also
be principal in some OriCly smaller order; in order to increase the probability of success, we
can use several relations, but to unconditionally prove the output (henceforth transforming
our method into an algorithm of Las-Vegas type), we have to rely on certidcates.



gaio uooooobobooio 0ooooo

SOO000000000IOD ADDO0IDORD

SOOO0O (OOOO) drdd gave an algorithm for dnding relations of A, when €' is an imagi-
nary quadratic orders; building upon it, HOIUUO and MOCUUUUU (UU00) proved that the
full Picard group OruCure, that is, a generating set for A, can be determined in proven
subexponential time under the generalized Riemann hypothesis. &uis was later extended by
BOOOOOOO (UO0OD) to arbitrary number delds, under additional heurilic assumptions.

All dnd relations using a classical smoothness-based technique which exploits the integer-
like OruCure of ideals in number delds.

Algorithm vr.2.3.
10000:  Abox B where to look for relCions under o, : B — Pic(0).
oooooo: — Arel€ion, TCE §, aveCor of ker(o,,).

0.  Takearandom element x € B and compute a = 0, (x).
0. Reduce a toan equivalent but smager ideal b.

0. Ifpossible, End a preimagey e ogl(b) andrcurnx —y.
0. Rcurnto Step 0.

To dnd preimages easily, SUOOOO (CCUD) takes as basis 2B the set of prime ideals of norm
less than some bound, so that the exiCence of a preimage in B can be asserted by a smooth-
ness tel] on the norm of the ideal, and the faCorization of that norm yields the preimage.
Several ingredients are needed to bound its complexity, the mol important one being that
arandom integer in {1,...,n} has a probability L(n)~%/2** of being L (n)°-smooth, for any
conldant ¢ > 0; in the case that @ is an imaginary quadratic orders, SUOOOC (UCUOT) proved
that norms of reduced ideals are diCJributed as random integers; in faC, this behavior is ob-
served, although not proven, for orders of general number delds as well.

Qe next chapter will present all these arguments rigorously.

SO00000 BOOOO

Since our relations (and the ideals derived from them) are expeCed to discriminate the
endomorphism ring from other orders of the lattice, we mul ensure that when we generate
a relation in A, for some order @, it does not belong to A, for some other order ¢’. Of
course, we have seen that & C ¢ implies that A, C A\, and our lattice-ascending algo-
rithm aCually takes advantage of that, so we should rather require the above for orders ¢’
notabove 0, thatis, 0 ¢ 0.

Note that there exil] orders @ # 0" with A, = A/, but not too many: for g = 1, there
are jul three such cases, and we can easily fall back on a €ecidc method to deal with them.
Rigorous details will be given in the next chapter.
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In general, to ensure that the relations z we generate belong to A, but not another A/,
we require that they are random relGions in the sense that, for any order ¢’ above @, we have

/

#Pico
Prob [zeAy|zeN,] = vy +0(1);
ic

in other words, the relation is quasi-uniformly diCributed in the quotient A, /A ;.

To obtain random relations of ¢, HUDUUU and MUCUUUUD (UDUD) used veCors z with
coordinates up to n*, where n is the class number. In the Picard group, a double-and-add
method can be used to compute each term p?» in time linear in log(n), so that o, can be
evaluated in subexponential time.

However, for the purpose of checking whether the ideal a(x—y) is principal in the isogeny
graph, the associated isogeny needs to be evaluated. For this, there is no double-and-add
technique, and the isogeny Py has to be evaluated z,, times, which makes the bound n*on
the coordinates quite painful. Note that since y is the exponent veCor in the faCorization of
the norm of a reduced ideal, it is at mo[J linear in log n, so what is really needed here to keep
the isogeny-computing col low is jul to dnd a smaller box B for which the quasi-uniform
diOribution of classes Oill holds.

A conjeCural small box was drJ used by B. and SUUDUDUOOD (DOUD); later, COIOOL]
000, and SOOOOOOOO (UO0D) noted that a result of JOO, MIOUOD, and VOOUUOOOOO (UOO0)
enables to prove, under the generalized Riemann hypothesis, that such a box indeed yields
random relations. We conclude with an explicit version of the general algorithm.

Algorithm vI1.2.4.

10000:  Anorder ¢ of dgcriminant D.
0o00000:  Arandomrel€ionz e A,.

0. FormesC B of primes p of @ wiT norm less Tan N = L(D)".

0. Draw uniformly & random a veCor x € ZB wiT coordin&es
[¥o| < b (log*** D)) if N(p) < b (log”** D), else x,, = 0.

0. Compute a reduced ideal a in'Te dCsa,(x).

0. IfafaCorsover B C[]p’» TenrcurnTeveCorx —y.

0. OTerwge, go back to Step [.

Here, ¢ Oands for any dxed positive real number. Step 0 may use the LLL algorithm as we
mentioned earlier; for any “good” reduCion method, the probability that Step O is successful
is L(D)~Y/4*°®): the overall complexity is then L(D)Y/*/**™® to generate a relation of length
L(D)Y; the longer the relation, the colllier the evaluation of the associated isogeny.
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vL.3 Computing the A&ion of Ideals

We now consider eJeCive means of teCing whether an ideal a aCs trivially on the isogeny
graph of an abelian variety .o/ . Here, we focus on the case of elliptic curves, but certain bricks
will be reused in the lal] chapter for abelian varieties of dimension two.

MOOO000 ELOO0I00O0

Once a principal ideal a of @ in the form [ ]g p?» is found, we wish to determine
whether the associated isogeny aCs trivially on ./ ; in faC, this does not require explicitly
evaluating the isogeny ¢, but only determining whether it maps .</ on .</.

Elliptic curves isogenous to a given one with a prescribed way can be liled e(Iciently via
modular polynomials; this uses j-invariants to identify isomorphism classes of curves, and
modular polynomials @ (X, Y) which we now recall.

Proposition v1.3.1. Forany m e N, Tere exgts some polynomial @, (X,Y) € Q[X,Y] of
degree m+1 such T C, over Eelds of charaCergtic coprime tom, Tej-inAariants of egiptic curves
m-Gogeno J to a prescribed j, are exaCly e roots of @ (X, j,).

CUOO0 (U000) proved the bit-size of @, to be O(m**°®), It can be computed in quasi-
linear time by the Eoating-point method of ELCII (UUU), or by the alternative method of
BUOOUL, LOOUOL, and SUOUOOOOUO (DOUT) based on the Chinese remainder theorem,
which olers additional advantages such as reduced memory requirements.

To te whether ¢, aCs trivially on .<7, we can evaluate Py (X, Y) at ((-27),j(-27)). If
the result is non-zero, then ¢, cannot send .<7 to . if the result is zero, then there exils
one isogeny of degree N(a) from .o/ to .7, but it need not be ¢, in general.

For praCical purposes, rather than seeing @, as an isogeny of degree N(a), we see it as
a chain formed of Zy isogenies of norm N(p) for each p € B. Consequently, it suldces to
compute the modular polynomials @y, and to combine them as isogeny Leps. We now
detail this procedure, in a manner which also addresses the issue of the previous paragraph.

cooooboombooo

When we evaluate @, (X,Y) at X = j(.e/), the roots in Y are the j-invariants of the
codomain of degree-N(p) isogenies with domain .</. AmongQ these roots lies (pp(JZf ) but
we have no information as to which it is.

To address this, we can explore aJ isogenies of degree N(p). When a has many faCors,
this can be colly as we might have to consider several roots of @, at each Uep of the
isogeny chain, therefore eventually exploring an exponential number of varieties in log N(a).
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Endomorphism rings of elliptic curves are imaginary quadratic orders, and there are
therefore at moO two ideals of a given prime norm: p and p. In the isogeny chain

9 9 9
syl o

corre€onding to the faCor p?» of a, the conjugate prime p aCs on .<7; as the dual isogeny of
0y 1 Fi_y — . &us, fori >0, we can determine which of the two roots of @, (i(./). Y)
is not going backward in the chain, and the two roots need to be considered only for i = 0.

&is helps when a does not have many prime faCors but has one with high exponent:
rather than jul tedJing if | [ g p?» is principal, we count how many produCs Il PP are,
where p € {p,p}; this is equivalent to counting the number of endomorphisms of .¢/ that
are chains consiling in z,, non-backwards isogenies of degree N(p), for each p.

When there are jul] two ideals p and p of norm N(p), this gives:

Definition v1.3.2. L []g p?* be e faCorizCion of an ideal a € Z[m, .
Itscardinality in & § Tenumber of veCors (p) € [ T {p. p} forwhich [ T p*» g trivial.
Its cardinality in the isogeny graph of ./ § e number of chains formed by z, gogenies of
norm N(p), for each p € 2B, which map ./ onto itself.

Qese two quantities are the same for 0 = End(.«/), and, for elliptic curves, we evaluate
the latter via using the method below Carting from the j-invariant j, = j(.<?).

Algorithm v1.3.3.
I0000:  Aj-inAariant j, and an ideal [T p*.
O00000:  xe cardinality of TQ ideal in Te ogeny graph of j.

0. L&Y beTeldt ().
0. Foreachpe®B:
0 S¢J«JYandlc Y beanemptylgt.
0 ForeachjinJ:

0. LC {j,.j_} beWeroots of @y (X,]), and sC J, «jandj” «].

0. RepeC z, — 1 times: )

0 SC (,.J.) = (i, Te root of @y, (X, ],) dillerent Eom j ).

0 S (i”,j_) « (_, Teroot of @y, (X,j_) dilerent Eom ).

0 Append j, andj_toJ'.

0. RcurnTe multiplicity of j, in J'.

1

Since we compute two branches for each prime faCor of a, the overhead this cardinality
algorithm adds on the principal approach is 2" where w is the number of prime faCors. When
w is small, this is greatly compensated by the &eed of using modular polynomials.
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W brieEy review results on evaluating the explicit isogeny ?p associated to an ideal p.

Recall Proposition [III.0 which Oates that invertible prime ideals p of & written as
20 + u(m)@ aC on the kernel of the associated isogeny 0p with charaCeriOic polynomial
u. 2xerefore, to tell the isogeny ¢, apart from otheri |sogen|es of degree N(p), one need juld
compute the aCion of the Frobenlus endomorphism on its kernel.

To evaluate isogenies from their kernels, we use the formulas of VOO (TOCUD) for elliptic
curves, and their generalization to abelian varieties by COOIO0 and ROOUOD (UUOD) together
with the improvements of COUOU and ROUOOO (OUOT). S&ese methods take as input a sub-
group 7 of an abelian variety ./ and output the isogeny .o/ — .o /2. Since they work
with principally polarized abelian varieties, they additionally require that 2# be a maximal
isotropic subgroup with re€eC to the Weil pairing, and that it be isomorphic to (Z/2)°.

We thus seek ideals a = [ ] g%« where the kernel of each ¢, is maximal isotropic and of
type (Z/2)%; to this extent, in dimension g > 1, we redriC to ideals a arising via the reEex
type norm, on which the lal] chapter will say more. When we have a prime decomposition
q =] I p fora €ecidc term g, the Frobenius endomorphism mu( aC on ker((p ) with char-
aCerillic polynomial T U, (x) where the u,,(x) are such that p = N(p) 0 + up(n)ﬁ

Finally, we observe that, if .c7 is an ordinary abelian variety of dimension g dedned over
a dnite deld, all points of rational subgroups of type (Z/£)® are dedned over an extension of
degree at molJ £% —

&e charaCerilic polynomial of the aCion, on such a subgroup ¢, of the Frobenius
endomorphism divides X, (x) mod £, and the multiplicative order n of x modulo this faCoris
precisely the extension degree over which all points of 2# are dedned. &erefore, to evaluate
the degree of an extension over which all points of rational subgroups of type (Z/€) are
dedned, it suClces to compute the lea common multiple of the multiplicative order of x
modulo the degree-g faCors of X (X) mod €.

Dioooo mooooo

Let g be an ideal such that ker((pq) is a maximal isotropic subgroup of order £9in.¢/. In
order to compute this isogeny, we combine several classical tools into the algorithm below. It
requires a basis for the £-torsion of .</ dedned over a certain extension, which we will soon
explain how to compute; the kernel is then identided by the polynomial u = Hup with
u,, dedned as above, and we use the explicit isogeny algorithm to compute ¢, from it. We
make this algorithm output the isogenous curve @, (.</), so it can readily be plugged in to
our endomorphism ring computing method.
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Algorithm VIL.3.4.

I0000:  Anabelian varicy ./ /IF, wiT Frobeni § polynomial

and a sui Tble ideal q of norm €.
OUboom:  &edogeno ) varicy @ (.o/).

Find a bCg (P;) of Te .</ [€] over Te extension of degree €9 — 1 of F,.
Write Te m&rix M of Te Frobeni § endomorphgm on Te bCg (P,).
Enumerce Tose subgaces of dimension g Jable under M € Matzg(Z/{ZZ).
Dcermine which corregonds to ¢ §ing Te Frobeni J aCion.
Compute ‘T e §ogeny of which T ¢ eigengace § Te kernel.

s s s o |

For a maximal isotropic subgroup of ./ of order €% dedned over the extension of de-
gree £ — 1 of the base deld, the method of LOUIUD and RUDUUD (UOOT) requires £39+0()
operations as g is dxed and € goes to indnity.
uses O(£9) operations over the extension deld. Step O is classical and takes quasi-linear time
in g log(€) where w < 2.376 is the bed known exponent for matrix multiplication.

Finally, Step D uses &eorem 0 of COUUUIOOUU (UUOO), where the extension is chosen so
as to contain all points of rational subgroups of type (Z/€)°. &e simple algorithm we give
below aCually computes all such points, from which a basis can easily be extraCed; it works
by seleCing random €>-torsion points and liEing them along each others. Here, we let k(P)
denote the valuation at a dxed prime £ of the order of a point P.

Algorithm v1.3.5.
I0000:  An abelian varicy sz/IFq wi'T Frobeni J polynomial X and a prime £.
ounodd: e e-torsion subgroup of o7 over e

0. Write#.o/ (F o) C meX where £4m.

0. Creceanempty CsociCive array B.

0. While B hC fewer Tan 22 keys:

0 L& P =mO where O § a random point of ﬂ(qug,1).

0 For j Eom k(P) — 1 down to 1, if /P § a key of B:

i If j > k(B[#/P]) Ten go to Step L.

0 SC P «— P — g<CIEPD-i-1p[pip],

0 If P =0Ten go back to Step [.

0 Foragkeys Qof Bandx € {1, ..., 8}, s¢ B[X®**Q-1(xP + Q)] — xP + Q.
0. RcurnTekeysof B.

-

Random points of .¢/ can be drawn e[Jciently when .</ is given as the Jacobian variety
of a curve in WeierOrass form. Using the lal two algorithms, we compute, in Mumford



gaio uooooobobooio 0ooooo

coordinates, the kernel of the isogeny that we wish to evaluate; we then convert it to theta
representation where the algorithm of COUIOO and RUOOUI (UUCO) is applied, and dnally
use the method of MUUOOU (UOCD) to convert the codomain variety back as the Jacobian of
acurve in WeierOrass form, so that the whole process can be iterated.

Since the cardinality of ,rzf(Iqua,l) is g%+ multiplying random points of it by m uses
O(ge® logq) operations in .¢/ (qua,l). Similarly, all orders are bounded by k = O(g€®logq).
Finally, the probability of going back to Step 0 is O(1/#) as proven by COOOOIOUIOD (DOUT).

Using fall deld arithmetic, and representing points of ./ in Mumford coordinates, op-
erations in ﬂ(ang_l) have a bit complexity of (£91ogq)***®: if an eCicient data OruCure
such as a red-black tree is used to Core the keys of B, we have:

Proposition v1.3.6. LC .o/ /Fq be an abelian varicy of known Frobeni § polynomial, and g
asui Tble ideal of Z[m, ). AlgoriTm [JZ.01 rCurns Te abelian varicy Pqend(.)(-&/) In time
bounded by (€2 logq)?*°®, € g § Exed and £ goes to inEnity.

Note that, in Algorithm I, rather than Coring the whole £-torsion subgroup in an
associative array, a pairing could be used to traneort discrete logarithm problems to a dnite
deld where they can be more e[Iciently solved. &is technique gives a valuable €eedup for
large values of £, although the overall complexity remains polynomial in £ due to the exten-
sion deld arithmetic.

vL.4 Practical Computations

We now present the algorithms used and results obtained by praCical runs on elliptic
curves. Applying the same techniques to general abelian varieties will be the topic of the lad
chapter. Timings reported here were measured on asingle core of a recent desktop computer,
such as an AMD Opteron clocked at 2 GHz.

BUOODUIOD 00D COooo

Let & be an ordinary elliptic curve dedned over a dnite deld F,. &e dr0 Oep of our
algorithm is to compute the charaCerilJic polynomial X, of the Frobenius endomorphism of
&. Itisequivalent to counting the number of points of & whichis of the form x_ (1) =p+1—t
for a certain integer t € {—2,/4,...,2,/G}. Over a base deld of cryptographic size, say, with
q a prime of 256 bits, this takes under ten seconds on jul one core of a andard desktop
computer using the Schoof—Elkies—Atkin algorithm. Note that further developments by
SOOO000000 (U000) now make this possible for primes p over 5000 decimal digits.

Next, we need to dnd principal ideals of orders @, and Oart by deciding which prime
faCors we want them to have. For maximal orders @ of imaginary quadratic delds, BOUL]
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(U000) proved under the generalized Riemann hypothesis that the primes up to 6log? |A|
generate the Picard group, where A is the discriminant of &. HeuriClically, we dnd that much
less are necessary, which lead to the following conjeCure.

Conjecture vi.4.1. Foranyd >1,if & § animaginary quadrCic order of sulciently large
dgcriminant, Ten any cICs of Pic(©) conTins Te produC of a subs¢ of S, where S, conTins
TeErDk=dlog, (#Pic @) non-principal prime ideals.

&is is aCually Oronger than asking for S, to generate the Picard group: it requires that
S, generates it wiT bounded exponents in {0, 1}. However, it is a natural conjeCure to make
since it asserts that the set S, behaves as a random subset of Pic(&') would in the sense of
Proposition 0.0 of [ODO00IOUOO and NOOO (OOOO). Our empirical veridcations have not
found a single order for which the conjeCure does not hold with d = 2; for values of d closer
to 1, we found this to be true for many orders above a certain lower bound, as can be seen on
Figure].

e above is moO useful when generating relations using generic methods: it Oates that
only slightly more primes than a cardinality argument would require aCually suClce. Ss
yields short associated isogenies (which are a mull in dimension two).
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However, as we Orive to balance the col of dnding a principal ideal in & with that of
evaluating the associated isogeny, generic methods do not scale well: for discriminants of
more than 128 bits, a generic method would require above 32 operations in Pic(©0); from
there on it is therefore advisable to switch to the subexponential method of SUODOU (UO0D).
Note that by the conjeCure we can use a box with support in S,.

Since our principal ideals rarely have more than 10 prime faCors, it is really worth using
the cardinality approach: modular polynomials permit one to compute isogenous curves
quickly, and they can be precomputed and reduced modulo p for all the primes £ we consider,
whereas computing the torsion would have to be done from scratch at each Oep.

HOOOUOOIOO CcoOooiittono bb bidoooioo oud

So far, our endomorphism ring computing method telled whether ¢ C End(.</) for
various orders @’; since this process has a small probability of failure, we then certided the
candidate order so as to unconditionally verify our result.

In B. and SUOOOOOOOO (OO00), we used a quite dillerent approach which simultane-
ously dnds @ and verides it. It exploits the particular OruCure of the lattice of orders for
elliptic curves; we Dart by recalling this OruCure.

Let w denote the index of Z[m] in Oom) where 1 denotes the Frobenius endomorphism
of an ordinary elliptic curve dedned over a dnite deld. Orders 0 of K = (Q(1) have the form
Z+f0, where f is the integer that generates their conduCor over 0 ; therefore, inclusion of
orders corre€onds to divisibility of conduCors, so that orders containing Z[n] are in bijec-
tion with divisors f of w.

Let p' be a prime power dividing w, and consider the problem of deciding whether p'
divides the conduCor u of End(&). Here, a certidcate for p' needs only consil of one ideal a
which is principal in the order of conduCor w/p*@"~"*1 but not in that of conduCor p': if a
is principal in the isogeny graph of &, then we necessarily have p'|u. Indeed, in that situation,
End(&) does not contain the order with conduCor W/p"a'pw‘i”, which means its conduCor
u divides w without dividing w/p‘@"“~"*1 in other words, p' divides u.

In number delds of degree greater than two, it does not seem to be possible to certify
orders in a nice way as above, using jul one ideal; that is why we needed to develop a more
general method for arbitrary abelian varieties.

GUO0000 ENOOOOO

Let & be the elliptic curve with WeierOrass equation

Y2 = X3 — 3X + 2728849899765998058103612158899570741955717345
over F, with q = 2872801286401014961877470682093858455400487431
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&us curve isordinary and it has g + 1 — t points, for a trace t of 1868. &e discriminant of 1t
is 4q — t2 and its faCors as —7w? where

w=2-127 524287 - 304250263527209.

We drO compute the endomorphism locally at 2 using the method of EIDOO00COOON
and LUUDO0 (UO00), which is nearly inDantaneous; it dnds that the order with conduCor 2
does not contain End(&).

For the prime 127, we use the local method of KDUUI (OUUD): since ®,,,(j(&), ) proves
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SOO0000DO000000 EDOODO0
Let & be the elliptic curve with Weier(rass equation

Y2 = X3 — 3X +660897170071025494489036936911\
196131075522079970680898049528

over I, with g = 160693804425899027555081234320\
6050075546550943415909014478299

where the backslash symbol denotes that a number has been wrapped over to the next line.
Again, the curve is ordinary and it has trace t = 212 (which it takes ju] a few seconds to
compute). FaCoring the discriminant 4q — t? of Z[n], we dnd that

w=2127-524287-7195777666870732918103.
——
Py 3

As before, the primes 2 and 127 can be dealt with by climbing the local volcano. None
of them divides the conduCor u of End(&); this only takes a few seconds.

To determine whether p, divides u, we use the algorithm of SOUOOO (OOUD) with the
smoothness bound 600 to dnd a relation with non-zero cardinality in the order of conduCor
w/p,. It takes about four minutes to dnd the relation

21798 . 233 .29 . 372.532%. 1371 . 149! . 2331 . 263% . 5471

whose cardinality in the order with conduCor p, is zero. Computing the relevant modular
polynomials via the method of BUOUUU, COUUUM, and SUOUOO0OOUON (UO0OU) requires under
four minutes and the associated tree of isogenies is found to have cardinality zero within ju]
a minute; as a consequence, we deduce that p, is a faCor of u. Note that, here, we made
use of the prime 2 although it divides the index w; this process is described in SeCion 0.0 of
SUOOO0000O (0O0d).

For the prime p,, this is, as expeCed, much faler: the relation 223-11°.43' . 712 is found
to have positive cardinality in the order with conduCor w/ p, but not that with conduCor
p,. Itis found that p, does not divide u and the whole process takes jul a few seconds.

In about 5 minutes, we have thus proved that End(&) has conduCor 524287, but note
that this computation was much more diCJcult than the previous one due to the larger size
of p, here: it could not have been achieved with generic methods.
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Qs chapter is devoted to a rigorous analysis of the method that we have jul presented;
the main result is a proof, under the generalized Riemann hypothesis, that our algorithm
indeed computes endomorphism rings of ordinary elliptic curves in subexponential time.

Mo0 of material used has already appeared in B. (UIUU) for elliptic curves; here, when
this can be done, we Oate our results for general varieties. Polarization issues are deferred to
the next chapter, which will therefore also cover praCical computational a€eCs in dimen-
siong>1.

As usual, let ./ be a simple ordinary abelian variety dedned over a dnite deld F,.

vil.1  Orders from Picard Groups

We dr0 prove that if we can identify the OruCure of the Picard group of the endomor-
phism ring of .7, then we can determine End(.</) unambiguously.

POODIOODOO0OO

Recall that the drJ Cep is to compute the charaCerilic polynomial X, Of the Frobenius
endomorphism T of .ef. For this, we use the method of PIU0I (UUOU) and more precisely
the improved algorithm of AOUDOUO and HOOUU (U000) which, when </ is the Jacobian
variety of a genus-g hyperelliptic curve, has a complexity of

(log q)o(gz logg) .

Even if it were not for cryptographic reasons, we would avoid non-Jacobian varieties since
our algorithms requires to e(Iciently draw points at random, which we cannot do when .o/
is expressed in a more general form (such as theta conJants).

0oo
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e number of points of .</ dedned over the extension of degree e is then
#.o/ (F ) = Res,, (X, (), u° — 1)

which means that our algorithm for computing the £-torsion does not have to count the
number of points over a new extension every time a new prime £ is considered.

To navigate the lattice of orders of the complex multiplication deld K = Q[X]/ (XH(X))
that is, compute 9% = 6, m = Z[m, 7] and the faCorization of [2 : m], we need to faCor
the discriminant A of x which satisdes

1A < (2m29(29—1)'
For this, the unconditional method of LUJUIUL and POLUOODOD (UUUD) uses L(|JA[)Y®
operations; assuming unproved hypotheses, we might also use the number deld sieve of CT
NO0000OO (0000) with conjeCured runtime

1
L=(1a) wherecNFS:§3 92 +26+/13 = 1.902.

For elliptic curves, we were able to prove the correCness and complexity of the re] of
our method only assuming the generalized Riemann hypothesis. In that case, the complexity
i

; L(q)l/ ﬁ+°(1),
so the coll of faCoring via the unconditionally proven method dominates; we found it curi-
ous that no known faCoring algorithm achieves a better exponent assuming solely the gen-
eralized Riemann hypothesis: there seems to be a gap in the hypothesis required as, in terms
of asymptotically fale(] methods, we go Craight from an unconditionally proven method
to one which relies on many non-COandard heurilics.

In dimension two, we will see that additional unproven hypotheses, other than the gen-

eralized Riemann hypothesis, are necessary.

Oou0ooo 0oo 1boooo

Let us brieEy address the complexity of the algorithms used for navigating the lattice and
computing with ideals of arbitrary orders in it.

e algorithms used greatly diller from dimension one to dimension two: in dimension
one, the lattice is simply the set of divisors of [9)t : m] while in higher dimension its Oruc-
ture has no such eecial form; again in dimension one, ideals can be dealt with extremely e(J-
ciently as binary quadratic forms while in higher dimension only general methods involving
Hermite normal form and LLL reduCion can be used.
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In faC, we dnd that, in the realm of elliptic curves, many problems can be solved in es-
sentiagy linear time, that is, with a complexity asymptotically equivalent to the size of the
output, up to an exponent of 1 +0(1); but those problems become suddenly much harder
with higher-dimensional abelian varieties and no such satisfying algorithm is known. &uis
is for inOance the case for the generation of Hilbert class polynomials. Our own endomor-
phism ring computing algorithm will not be an exception to this rule, as many simple and
easy to analyze a€eCs of it are lod when going from dimensiong=1tog=2.

Regardless of the dimension, since we use the building blocks for orders and ideals on
inputs of size for which their complexity is polynomial in log(q), we need not worry too
much about them: as our overall expeCed complexity is superpolynomial, the cold of all these
subroutines disappears within the o(1) term of the exponent. &is might seem a little too
rough, so we refer to COOUO (UO00) for more careful Datements regarding the complexity
of these Oandards calculations.

O000oo bioo booo PoO0LO GUOOO

Our relation method uses the Picard group OruCure to charaCerize an order. s sec-
tion and the next are devoted to proving the correCness of this approach: here, we will see
that there are not many orders with the same Picard group OruCure, and there, we will de-
scribe a workaround technique for dillinguishing these rare orders from each other.

We dr0 consider the one-dimensional case, as the ideal OruCure of non-maximal orders
is much better underCood in this case. If @ isan order of an imaginary quadratic deld K, we
let B be a generating set of ideals for Pic(&), and denote by A, the relations of Pic(©) for
this basis B; in other words, we assume that Pic(0) = ZB /A,

Proposition vir.1.1. LC @ and 0’ be two orders in an imaginary quadrcic Eeld K. e
ICtice A, conTins A, if and only if We order @’ conTins @ or if one of Te fogowing holds:

0. K=Q(v/—4) and ¢’ hC conduCor 2;

0. K=Q(y/=3) and &’ hC conduCor 2 or 3;
0. aeprime 2 glitsin K and @’ hC index 2 in some order aboAe @ of odd conduCor.

Proof. DenotebyS,, (ree. S,) the set of primes £ that €lit into principal idealsin O (ree.
0"). Using relations formed of asingle prime ideal, we see that A, € A, impliesS,; €S
Now S, (re€. S,) is also the set of primes that elit completely in the ring class deld L ;
of O (ree. L ). By Chebotarev’s density theorem S ; € S ;- thus implies L, € L ; which
means that the class deld theory conduCor §(L,/K) of L, divides (L, /K).



gaio 0000ooonin 0ooooom

&is conduCor §(L,,/K) is related to that f, of @ in the following manner (see Exer-
cises 0.00-0.00 of COU (UOOMY)).

O, WhenK=Q(v/—4)andf, =2,

O, whenK=Q(y/-3)andf, =20r3,

, when 2 élitsin Kand f, = 2§ with f odd,
o Otherwise.

flLo/K)=

—h

Naturally, the same Oands for ¢”. In the latter case, the faC that (L, /K) divides f(L ,/K)
implies that f, divides f,, in other words & C 0@’; the three other cases corre€ond, in
order, to the exceptions liCed in the proposition. O

Intuitively, this means that identifying orders by their Picard groups has a single blind
ot locally at 2 and 3 where the two large[ orders cannot be diJinguished.

For orders in higher-degree number delds, we were unable to prove a similar result, but
have observed that pairs of orders with identical Picard group OruCure follow a similar pat-
tern to what the proposition above describes for imaginary quadratic orders; therefore, we
will assume:

Assumption viL.1.2. Fixge N; Tereexgtsan integer B such T¢&, if any two orders & and 0’
of a complex multiplic&ion Eeld K of degree 29 have identical Picard group OruCure, Wen one
g conTined in Te oWer wiT index a divgor of B, and boT orders are maximal & a§ primes
but Te faCors of B.

For inance, in the case of quartic complex multiplication delds, our computations sup-
port
B=2°.3%.5%.72.112.13.17.19.23-31 . 41-83-127-131 151

&is bound B could be reduced by excluding dnitely many number delds.

Even if this assumption turns out to be wrong, our algorithms will Cill be funCional as
they do not need to know in advance which orders have the same Picard group OruCure: it
can always be te(ed, as we ascend the lattice of orders and generate certidcates, if an order
has the same Picard group OruCure as some order direCly above or below it. s is naturally
quite expensive, but retains the unconditional correCness of our output.

LODO0 waioooooood

Aswe have seen, two didinC orders of acomplex multiplication deld K can have identical
Picard group OruCure, in a limited number of cases. &0se orders cannot be didJinguished
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using the complex multiplication aCion, so we need another method to tell them apart from
each other.

To tackle these cases, we apply our lattice-ascending and order-te[Jing procedures nor-
mally and fall back on a second method when the endomorphism ring is found to be one of
these. &is amounts to ascending the lattice of orders quotiented by classes of orders with
identical Picard group OruCure; when the class of End(.<?) is identided, we determine pre-
cisely which order End(.<7) is using the following algorithm.

Algorithm vII.1.3.
I0000:  Asimple ordinary abelian varicy .o/ over Te Enite Eeld wiT g elements,
and an order & wiT Te same Picard group OruCure C End(.</).
ouoodd: — Anorder gomorphic to End(.<7).

Compute Te Frobeni J polynomial X, (x), and faCor [0, : Z[n, W] C [T £".
For ag prime faCors @ wiT % < L(|A|):

Dc¢ermine End(.</) locagy € £.
For oer prime faCors £:

Compute vario J £-gogenies and see if Tey change Te

Picard group OruCure of e endomorphgm ring.
0. Deduce End(.ef).

& condition in Step 0 ensures that the complexity of determining the endomorphism
ring locally at £ via the method of EIUOO000O00 and COOOUO (UOUD) in Step O is bounded
subexponentially. Basically, since orders with identical Picard group OruCure only dier by
smooth indices (as we saw in the previous seCion), only small primes £ will be of intere[d here
(for others, @, is the only possibility for End(.e7),); for these small primes, the condition
means that the depth v, of the local lattice is not too large.

Whenv, is large, this method is too colly. On the other hand, since only the drQ few top
orders have identical Picard group OruCure, we can compute random chains of £-isogenies
and count the minimal number of isogenies it takes to reach a variety whose endomorphism
ring has a dilerent Picard group OruCure (which we determine using our subexponential
method). Since we can compute exaCly which orders have identical Picard group OruCure,
this gives us some information as to which order our endomorphism ring is.

aus is obviously a rather poor approach. Bel would be to use a higher-dimensional
analog to the method of 0000 and JUOO (COOU) and generalize the algorithm of KOOI
(U000) to compute the endomorphism ring locally at £ in time £°O rather than £°e),

I s Ry s sy

As the complexity of our fall back method depends not only on the prime £ at which we
want to locally compute End(.</), but on the entire faCor €% of the index [0, : Z[n, 7],
and we found no satisfying way of patching it, we simply rule out deep lattices.
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Assumption VIL.1.4. LC 0 C .0’ be two orders conTining Z[m, ] wiT identical Picard
group OruCures. If € § a prime faCor of Te index [0’ : @], we Csume T ¢ Te valu€ion v, of
[0 : Z[n,T]] € 2§ such TC 02 < L(q).

In dimension one, the method of KOOUU (UUUD) computes End(.<7), locally at € by
climbing the €-isogeny volcano in time VE€2+°(1), so the assumption above is not required
in that case.

viL.2 Picard Groups from Relations

ROOCOIOD sOooood

We recall the Oandard “generator and relations” setting based on prime ideals to Cudy
the OruCure of Picard groups of orders in number delds.

&roughout this seCion, @ will be an order in an algebraic number deld, and 5 a gener-
ating set of ideals for its Picard group; for computational reasons we assume that 25 consiCs
of prime ideals. We denote by A, the lattice of relations amongC elements of ‘B seen as
veCors of ZB, so that we have

Pic(0) = ZB |\,

Our drQ task will be to bound the norm of primes contained in ‘B; this is the purpose
of the following seCion which describes various Chebotarev theorems that have been used
over the years — this application being jull one €ecidc use of them.

Next, we will consider bounding the diameter of the lattice A ; which plays a crucial role
in the generation of relations that charaCerizes @. More explicitly, HUIOUD and MUCLLA
HOO (UOO0) proved that any bound on the diameter of the lattice A, yields a box B whose
pushforward dilribution by g, is quasi-uniform; in other words, produCs of random ele-
ments of this box give quasi-random elements of the Picard group of &.

Qs property is crucial to ensure that the relations we obtain permit us to diCinguish a
lattice from OriCly smaller ones.

Originally, a bound elementarily derived from the theorem of SIUOUU (DUO0) was used
by HOUOUO and MUOCUUUOU (U000); later, BUOOOUUW (OOUT) adapted their algorithm to
general number delds, therefore relying on the theorem of BUOOUU (UUUD). We will here
give, as a consequence of the generalized Riemann hypothesis, a better bound which we will
derive from a more general result of JU0, MIUUOU, and VOOUOOOOOO (OOO0O),

CO0000000C TOooooao
Let us dr(I recall the classical density T eorem of [TDOUOOOO0000 (DOOM).
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Theorem vir2.1. LC L/K be a Enite normal extension of number Eelds, and denote by mi(p)
Te Frobeni J element in Gal(L/K) which corregonds to a given prime p of K. Such Frobeni §
elements are Cymptoticady uniformly dgtributed in We sense &, for any conjugacy clCs 6 of
Te Galog group,

#{p:m(p) € €,N(p) <x} )

#
~ 7y
x—e #Gal(L/K)

where Li(x) = fzx I% g Cymptoticagy equal to e number of prime ideals of norm less Tan x.

aus theorem has countless applications; for indance, if L is the elitting deld of a poly-
nomial f e K[x], it gives the density of primes p of K modulo which f has prescribed elitting
patterns.

In our setting, we are moUly interelled in the case where K = (Q and L is the ring class
deld s, of an order & in some complex multiplication number deld. Via the Artin map, the
Chebotarev density theorem descends to ideals of the order &' and asserts that the density
of prime ideals which belong to a prescribed ideal class of Pic(0) is 1/#Pic(0); this implies
in particular that each ideal class can be represented by a prime ideal, from which we can
conclude that it isindeed possible to have agenerating set B for Pic(&") made of prime ideals.

More generally, so-called eJeCive Chebo T rev Teorems give upper bounds on elements
generating number theoretic groups. HiOorically, intered drC lied in bounding the leall
quadratic non-residue modulo n: GOOOO drD eablished the bound 2,/n + 1 (for n > 2)
elementarily and, to date, the be(d known unconditional bound of BOOOUOO (UOCUO) is Oill
exponential — the proof mixes arguments of MIOOUUUOUD (UOUU) with the Hasse—\Weil
bound on the number of points of hyperelliptic curves.

Assuming the Riemann hypothesis for the zeta funCion of certain delds L, more precise
results can be derived. Mo oEen, authors simply assume the extended Riemann hypothesis
(ERH), or even the generalized Riemann hypothesis (GRH) for convenience. Under this
assumption, ALJULD (UUUD) proved that the bound above can be made O(log? n).

LOO00000 and OUO0UOO (UOOO) later generalized this to general number delds: they
proved that if L is a dnite nontrivial extension of an algebraic number deld K, the leal prime
ideal of K that does not &lit completely in L is bounded by O(log?(disc(K)? NF(L/K)))).

BUOULT(UUUU) gave explicit conants O for these results: he showed that in the result of
ADOUOD (0000) we have O < 2, and that O < 3 for the generalized result. He derived the
following:

Theorem vIr.2.2. Assuming Te Riemann hypoTesg for Te z¢a funCion of e number Eeld
K, its Galog group Gal(K/Q) § generced by Te Frobeni } elements of its prime ideals of norm
less Wan 12log? | disc(K)|.
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As we have already pointed out, knowing that the set ®5 of prime ideals of norm less
than 12 log? |A| generates the Picard groups of orders & containing Z[m, ] is not suCcient.
Indeed, evaluating isogenies associated to ideals a which involve large exponents is collly, so
it is not suJcient to write a as a produC of primes of B: we also want this produC to be
short. In other words, we ask that a = ] [ ,.g p"» for asmall exponent veCor n.

Obviously, its norm ||n||; = > |np| is less than the class number. In their Lemma [,

HUDOOO and MOCUUOOU (DUDD) proved that any bound on the diameter of the lattice A,
yields a box B suitable to search for relations, and as a bound they used the latter elementary
result on the norm of n. BUOOOUUO (UOUU) did the same in his Lemma 0.0 for arbitrary
orders.

However, assuming the generalized Riemann hypothesis, a much better bound can be
derived from Corollary 0.0 of [0, MIUUUU, and VOOUDOOOOO (UOUO), which implies:

Theorem vir.2.3 (GRH). Foragge Nande>0, Tereexgtsc > 1such 1€, if 0 ganorder
of dimension 2g and d§criminant A, en for random veCors x drawn Eom e box

B={xe Z{piN(p)<logz*‘|A|} : Z |Xp| _ CM
B loglog|A|

e probability TE a,,(x) fags in any Exed ideal cICs of Pic(0) § € 1eCt 1/2#Pic(0).

In terms of dilribution, this Oates that the pushforward diribution by o, of the uni-
form diOribution Uy on the set X of veCors of norm clog |A|/loglog |A| is within varia-
tion diJance 1/2 from the uniform diribution on the Picard group. Essentially, this says
that produCs of randomly seleCed primes of quadratic norm behave as uniformly-drawn
elements of the Picard group.

DI0U0000 DU RODOOIOO LOOOIoOd

&e above theorem implies that each element of Pic(&) has a preimage of small norm,
from which we can easily derive a bound on the diameter of A ;. Recall that the diamcer of
a lattice is the smalle[] value diam(F) where F ranges over its fundamental domains.

Corollary vir.2.4 (GRH). Fix any positive number €. If & § an order of dgcriminant A
and B denotes its sC of primes of norm less Tan log?*¢|A|, Te diamcer of Te ICtice Ny §
o(log**¢ |A]).
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Proof. To prove this, we conOruC a generating set for A, formed by O(log?*® |A]) rela-
tions of norm o(log? |A|). BUUDUD (UU0L) showed that Pic(&) is an abelian group of order
AY/2+0W) 5o there exi0) O(log |A|) ideal classes o, such that ZB /A, ~ T (a;); we dx these
and proceed to write a generating set for A, consiling of:

— relations expressing that o = 1;
— relations expressing the primes p € B in terms of the a;.

Fir0 dedne a map 0;1 by dxing a preimage of norm at moC clog |A|/ loglog |A| for each ideal
class; itexiCs by &eorem T]. Now use a double-and-add approach to ensure that norms
remain small: for each i, express that o®"“(*) = 1 by the relations

(i) ot (o?) — 205" (a* ) forje {1,..., llog, ord(e;)]};
(i) X5 b0, (aizj> where b; denotes the j™ leal signidcant bit of ord(a).

Now write each p € 2B on the a; by decomposing its class as a produC Ha?‘ where n; €
{0, ..., ord(a;)}; noting 9, the veCor with coordinate one at p and zero elsewhere, this gives
the relations:

(i) 8, — 35 X560, (aizj> where ¢;; is the ™ lea signidcant bit of n;.

Preimages by o, have length o(log |A[) and there are at moD > | log, ord(a;) | = O(log|A[)
terms, therefore each such relation has length o(log|A|)?. O

viL.3 Relations from Smooth Ideals

Let us now give the mathematical background required to prove the complexity of the
subexponential method for dnding smooth relations in Picard groups.
1000000 SO000oooio

We Oart by reviewing fundamental properties of smooth numbers; these are the base on
which molJ subexponential algorithms are build upon (for inOance, we have already men-
tioned faCoring algorithms). Fir(J recall their dednition.

Definition vir.3.1. An integer x § said to be y-smooT if it hC no prime faCor larger Tany.
ae number of y-smoo T integers less Tan x § denoted W(x,y).

Bounding the value of the W funCion for particular ranges of x and y is an important
problem. For inOance, for any dxed u > 1, we have

Y (x, xY/ “) . xp(u)
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where the condant p(u) is the Dickman funCion. &is funCion was extensively Oudied by
00 BOODIO who gave many ways to evaluate it. To use such smoothness results in index-
calculus methods, we need more than a polynomial relation of the formy = x1/!: we would
like to consider the case where u — o as x — oo, &e eecidc result we rely on is due to
CUULIDUL, EDULL, and PUUDDULLD (ULUL).

Theorem vir.3.2. Foru > 3 we have
Y (x,xl/“) > xexp (—u (logu+loglogu — 1 +0o(1)))

Corollary vir3.3. &e probability for a random number of {1,...,x} to be L(x)'-smooT §
equivalent to L(x) /20 € x — oo,

Proof. Apply the theorem above to u = % IO';S)EX and combine it with the upper bound in

Aeorem [ of BOOUII (COOO). O

See GUUUUIUUU (UUUO) for a survey of this topic.

10000 sU0boooooo

Our algorithms do not exaCly work with integers: they work with ideals. Via the norm,
the OruCure of the ring of ideals resembles that of integers; for our particular goal, it suCIces
to say that ideals are smooth if and only if their norms are. However, not all results are easy
to generalize from integers to ideals.

In faC, our dr0 algorithm for computing endomorphism rings of elliptic curves, from B
and SOOOO0O0000 (OO0, relied on the assumption that certain ideals we generated had a
uniformly diCributed norm, so that we could direCly apply the result of the previous seCion.
We now explain how this assumption can, in some setting, be rigorously proven.

Let us drJ recall the relevant part of our algorithm: for an order & of discriminant A,
we dr0 seleC aveCor x uniformly at random from the box B = {0, ..., log** |A|} B where 2B
is the set of prime ideals of norm less than log?*® |A|; we then look for a small representative
% of the class 6, (x) € Pic(¢) and attempt to faCor it over the base consiling of all the prime
ideals of norm less than L(|A)".

To rigorously bound the number of times random veCors x € B have to be seleCed before
one with smooth reduCion is found, we need to show that the norm of X behaves like a
random integer in a certain interval.

For imaginary quadratic orders, SUODUU (UUUD) used the Oandard reduCion of binary
quadratic forms; to obtain a result on the smoothness probability of X, he proceeds in two
Oeps: Proposition 0.0 and 0.0:
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Proposition vi1.3.4. Ideal clCses g, (x) of randomly seleCed veCors x € B are quCi-uniformly
dgtributed in e Picard group of 0.

By quCi-uniformly dtributed, we mean that the probability for 0,(x) to belong to a
prescribed subset S of Pic(@) is

#S
#Pic(0)

in other words, the pushforward dilribution ¢, U is within variation dilJance o(1) of the
uniform diCribution on Pic(0).

Note that SUODUO (UUOU) Darted from a much bigger box B than ours; it was, back then,
the bed possible under the generalized Riemann hypothesis; however, here, we make use of
Corollary 0.0 of JUL, MIUUUL, and VOOUOOOUOO (UUCO) and of the smaller box B it proves
to sullce.

When we know that o, (X) is quasi-random, it remains to see whether the element X of

each 0,,(x) has a smoothness probability comparable to integers of {1,..., /|A|/3}.

(1+0(1))

Proposition vIr.3.5. &€ number of reduced ideals whose norm § L(|A[)Y-smooT § € leCt
n/L(|A])Y?*+°® where n = #Pic(€) § Te toT | number of reduced ideals.

e proof of SUUOUO (UOOO) involves calculations which are €ecidc to the arithmetic of
binary quadratic forms. &us makes it challenging to generalize this proposition in higher-
dimensional orders, and another issue is that there is no canonical notion of reduCion there.
ae method of BUUOUUUU (UUUU) for arbitrary orders relies on the following assumption,
and we do as well.

Assumption vI1.3.6. &enormsof reduced ideals J ed by TesmooT rel€ion Ending algoriTm
are C likely to be smoo™ C random integers of {1,..., 1/]A[}.

RUDOODOOOND 00 ROOUOIOOO

To obtain a generating set for the lattice A, by dnding relations of it, we mul ensure
that those relations do not lie in some particular subset. For inCance, if the order & contains
0',thenwe have A, C A, and we mull prove that our relations have no predi€osition of
aCually lying in A .. Whence the following dednition.

Definition vir.3.7. LG P be a probabil@tic procedure which, on input an order @ conTining
Z[n, 7] for some Wil number , réurns a relGion x € A\, which we see C a random variable.

We say TC P generces quasi-uniformly diOributed relations of @ if, for any order 0’
conTining Z[m,7], e projeCion of x in Te quotient group A, /A n, § WITin variCion
dgTnce o(1) Eom e uniform d@tribution, C e dgcriminant of 1t goes to inEnity.
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Proving that the method of SUOOUO (CUOT) does indeed generate quasi-uniformly dis-
tributed relations was done by HOUOUO and MOCUOUUOD (DOOO) in their Lemma 0.

Proposition vir.3.8. If @’ §anorder conTinedin @, rel ions found by Te mchod of ST
(0000) are quCi-uniformly dgtributed in A, /A, when B = {0, ..., #58d*}B, where d § a
bound on Te diamcer of A\;.

Qe proof is pretty simple and involves looking at the geometry of the lattices in a fairly
elementary way. We reproduce it below, in the more general context of an unéecided bound
dondiamA,.

Proof. Letx bearandom variable with uniform diOribution on B, = {0, ...t} B, letX e 6, (X)
denote its reduCion, and note . the set of ideals with .%-smooth norms. We want to prove
that

Prob [x—0(X) ew[ke. ] = [Ay: Ay] @ +o(1)

for any dxed class w € A, /. We can rewrite the leE-hand side as

#{xeB,:Xe.S x—07 (X) ew}
#{xeB,:Xe S}

and by summing over all possible reduced ideals y we further obtain

Zyey#{xe Bi:xeo (y) +w}
s #{xeBixea () + A}

Now, to evaluate each term of these sums, let us count the number of points of B, =
[0,t + 1)B which lie in the translation z + A of some lattice A. To this extent, let Z be a
fundamental domain for A: each point of z + A corre€onds to a cell in the tiling of R® by
Z; ifdiam Z < d we therefore have

B,y C(@z+A)NB,+Z CB,,y4
which gives, in terms of volumes,
(t—d)"® < detA-#((z+N)NB,) < (t+d)*®

50 as soon as #5d = o(t), the sandwich theorem proves that

#B

#((2+NNB,) = —(1+0(1);

det A
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by subOituting this in the probability sought expressed as a quotient of sums, we obtain

#B

#Y
detA

#B

(1+0(1))/#5”O| ”

ELA,

(1+0(1));
o

Choosing t = #Bd*** satisdes the requirement #8d = o(t) and gives the result. O

Recall that if &' is an order of discriminant A and 5 consills of all prime ideals of norm
less than log?*¢|A|, then the diameter of A, is o(log**¢|A|). Sxerefore, when O is imaginary
quadratic, the above proposition shows that the algorithm of SUOUOC (UOOD) generates quasi-
uniformly diCributed relations of A, when drawing its random veCors uniformly from the
box B = {0, ...,log?** |A[}B.

When @ isan order in a complex multiplication of degree four or more, as we have men-
tioned before, we do not know of similar results and believe that they might be quite diClcult
to e[ablish. However, we can ill amend the algorithm of BUOOUUO (UOOD) to make use
of this type of bound. &is gives a conjeCural running time, but the result can in any case be
unconditionally proven by certidcates, so we have a Las-Vegas algorithm.

GUO0000NDO EO0DO0 ROOOOIDOO

To prepare for the jump to the next chapter, let us put together the results that we have
e[ablished so far. Here, we let 1 be the Frobenius endomorphism of an abelian variety of
dimension g dedned over a dnite deld IF;, and recall from Lemma that disc(Z[n,T]) =

q¥+°® 5o that via the theorem of BUUDUD (L) the class number is g¢ /2+o(),

Proposition vIL.3.9. L& @ be an order of dgcriminant A in a number Eeld of degree 2g;
random rel&ions of @ inAolAing polynomiagdy many ideals in log |A| of norm up to L(JA[)" can
be found in probabilgtic time L(JA[)Y + L(JA[)Y/4*®,

ag Csumes Te generalized Riemann hypoTesq for g = 1, and Assumption [JTZ.] for
g>1.

Unlike HOOOUO and MOCOOOOO (O00O0), we do not seek to compute the full group
OruCure of Pic(0)) — this would be colly since a subexponential number of relations is
required to eliminate all faCors of the faCor base. Here, we jul] aim at diCinguishing orders
containing Z[m, 7] from one another.

If 0’ is an order such that A,/ is OriCly contained in A, a quasi-uniformly diOributed
relation has probability at mod 1/2 + 0(1) of also holding in &’. &xerefore, since we have a
polynomial number of orders in log |A| to discriminate from, it is suCJcient to only generate
polynomially many orders in loglog|A| to ensure that the relations charaCerize the lattice
N, with probability 1 — o(1).
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Combining the above with our earlier notes on the complexity of isogeny computation,
we have proved the following.

Theorem vir.3.10. LC .¢/ be a simple ordinary abelian varicCy of dimension g deEned over
Te Enite Eeld wiT q elements. Under Te generalized Riemann hypoTesg, we can compute
End(.¢/):

— ifg=1,in L(q)**® + L(g)/¥Z*D gper&ions;

— ifg=2, in L(q)"V?¥/2*°® oper&ions, under Assumptions [T, [, [0, and

(BUININT

For g = 2, details will be given in the next chapter.

vil.4 Relations from Thin Air

As a supplement to this chapter, we shall now see how to generate relations in a generic
manner, that is, not using any extrinsic information about the underlying group. For Picard
groups, such methods are much slower than smoothness-based ones but yield much shorter
relations; this will be an important ingredient for making praCical use of our method in
dimension two.

GUO000D SODOo0 POODDOOO

Let S be a sequence of elements in a dnite group G of order n, written multiplicatively,
and consider the problem of writing a prescribed element z € G as the produC of a subse-
quence of S; we call such a subsequence a short produC represen T tion of zon S.

If G were a commutative group, we could have noted it additively, let S be a multiset
of elements of it, and look for a sub-multiset which adds up to z; in the case that S has no
repeated elements, this is known as the subs¢ sum problem. However, since for our approach
it makes absolutely no dilJerence whether G is commutative, we have chosen to use the more
general formalism of non-necessarily-commutative groups.

Consider the produC map 1 : B(S) — G where 3(S) denotes the set of all subsequences
of S. For all elements of G to admit short produC representations, the map  needs to be
surjeCive which, by a counting argument, impliesk > log, n where k is the length of S.

In the case that G is commutative, EOO00 and ROOOC (UOUO) showed that this bound is
not far from being sucient: they prove that a random sequence S of length

k=log, n+log, logn+w,
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satisdes 1(33(S)) = G with probability approaching 1 as n — oo, provided that w,, — oo.

For dnding short produC representations via generic means, juJ knowing the exiJence
of a preimage by m for all z € G is not enough: we need to know the diCribution of such
preimages. ID00O0CO000 and NOOO (DOOO) proved the following result on the inverse dis-
tribution.

Theorem viIL4.1. Fix some real number d. For groups G of order n large enough, we have

—C

Probg I:HT[*UP(S) —-Ug

> n‘C] <n

where ¢ = (d — 1) /2 and Te sequence S § drawn uniformly & random Eom “Te s€ of sequences
of GWIiT leng™ k = (d +0(1)) log, n.

Recall that Uy denotes the uniform diribution on the (dnite) set X, and that the p § h-
forward dgtribution f o of a diCribution o on X by a funCion f: X — Y is dedned as

f.oy)=0({xeX:f(x)ey}),

for any subset y of Y. Finally, the varic¢ion dg Tnce ||o — ¢’|| between two diOributions on Y
is the maximum value of |a(y) — o’ (y)| asy ranges over all subsets of Y.

In other words, the theorem means that, for a random sequence S of density d > 1, the
diOribution of subsequence produCs almo( surely converges to the uniform diribution on
G as n goes to indnity.

In some particular cases, dnding short produC representations is a well-known problem.
For inOance, when G is the Picard group of some order and S contains all prime powers p®
with p < L(|A[) and o < log, |A], then this is exaCly the problem of dnding relations which
we have Cudied extensively. Now this problem does not have a “conant” density, as the
quantity k/ log, n goes to indnity pretty quickly with n.

For inOances of conOant density in the group G = Z/nZ, the bed algorithm has a time
and €ace complexity of O(n®3113); it consils in liEing the indance to k subset sum prob-
lems in Z, also known as knapsack problems, which can be solved e[ciently by a method
of HUDUUOOO-GUUOU and JOOO (UUUT). Again, this algorithm is tailored for a €ecidc
group representation.

Algorithms that only perform multiplications and inversions (which return uniquely
identided group elements), draw elements at random from G, and teld their equality, are
called generic algoriTms. In essence, they are not tied to any €ecidc group and apply to any
eDeCive group. SUULU (UUUD) proved that solving discrete logarithm problems generically
has a lower bound of Q(/p) where p is the largel] prime faCor of n; sincg this is a eecial
case of short produC representation, this means that generic short produC representation
algorithms cannot have a faler-than-square-root complexity in the worl case.
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Let us dr0 review classical approaches to the problem of dnding a short produC repre-
sentation of an element z € G on a sequence S.

A brute-force algorithm would exhauQively enumerate the set J3(S) and for each element
y of it teJ whether ni(y) = z.

A Dandard baby-Oep giant-Cep approach €lits the search €ace as a direC produC
B(S) = P(A) xB(B) simply by writing S as the concatenation of two smaller sequences
A and B; then, it aims at dnding a pair of elements (x,y) € B(A) x 3(B) which cogide in
the sense that t(x) = zn(y)~1. &is can be implemented eClciently by dr0 precomputing
and Doring a table of all m(x) for x € P3(A), and then checking whether each zm(y)~* for
y € B(B) is in this table; the lookup can be done in time O(logn) using an e(cient data
OruCure.

For convenience, we dedne an application p which maps any sequence y = (y;, ..., Yy,)
to u(y) = (y;l, ,yl‘l), so that mt(y) and m(u(y)) are inverses in G. &e baby-Uep giant-Tep
algorithm then amounts to the following procedure.

Algorithm vII.4.2.
I0000:  AEnitesequenceSanda TrgczeG.
OUoooO:  If itexdts, a subsequence of S whose produC § z.

0. SplitS € aconc&encion AB of sequences of roughly equal sizes.
For each x € 3(A\), Dore x in a Tble indexed by m(x).
For eachy € 3(B):
If t(zu(y)) = m(x) for some x, Wen rcurn xy.
Reurn TE z hC no preimage by min 3(S).

s [ s |

As each element of 3(A) can be represented by k /2 bits (which is a conCant faCor away
from the size of a group element, when the density d is dxed), the total memory consumed
by this algorithm is O(2/2). By enumerating elements of 3(A) and 3(B) in a suitable order
(for inOance, using a Gray code), only one group operation is required per Oep, so that the
total runtime is O(2¢/2).

SUOUO00000 and SOUOIO (COOT) gave a more eecialized generic method for solving
knapsack problems, which improves the €ace complexity of the baby-Uep giant-Oep algo-
rithm to O(24/4).

PUOODDO ROO

In order to apply the Pollard p approach to the problem of dnding short produC repre-
sentations, we simply need a notion of collision on a certain domain % and an iteration map
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0 : 6 — % which preserves collisions in the sense that if x and y collide, then ¢(x) and ¢(y)
also collide.

Here, we use the same domain that was used by the baby-Cep giant-Oep algorithm: &lit
S as a concatenation AB of two sequences of roughly equal size, and let the domain be the
disjoint union € = .o/ LI 9 where ./ = B(A) and %8 = zp(*B(B)). Now collisions are
dedned with re€eC to the produC map 1t: 6 — G; when an element x € .<7 collides with
an elementy e 93, that is, m(x) = n(y), then we have a short produC representation of z as
xy’ where y = zu(y’).

Now since the iteration map ¢ mul re€eC collisions, it mul faCor through the produC
map Tt S0 we can write @ = no 1 for somen : G — %. Since we have no requirement on n,
we simply take it to be a hash funCion from G to 6, that is, an eCeCive map which behaves
as if it were drawn uniformly at random from 6.

In praCice, to compute n(g) we can take the unique bit-Oring representation of g, hash it
using a Orong cryptographic hash funCion, and use the resulting bit-Oring 009,0,... 10 diCate
an element of ¢’; for inOance, the drlJ bit g, can be used to decide whether ¢(g) lies in 33(A)
or zu(*B(B)), the second bit g, to deciqe whether the dr element of A (re€. B) belongs to
0(g), etc. (Note that n cannot be surjeCive since G is smaller than 6'.)

As gives the following algorithm.,

Algorithm vII.4.3.
I0000:  AEnitesequence Sanda Trgc z e G.
O00000: A subsequence of S whose produC § z.

0. SplitS € aconcGencion AB of sequences of roughly equal sizes.
Pick a random element w € 6 and ahCh funCionn: G — €.
Find TeleCti>0andj > 0such T& @) (w) = g0 (w).
Ifj=07Tenrcurn to Step L.

L& s=@M-D(w) and I& t = gi=D(w).

If (s) #m(t) Ten r&urn to Step [.

Ifse .o and t = zu(y) € 93 for somey, output sy and termince.
Ifte.of ands=zu(y) € 93 for somey, output ty and termince.

o sy s s s |

Basically, we Cart from a random point w and compute iterates ¢ (w) until we dnd two
which are equal: once we have the dr(J such collision, that is, ¢(s) = @(t) with s £ t, we dr[]
make sure it is not due to the hash funCion, so that the collision mul arise in the produC
map. aen, if itis a collision between an element of .¢/ and one of 98, which happens with
expeCed probability 1/2, we have a short produC representation.

Step O can be implemented by Floyd’s algorithm, by the method of dilJinguished points,
or any other collision-deteCion technique (which reduces by a conOant faCor the number
of expeCed evaluations of the map ¢ before dnding a collision).
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&uis gives an algorithm with conTant Oorage €ace and a time complexity of O(k,4/n).
We refer the reader to B. and SOOOUOUOO (UOOD) for a rigorous proof (and also for details
regarding this whole seCion) and now turn to applications.

AlD000oooo

&is method aCually has a broad range of applications; in particular, it can be used to
dnd isogenies between two ordinary elliptic curves dedned over a dnite deld having the same
endomorphism ring in square-root time and without Dorage requirements. &is application
can be found in B and SUOOOO0OUN (UO0O0). Here, we will present a dierent one, maybe
not as important, but which applies direCly to the topic of computing endomorphism rings.

As usual, we dx an ambient dnite base deld IF, and let .« denote an simple ordinary
abelian variety. Consider the set G of isomorphism classes of abelian varieties whose endo-
morphism ring is the same as that of ./ ; as we have seen before, it isa principal homogeneous
€ace for the Picard group Pic(End .<f) whose cardinality we denote n (in the wor[J case, it
is exponential in log(q) and the dimension g of .<7).

Our method for computing End(.<) has so far been to compute relations in the Picard
group of the possible orders (those that contain Z[m,T]) and checking whether they hold
in the isogeny graph. Here, we take the inverse approach: we will look for relations in the
isogeny graph, and then rule out from the liJ of possibilities those orders in which the rela-
tions do not hold.

Of course, since the only algorithms we have at our di€osal for dnding relations in the
isogeny graph are generic, this is much slower than looking for relations in Picard groups.
However, this gives a runtime which moUly depends on the output: the closer to g the
endomorphism ring of .<7, the faler it is found.

Tolook for relations in the isogeny graph of .o/, a baby-Cep giant-Oep approach is simple
to use: let S be a set of prime ideals of &, which are coprime to the conduCor of Z[n, ],
€lititasaconcatenation AB, let ./ = B(A) and % =B(B), and dedne 6 = .o/ LI BB. We
view an element x = (p,,p,, ..., p,,) of 6 as the isogeny

9p,p,..p, (-F) = 0p, ©@p, 000 ()
and we dedne the map 1: 6 — G as sending x to the variety which is the codomain of this
isogeny.
Now it is Oraightforward to adapt the Pollard p method to this context as we have done

before: it suCJces to take a hash funCionn : G — € and to iterate the map ¢ = nomenough
times to dnd a collision. Recall from Chapter [0 that, in the world case, we might have

#G = #Pic (End .o/ ) = q/2+m)e?
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so that if we take a sequence S of length at leal]

(d+0(1))g* log, q

for some d > 1, we can eDeCively dnd a relation of the isogeny graph in probabiliJic time
q(/4+oM%* ysing virtually no memory, assuming the quasi-uniform diOribution of produCs
of Sinthe Picard group; thisassumption can be replaced by the generalized Riemann hypoth-
esis by subLituting log, (q) by log?*%(q) above, viaa result of JULI, MIDOUL, and VOODOOOOOL
(U0OO) — note however that this has little edeC on the runtime: although the produCs to
be computed have more terms, the collision probability is unchanged.

By dnding relations in the isogeny graph of .7, we can te(] whether a given order & con-
tains End(.</) in time disc(End .<7)*/**°® up to polynomial faCors in log(q) and g. Stere-
fore, locating the endomorphism ring takes juJ as much time using the “reversed” lattice-
ascending procedure of the previous chapter for computing End(.</) from above.

Note that certidcates that are generated with such generic methods have a length poly-
nomial in the size of the base deld logg, which is much smaller than what subexponential
methods can generate. More precisely, this length can essentially be quadratic if we require
that the runtime of the generation algorithm be bounded under the generalized Riemann
hypothesis (via S eorem [JITI), or linear if the heurilic ConjeCure [TT111] is used inCead.

Verifying the certidcate then jul requires polynomial time in its size: it sulJces to verify
the number of points on the variety and compute the isogenies associated to the ideals in the
relation.

Here again, we have made use of isogenies between isomorphism classes of abelian vari-
eties, not involving any polarizations, which is not an eJeCive notion in dimension g > 1.
We thus devote the next chapter to describing the changes required for making eCeCive use
of our endomorphism computing method on abelian varieties of dimension g > 1.
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Yolarized v ¢hod

To make praCical use of our subexponential method for computing endomorphism rings
of ordinary abelian varieties in dimension higher than one, polarizations mu be taken into
account. &uis requires certain modidcations to be made on our framework, algorithms, and
implementation, which we now describe. Ve also need to rely on more unproven assump-
tions.

We focus on the case of Jacobian varieties of genus-two hyperelliptic curves, since the
availability of certain computational tools (such as the method of MUUUDT (UUUD)) is limited
in higher dimensions. NotwithOanding those issues, we believe moQ of the diJerences that
higher-dimensional varieties have in comparison to elliptic curves are addressed here.

ae modided algorithm will be presented before the computation of isogenies; we then
give aCual computation results and dnally discuss vertical isogenies.

viiLr  Algorithm

(O I |

We Oart by recalling some of the theory on which our approach relies.

Let .o/ be asimple ordinary principally polarized abelian variety of dimension g dedned
over adnite deld. Ve assume that an embedding of its complex multiplication deld K = Q(m)
into End(.e/) ® Q has been dxed, which is equivalent to dxing a type ® on K.

As we saw in Chapter [0, ideals of the reEex deld K" aC on isomorphism classes of prin-
cipally polarized abelian varieties ./ via the reEex type norm (see Figure [I):

Nkr /(g

reJ(K"): C/d(a),El — CY/D (Ngr(r)'a) ,E,

0oo
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FIOOOO 0. Complex multiplication deld extensions and their reEex counterparts.

e main dilerence to the preceding chapter is that, when the dimension g is two or
more, this aCion only gives certain elements of the polarized class group €(&); in other
words, it describes certain, but not all, isogenies. 2&xerefore, a rigorous analysis of our algo-
rithm in this setting would be much more involved than in the utopian case where polariza-
tions were disregarded: one would need to assert the exilJence of short relations arising via
the reEex type norm, which we see no simple way of doing. Zxerefore we assume:

Assumption virrL1.1. Under Te map (a,8) — (a@,£), composed to Te right wiT Te regex
type norm, ideals of e ring of integers of Te regex Eeld aC faiTfugy on Te sC AV, (k) of
principagy polarized abelian varicies wiT endomorphgm & over Te bCe Eeld k.

Aus comes on top of the generalized Riemann hypothesis, and Assumptions 1,
T, and U0, which Date re€eCively:

— Orders @ c 0’ for which the above aCion is identical have bounded index [@” : ].
— aemethod of EI00OUUOOO and LOOUOO (UOUD) computes End(./ ), in 290 time.
— &ae norms of reduced ideals are as sSmooth as random integers.

&e dr0 assumption is a helpful heuriOic, the third comes from BOUOUOOUD (DO0O0), and
the second deliberately rules out cases where the local lattice of orders is deep. &xey were all
largely verided in the range of praCical problems that we considered, except in certain rare
Cases.
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We also require the ability to draw points at random from .</ and other varieties of its
isogeny class; for g = 2, this is always the case using Weier(Orass forms, to which any variety
can be put using the method of MUUOUU (OUUO). &erefore we additionally impose g = 2.

Under all these assumptions, the expeCed runtime is, as we mentioned before:

L(q)g\/3_9/2+0(1)

ooooono

Let .o/ be the input polarized abelian variety, given as the Jacobian variety of a hyperellip-
tic curve 6 dedned over the dnite deld with g elements. Fir(J, we compute the charaCerilic
polynomial X, of its Frobenips endomorphism 1, which the algorithm of PO (UU00) does
in polynomial time. In praCice, we relied on the point-counting routines of the MUUOU
(U000 computational algebra syClem, which use the techniques of GOOUUU and HUOOOO
(UOOO); larger base delds could be reached using the Oate-of-the-art implementation and op-
timizations of GUUUUU and SOOI (UOOO).

In the lattice of orders, we dnd End(.<#) from below using the following algorithm from
Chapter 00— we also proposed a way of dnding End(.</) from above which is suited to vari-
eties conOruCed via the complex multiplication method (rather than at random, as below);
however, at the time of this writing, only abelian varieties with maximal endomorphism rings
can be generated in this way, except in the one-dimensional case.

Algorithm VIIL1.2.
I0000:  Asimple ordinary principady polarized abelian varicy .</ over a Enite Eeld Fy.
OUoodd:  Anorder gomorphic to its endomorphdm ring.
Compute e Frobeni J polynomial X, (x) of .<7.
FaCor e dgcriminant A and conOruC Te order 0/ = Z[m,T].
For orders ¢ direCly aboAe 0"
If 0 C End(.&/) s€ 0’ « € and go to Step .
Rcurn 0’.

I s R s sy |

To determine whether a €ecidc order & is contained in the endomorphism ring of .<7,
we seleCed several relations of it (typically logarithmically many in the number of orders of
containing Z[m, 7], although doubly logarithmically many should theoretically be enough),
and checked whether these relations hold in the isogeny graph. &e latter Oep requires us to
evaluate isogenies and is the bottleneck of the whole algorithm.
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FIDODO 0. Galois groups of the complex multiplication delds tower.

DU00000 DU SO0inooon POOOLOnO

To Oudy the €litting pattern of rational primes £ in complex multiplications deld K, let
us drQd present the setting to which &eorem can be applied. We are moOly intereCed
in the elitting of primes in the reEex deld K" of the deld by which our variety has complex
multiplication, but it makes no dierence for this analysis.

Denote by K any complex multiplication deld of degree 2g, and write K¢ for its normal
closure. Similarly, denote by K¢ the normal closure of its totally real subdeld K, . &is gives
a tower of delds as dielayed on Figure [J.

In the typical case of non-Galois number delds, DOOOOO (DU00) eOablished the iso-
morphisms Gangir/Q) = G, and Gal(K*/K3) = (Z/2)’ for some integervin {1,...,¢},and
described the aCion of the former on the latter so that we have an explicit description of the
Galois OruCure of K°/Q as

Gal(K/Q) = (Z/2)' x &,

Note that, when a principally polarized abelian variety .7 is absolutely simple (as we assume
here), its complex multiplication deld K is primitive and we have v = g. In dimension g = 2,
the Galois group of K°/@Q is then isomorphic to the dihedral group D, = Z/4 < Z /2, and
we obtain the densities of Figure [] as a consequence.
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FIOOOO 0. Density of rational primes p €litting in a dxed non-normal quartic complex mul-
tiplication deld as T | p; with pattern (N(p;)).
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Finding relations is a quite Oandard Oep. We have already mentioned that the com-
putability of the algebraic OruCures we deal with has been well Judied. Here, in faC, we do
not even need to compute the polarized class group of Shimura: since we are reriCed to us-
ing isogenies which arise under the reEex type norm, we are in faC seeking for relations of the
class group of @". To obtain a subexponential asymptotic runtime, we use the generalization
of the algorithm of HOUOU and MUCUUUUU (U00U) by BUOOOOOT (UO0T).

Remark. Asa praCical optimization, since evaluating isogenies is so colly, more time may
be dedicated to dnding a shorter relation. For the range of input sizes we considered, it was
well worth using the exponential algorithm below which is essentially a baby-Cep giant-Cep
approach borrowing ideas of CUUUL, DIUU U DIUU, and OUIDIIL (UUO) for the eDeCive
ideal arithmetic; it dnds the shorte possible relation, therefore improving greatly the eeed
of the isogeny Oep, and reducing the overall runtime.

Notation. Recall that b, (f(x)) may denote any funCion satisfying the inequalities f(x) <
b, (f(x)) < f(x)**°® and computable in essentially linear time in f(x).

Algorithm VIIL1.3. .
I0000:  Anorder @ of dgcriminant A in a number Eeld K.
o0pood: — Rel€ionsof 0.

0. L& B consgt of ag prime ideals wiT norm up to b, (12 log? |Al).
CreceahCh Thle H.

Compute Te produC a of a random subs¢ of B.

L& bbean LLL reduCion of a.

If H hC an entry for b, output H(b) — a.

OTerwge, sc H(b) « a and go back to Step [.

S sy s |

Step 0 means that b is the ideal generated over 0 by an LLL basis of the ideal a, where
the LLL reduCion can be computed along any direCion as described by COOU, DIOT [
DU0U, and OUIOI00 (UO0D). e ideals b aC as class representatives and we do not require
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that they are unique: it is enough that they are small so that, by the pigeonhole principle,
classes are identided aEer a few more trials than what would be required otherwise.

ae use of such an exponential algorithm also has an additional benedt: it allows us to
choose which primes we want to include in our relations, which subexponential smoothness-
based methods do not permit.

For inOance, we can choose to only use primes which &lit as pp, hence allowing for a
cardinality-based approach and €aring the need to compute the charaCeriCic polynomial
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Since each has order €9, is rational over the base deld, and contains the neutral element,
they are all dedned over an extension of degree ¢'(£) at mod £ — 1. We will thus simply
enumerate all such subgroups of the £-torsion group of Ld(IE‘qe/@)) and then dnd which one
correéonds to the ideal a as mentioned above.

To dnd these, drJ compute a basis of the £-Sylow subgroup of .</ over the extension
deld, which we denote by

< (qu/(e)> [e”1;

for this, we use the method of COUUUIUUUD (UUUT) which we have discussed before: it
amounts to taking random points of ./ (this is easy, for inCJance, when it has a eierlrass
form), multiplying them by the cofaCor of £ in #JZ%(]FqE/@)), and “liEing” these points along

each other until a basis of the £-torsion group is obtained.

We then derive asympleCic basis of Jzy‘(Iqu/(e))[B] for the Weil pairing. For simplicity, dx

an £ root of unity and consider the problem additively under the corre€onding logarithm
log : py(C) — Z/%. On the basis we are looking for, (the logarithm of ) the Weil pairing is

given by the matrix
< 0 I > |
-, 0

To obtain such a basis (¢, ..., &, f,, .. ,fg) satisfying

log Wy ;. f;) = 3
log Wi (&;.8) =0
log Lp\/\/eil(fi'fj) =0

we use an elementary, orthogonalization-like algorithm, similar to the classical algorithm for
computing Smith normal forms.

s basis allows us to enumerate all sympleCic subgroups easily and, among[ these, we
seleC those that are rational, that is, Dable under the Frobenius endomorphism, and dnd
which is aCed upon with charaCerilic polynomial u (given by the ideal a).

Note that when € is congruent to one modulo four, dnding random points of ./ is faller
by a faCor of two since computing the square root of the WeierCrass polynomial evaluated
at x in order to get the y-coordinate simply amounts to a modular exponentiation.
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Recall that if ./ = C?/(Z% + QZ9) is a complex torus with period matrix Q in HY, then
the set of theta funCions

G);i :2eCY—s Z exp(in(%ﬁQu+Zﬁ(z+b)>>,

(u+a)eZ?

where a = 0 and b is a veCor of %(Z/n)g, forms the W Ca coordince sylem of level n. It
is a coordinate syCJem for abelian varieties (and also incorporates information about the n-
torsion), but can represent points of such varieties too. It has an algebraic counterpart which
is applicable to varieties dedned over dnite delds.

axe points P of the kernel of the isogeny we wish to evaluate, as output by the method of
COUO0IO0OO (DOOT), are expressed in Mumford coordinate on a Weier(Orass model for the
hyperelliptic curve 6 : y? = f(x) of which .¢ is the Jacobian variety. As a dr(J Oep towards
mapping these points to theta coordinates, we extend the base deld so as to make f &lit com-
pletely; then, by a homographic transformation (also known as Mdébius transformation) of
the x coordinate, we derive its Rosenhain normal form

29—-1

Y =x(x—1)] Jx—a)
i=1

which might require working in an extension of the base deld.

ae formulas of TOOOOU (UOUO), then give theta coordinates of level two or four corre-
éonding to the variety ./ = Jac(%). In order to map points from Mumford representation
to theta coordinates, we need equations derived by OO WOOOOOD (DOO0).

Note that theta coordinates of level two aCually represent the Kummer surface of an
abelian variety, that is, identify a variety .o/ = Jac(6 : y? = f(x)) with its twilJ Jac(<67 Ty’ =
f(x)) where w is a non-quadratic residue in the base deld. &us is not too much of an issue for
us since the isogeny class of ./ is identided by the charaCerilic polynomial of its Frobenius
endomorphism, so there is no ambiguity on which of an abelian variety 9 or its twill an
isogeny ¢, with domain ./ maps to.

However, for a cleaner approach, we prefer to use level four theta coordinates which
identify the variety .o/ uniquely; this comes at the expense of &eed, but the slow down is
minor, e€ecially as dnding the £-torsion remains the overall bottleneck.

100000000 000 LODoD chboumoo

[O0000 and RODOOO (UO0U) described isogenies as projeCions from higher-level theta
coordinate syClems to lower-level ones; they also described the associated machinery (addi-
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level €n: - -
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FIODDO O0. Evaluating isogenies of type (Z/€2)° via two theta level changes.

tion laws, etc.) required to make edeCive use of this result. Before discussing how it applies
to our setting, let us brieEy recall their result.

Theorem viir.z.1. LC 5 be a subgroup gomorphic to (Z/E)_g of an abelian varicy ./ of
dimension g, and IC n be any integer coprime to £. e T cafunCionsof level non .o/ / 5 are
asubsc of e T ¢a funCions of level €non ..

aus introduces an change of level; to address this, COUIO0 and ROUOOO (DUO0) noted
that subsets of the Fourier transform of theta funCions of level €n on .<7 corre€ond to theta
funCions of level n for abelian varieties obtained by dual isogenies of degree £; this allows
them to compute isogenies of type (Z/€2)" between abelian varieties expressed by level-n
theta funCions; see Figure [TT].

Our framework for computing endomorphism rings can be adapted to this setting: rela-
tions can be conCrained to only involve squares of ideals, so that the associated isogenies are
all of type (Z/€?)°. However, this implies loosing all the information regarding the 2-torsion
of the reEex class group ¢(0"). CUUUU and LUDJUUL (UUUU) showed that class groups typ-
ically have a large 2-torsion subgroup, so it is not likely that all pairs of class groups that are
identical up to 2-torsion can be dilJinguished e[Iciently using the local method of EINOCA
UUUUOL and LUULULL (Ldbd).

CUO000 and RUOUOO (UO0UW) then derived from earlier work of KOIDOOU (OU00) and
KUOOUU (UUO0) formulas which allow to map points from level-€n theta coordinates to level-
n theta coordinates, avoiding the need to evaluate an additional isogeny. &ey apply these
formulas to evaluating isogenies of type (Z/£)? between abelian varieties expressed in theta
coordinates of level n.
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In order to determine whether a relation holds in the isogeny graph of an abelian variety
(to eventually determine its endomorphism ring), we need to compose many isogenies of
type (Z/®)° for various primes €. We have explained how to compute an isogeny .o/ —
./’ of prescribed kernel where .7 is given in Weier(rass form and ¢/’ is given as theta
coordinates of level n. To iterate this conOruCion, it remains to explain how we can obtain
a Weier(Orass equation for .e/’.

In faC, this can be done elementarily by inverting the formulas of TOULUD (UOOD).
However, the theta coordinates of .¢/ that we used in the isogeny computation are dedned
over a large extension of the base deld which contains the roots of the Weier[rass polyno-
mial of the curve, certain n-torsion points (recall that n = 2 or 4) and certain £-torsion points;
the theta coordinates of .e#/, and therefore 