Direnç - kapasitör devresi (RC devresi) veya RC filtresi direnç ve kapsitörlerden oluşan ve gerilim veya akım kaynağı tarafından beslenen bir elektrik devresidir.

Başlangıç

değiştir

Üç temel, doğrusal (lineer) analog devre elemanı vardır: direnç (R), kapasitör (C) ve bobin (L). Bunların dört önemli kombinasyonu vardır: RC devresi, RL devresi, LC devresi ve RLC devresi olarak bilinirler. Bu devreler, analog elektroniğin en önemli devrelerini oluşturur. Özellikle, pasif filtrelerde çokça kullanılır. Burada RC devresinin hem seri hem de paralel diyagramları gösteriliyor.

Karmaşık empedans

değiştir

Bir kapasitörün kapasitansı C (farad) ise karmaşık empedansı ZC (ohm)

  dir.

s açısal frekans gösterir ve genellikle bir karmaşık sayıdır,

 

Burada

  • j sanal (imajiner) birimi gösterir:
 
  •   gerçek (reel) kısım ve
  •   sanal kısım, yani sinüzoidal olan açısal frekans (radyan/saniye)tır.

Seri devre

değiştir
 
Seri RC devresi

Devrede kapasitör üzerindeki gerilim:

 

ve direnç üzerindeki gerilim:

 dir.

Transfer fonksiyonları

değiştir

Kapasitörün transfer fonksiyonu

 

ve aynı şekilde direncin transfer fonfsiyonu

  dir.

Kutuplar ve sıfırlar

değiştir

Her iki transfer fonksiyonunda da tek kutup vardır.

  .

Ek olarak, direnç için orijinde sıfır vardır.

Kazanç ve faz açısı

değiştir

Kazanç iki etkene bağlıdır: Biri

 

diğeri ise

  dir

ve faz açıları:

 

ve

 .

Bu ifadeler birlikte kullanılabilir ve genellikle fazör çıkışı temsil eder:

 
 .

Seri devrelerde akım her yerde aynıdır:

 

İmpuls cevabı

değiştir

Her gerilim için impuls cevabı transfer fonksiyonunun karşılığı olan ters Laplace dönüşümüdür. Bu devre bir darbenin veya delta fonksiyonunun cevabının bir giriş gerilimine bağlı olduğunu gösterir.

Kapasitörün gerilimi için impuls cevabı

 

Burada u(t) Heaviside adım fonksiyonudur ve

 

zaman sabitidir.

Aynı şekilde direnç geriliminin impuls cevabı

 

Burada da δ(t) Dirac delta fonksiyonudur.

Frekans uzayı faktörleri

değiştir

 'a yaklaştıkça:

 
  olur.

 'a yaklaştıkça:

 
  olur.
 .

Yukarıdaki denklemin çözümünden şu sonuç elde edilir:

 

veya

 

Bu da filtrenin orijinal gücün yarısına düşeceği frekansıdır.

 'a yaklaştıkça:

 
 .

 'a yaklaştıkça:

 
 

Zaman uzayı faktörleri

değiştir

Zaman uzayını en doğru şekilde elde etmek için Laplace dönüşümünü ifade eden yukarıdaki   ve   yapıları kullanılır. Bu etkin dönüşümler   e dönüştürülür.Adım girişi yaklaşımı yapılır. (örn. Önce   yapılarak   bulunur, sonra   yapılır):

 
 

ve

 .
 
Kapasitör geriliminin adım-cevabı.
 
Direnç geriliminin adım-cavabı.

Kısmi kesir açılımları ve ters Laplace dönüşümüü:

 
 .

Bu eşitlikler kapasitör ve direnç üzerindeki gerilimleri sırasıyla hesaplamak içindir. Kapasitörün dolması sırasındaki eşitlikler; boşalması sırasındaki eşitliklerin tam tersidir. Bu eşitlikler şarj ve akım ilişkisi C=Q/V ve V=IR (Ohm Kanununa bakın) kullanılarak tekrar yazılabilir.

Bu eşitlikler seri RC devrelerinde bir zaman sabitinin olduğunu gösteriyor, genellikle   ifadesi voltaj karşısında bileşenleri ya (C karşısında ) ya yükselir veya (R karşısında) bu son değerin   ye birlikte düşer. Böylece   zamanında     ye ve     ye ulaşabilir

Değişim oranı her   bir fraksiyonel   dir . Böylece,   dan  'ye içinde giden voltaj bu seviyeden yolun yaklaşık 63.2 % si taşınacak   de yönünde bu sonuç değerdir. Böylece C  ,sonrasında yaklaşık 63.2 % ye dolacak ve yaklaşık   sonrasında aslında tam dolacak (99.3 %) .Eğer voltaj kaynağı bir kısa-devre ile yerdeğiştirirse, C 0 yönünde  'den t ile C karşısında voltaj C tam yükü ile üstel şekilde damlar.C   sonrasında yaklaşık 36.8 % ye düşmüş ve aslında   sonrasında aslında tamamen boşalmış (0.7 %) olacak. Unutmadan   akımı Ohm Kanunu yoluyla R karşısında voltaj olarak akım davranışı içinde bunu yapar

Ayrıca diferensiyel denklemler'in çözümü ile elde edilebilen bu sonuçlar devreyi tanımlayabilir:

 

ve

 .

İlk denklem bir integral alan faktör kullanılarak ve ikincisi takiben kolayca çözülür; çözümler böylece Laplace dönüşümleri yoluyla tam aynısı olarak elde edilir.

İntegral işlemi

değiştir

yüksek frekanstada kapasitör karşısında çıkış düşünülür yani.

 .

Bunun anlamı bu kapasitörün dolmasına zaman yetersizdir ve böylece bu voltaj çok küçüktür. Böylece direnç karşısında voltaj yaklaşık giriş voltajına eşittir.   için yukarıda verilen bağıntı düşünüldüğünde şuna bakalım:

 

ama unutmadan frekans durumu şu şekilde tanımlanır

 

böylece

  bu sadece Ohm kanunu'dur

Şimdi,

 

böylece

 ,

bu kapasitörün karşısında bir integratör'dür

Türev işlemi

değiştir

düşük frekansta çıkış karşısında düşünüldüğünde; yani,

 .

Bunun anlamı bu kapasitör voltajı kadar yukarı şarja zaman var ve voltaj kaynağına neredeyse eşittir.   için yine bağıntı düşünüldüğünde o zaman

 ,

böylece

 
 

Şimdi,

 
 

bu bir diferensiyatör karşısında dirençtir.

Daha kesin integrasyon ve diferansiyasyon giriş üzerinde uygun olarak dirençleri ve kapasitörler yerleştirerek ve operasyonel amplifikatörlerin döngü geribeslemesi sağlanabilir.

Paralel devre

değiştir
 
Paralel RC devresi

Paralel RC devresi genellikle seri devreden daha az ilgi görür. Çünkü çıkış gerilimi  , giriş gerilimi olan   e eşittir. — Sonuç olarak, bu devre bir akım kaynağı tarafından beslenen bir filtre değildir.

Karmaşık empedans:

 

ve

 .

Bu kapasitör akımının 90° olduğunu gösteriyor.direnç(ve kaynak) akımı ile fazın çıkışı. Karşıt olarak, diferansiyel denklemler kullanılarak yönetiliyor:

 

ve

 .

Bir basamak giriş için (bu etkili bir 0 Hz veya DC işaretidir), girişin türevi   'da bir uyarıdır.Böylece kapasitör çok hızlı tam yüke ulaşır ve bir açık devre olur— böylece bir kapasitörün DC davranışı iyi bilinir.

Bakınız

değiştir

Dış bağlantılar

değiştir
  NODES