SP100 (ингл. ) — аксымы, шул ук исемдәге ген тарафыннан кодлана торган югары молекуляр органик матдә.[29][30]

SP100
Нинди таксонда бар H. sapiens[d][1]
Кодлаучы ген SP100[d][1]
Молекуляр функция transcription corepressor activity[d][2][3], protein domain specific binding[d][4], chromo shadow domain binding[d][5], связывание похожих белков[d][6][7], гомодимеризация белка[d][8], kinase binding[d][9], transcription coactivator activity[d][10][11], ДНК-связывающий[d][12][12], transcription factor binding[d][13], связывание с белками плазмы[d][14][15][4][…], DNA-binding transcription factor activity, RNA polymerase II-specific[d][16][17][9] һәм protein dimerization activity[d][18]
Күзәнәк компоненты ядрышко[d][19][20], нуклеоплазма[d][12], цитоплазма[12][21], төш[12][12][22][…], PML body[d][12][21][22][…], Mre11 complex[d][23], nuclear periphery[d][19] һәм ядерные тельца[d][12]
Биологик процесс negative regulation of DNA-binding transcription factor activity[d][17], response to cytokine[d][24][19], транскрипция, ДНК-зависимая[d][25], negative regulation of endothelial cell migration[d][26], negative regulation of viral transcription[d][2], regulation of angiogenesis[d][26], positive regulation of DNA-binding transcription factor activity[d][13][10], DNA damage response, signal transduction by p53 class mediator resulting in transcription of p21 class mediator[d][9], negative regulation of DNA binding[d][17], negative regulation of protein export from nucleus[d][21], вирусный процесс[d][12], negative regulation of transcription by RNA polymerase II[d][17], ДНК-зависимая позитивная регуляция транскрипции[d][11][13], telomere maintenance[d][23], response to type I interferon[d][27][17][28], regulation of Fas signaling pathway[d][21], retinoic acid receptor signaling pathway[d][19], response to retinoic acid[d][19], ДНК-зависимая регуляция транскрипции[d][25], response to interferon-gamma[d][27][28], type I interferon signaling pathway[d][27], regulation of extrinsic apoptotic signaling pathway via death domain receptors[d][21], negative regulation of transcription, DNA-templated[d][8][7], interferon-gamma-mediated signaling pathway[d][12][27], negative regulation of nucleic acid-templated transcription[d][25], maintenance of protein location[d][14] һәм ДНК-зависимая позитивная регуляция транскрипции[d][9]

Искәрмәләр

үзгәртү
  1. 1,0 1,1 UniProt
  2. 2,0 2,1 Negorev D. G., Vladimirova O. V., Ivanov A. et al. Differential role of Sp100 isoforms in interferon-mediated repression of herpes simplex virus type 1 immediate-early protein expression // J. Virol.ASM, 2006. — ISSN 0022-538X; 1098-5514; 1070-6321doi:10.1128/JVI.02164-05PMID:16873258
  3. Yordy J. S., Li R., Sementchenko V. I. et al. SP100 expression modulates ETS1 transcriptional activity and inhibits cell invasion // OncogeneNPG, 2004. — ISSN 0950-9232; 1476-5594doi:10.1038/SJ.ONC.1207891PMID:15247905
  4. 4,0 4,1 N Lehming, Saux A. L., J Schüller et al. Chromatin components as part of a putative transcriptional repressing complex // Proc. Natl. Acad. Sci. U.S.A. / M. R. Berenbaum[Washington, etc.], USA: National Academy of Sciences [etc.], 1998. — ISSN 0027-8424; 1091-6490doi:10.1073/PNAS.95.13.7322PMID:9636147
  5. Lechner M. S., Schultz D. C., Negorev D. et al. The mammalian heterochromatin protein 1 binds diverse nuclear proteins through a common motif that _targets the chromoshadow domain // Biochem. Biophys. Res. Commun.Academic Press, Elsevier BV, 2005. — ISSN 0006-291X; 1090-2104doi:10.1016/J.BBRC.2005.04.016PMID:15882967
  6. Petsalaki E., Weile J., Jacob Y. et al. Pooled-matrix protein interaction screens using Barcode Fusion Genetics // Mol. Syst. Biol. / R. AebersoldEMBO, Wiley, 2016. — ISSN 1744-4292doi:10.15252/MSB.20156660PMID:27107012
  7. 7,0 7,1 N Lehming, Saux A. L., J Schüller et al. Chromatin components as part of a putative transcriptional repressing complex // Proc. Natl. Acad. Sci. U.S.A. / M. R. Berenbaum[Washington, etc.], USA: National Academy of Sciences [etc.], 1998. — ISSN 0027-8424; 1091-6490doi:10.1073/PNAS.95.13.7322PMID:9636147
  8. 8,0 8,1 Seeler J. S. Interaction of SP100 with HP1 proteins: a link between the promyelocytic leukemia-associated nuclear bodies and the chromatin compartment // Proc. Natl. Acad. Sci. U.S.A. / M. R. Berenbaum[Washington, etc.], USA: National Academy of Sciences [etc.], 1998. — ISSN 0027-8424; 1091-6490doi:10.1073/PNAS.95.13.7316PMID:9636146
  9. 9,0 9,1 9,2 9,3 Möller A., Sirma H., Hofmann T. G. et al. Sp100 is important for the stimulatory effect of homeodomain-interacting protein kinase-2 on p53-dependent gene expression // OncogeneNPG, 2003. — ISSN 0950-9232; 1476-5594doi:10.1038/SJ.ONC.1207079PMID:14647468
  10. 10,0 10,1 Bloch D. B., Kieff E. Mediation of Epstein-Barr virus EBNA-LP transcriptional coactivation by Sp100 // EMBO J.NPG, 2005. — ISSN 0261-4189; 1460-2075doi:10.1038/SJ.EMBOJ.7600820PMID:16177824
  11. 11,0 11,1 Möller A., Sirma H., Hofmann T. G. et al. Sp100 is important for the stimulatory effect of homeodomain-interacting protein kinase-2 on p53-dependent gene expression // OncogeneNPG, 2003. — ISSN 0950-9232; 1476-5594doi:10.1038/SJ.ONC.1207079PMID:14647468
  12. 12,00 12,01 12,02 12,03 12,04 12,05 12,06 12,07 12,08 12,09 GOA
  13. 13,0 13,1 13,2 Wasylyk C., Schlumberger S. E., Criqui-Filipe P. et al. Sp100 interacts with ETS-1 and stimulates its transcriptional activity // Mol. Cell. Biol.ASM, 2002. — ISSN 0270-7306; 1098-5549; 1067-8824doi:10.1128/MCB.22.8.2687-2702.2002PMID:11909962
  14. 14,0 14,1 Naka K., Ikeda K., Motoyama N. Recruitment of NBS1 into PML oncogenic domains via interaction with SP100 protein // Biochem. Biophys. Res. Commun.Academic Press, Elsevier BV, 2002. — ISSN 0006-291X; 1090-2104doi:10.1016/S0006-291X(02)02755-9PMID:12470659
  15. Liang Y. SUMO5, a Novel Poly-SUMO Isoform, Regulates PML Nuclear Bodies // Sci. Rep.Macmillan Publishers, NPG, 2016. — ISSN 2045-2322doi:10.1038/SREP26509PMID:27211601
  16. Vaquerizas J. M., Teichmann S., Kummerfeld S. K. A census of human transcription factors: function, expression and evolution // Nature reviews. GeneticsUnited Kingdom: NPG, 2009. — ISSN 1471-0056; 1471-0064doi:10.1038/NRG2538PMID:19274049
  17. 17,0 17,1 17,2 17,3 17,4 Yordy J. S., Li R., Sementchenko V. I. et al. SP100 expression modulates ETS1 transcriptional activity and inhibits cell invasion // OncogeneNPG, 2004. — ISSN 0950-9232; 1476-5594doi:10.1038/SJ.ONC.1207891PMID:15247905
  18. Seeler J. S. Interaction of SP100 with HP1 proteins: a link between the promyelocytic leukemia-associated nuclear bodies and the chromatin compartment // Proc. Natl. Acad. Sci. U.S.A. / M. R. Berenbaum[Washington, etc.], USA: National Academy of Sciences [etc.], 1998. — ISSN 0027-8424; 1091-6490doi:10.1073/PNAS.95.13.7316PMID:9636146
  19. 19,0 19,1 19,2 19,3 19,4 Chambon P., Seeler J. S. Common properties of nuclear body protein SP100 and TIF1alpha chromatin factor: role of SUMO modification // Mol. Cell. Biol.ASM, 2001. — ISSN 0270-7306; 1098-5549; 1067-8824doi:10.1128/MCB.21.10.3314-3324.2001PMID:11313457
  20. HH G., Szostecki C, Schröder P et al. Splice variants of the nuclear dot-associated Sp100 protein contain homologies to HMG-1 and a human nuclear phosphoprotein-box motif // J. Cell Sci.The Company of Biologists, 1999. — ISSN 0021-9533; 1477-9137PMID:9973607
  21. 21,0 21,1 21,2 21,3 21,4 Milovic-Holm K., Krieghoff E., Jensen K. et al. FLASH links the CD95 signaling pathway to the cell nucleus and nuclear bodies // EMBO J.NPG, 2007. — ISSN 0261-4189; 1460-2075doi:10.1038/SJ.EMBOJ.7601504PMID:17245429
  22. 22,0 22,1 Zinn A. R. Dynamic regulation of p53 subnuclear localization and senescence by MORC3 // Mol. Biol. Cell,American Society for Cell Biology, 2007. — ISSN 1059-1524; 1939-4586; 1044-2030doi:10.1091/MBC.E06-08-0747PMID:17332504
  23. 23,0 23,1 Henson J. D., Reddel R. Suppression of alternative lengthening of telomeres by Sp100-mediated sequestration of the MRE11/RAD50/NBS1 complex // Mol. Cell. Biol.ASM, 2005. — ISSN 0270-7306; 1098-5549; 1067-8824doi:10.1128/MCB.25.7.2708-2721.2005PMID:15767676
  24. T. Sternsdorf, K. Jensen, H. Will Evidence for covalent modification of the nuclear dot-associated proteins PML and Sp100 by PIC1/SUMO-1, Evidence for Covalent Modification of the Nuclear Dot–associated Proteins PML and Sp100 by PIC1/SUMO-1 // J. Cell Biol. / J. NunnariRockefeller University Press, 1997. — ISSN 0021-9525; 1540-8140doi:10.1083/JCB.139.7.1621PMID:9412458
  25. 25,0 25,1 25,2 GOA
  26. 26,0 26,1 Chaussabel D. SP100 inhibits ETS1 activity in primary endothelial cells // OncogeneNPG, 2005. — ISSN 0950-9232; 1476-5594doi:10.1038/SJ.ONC.1208245PMID:15592518
  27. 27,0 27,1 27,2 27,3 T Grötzinger, K Jensen, H Will The interferon (IFN)-stimulated gene Sp100 promoter contains an IFN-gamma activation site and an imperfect IFN-stimulated response element which mediate type I IFN inducibility // J. Biol. Chem. / L. M. GieraschBaltimore [etc.]: American Society for Biochemistry and Molecular Biology, 1996. — ISSN 0021-9258; 1083-351X; 1067-8816doi:10.1074/JBC.271.41.25253PMID:8810287
  28. 28,0 28,1 T. Sternsdorf, K. Jensen, D. Züchner et al. Cellular localization, expression, and structure of the nuclear dot protein 52, Cellular Localization, Expression, and Structure of the Nuclear Dot Protein 52 // J. Cell Biol. / J. NunnariRockefeller University Press, 1997. — ISSN 0021-9525; 1540-8140doi:10.1083/JCB.138.2.435PMID:9230084
  29. HUGO Gene Nomenclature Commitee, HGNC:29223 (ингл.). әлеге чыганактан 2015-10-25 архивланды. 18 сентябрь, 2017 тикшерелгән.
  30. UniProt, Q9ULJ7 (ингл.). 18 сентябрь, 2017 тикшерелгән.

Чыганаклар

үзгәртү
  • Степанов В.М. (2005). Молекулярная биология. Структура и функция белков. Москва: Наука. ISBN 5-211-04971-3.(рус.)
  • Bruce Alberts, Alexander Johnson, Julian Lewis, Martin Raff, Keith Roberts, Peter Walter (2002). Molecular Biology of the Cell (вид. 4th). Garland. ISBN 0815332181.(ингл.)


  NODES