Ізотопи літію
Природний літій складається з двох стабільних ізотопів: 6Li (7,5%) і 7Li (92,5%); у деяких зразках літію ізотопне співвідношення може бути значно порушене внаслідок природного або штучного фракціонування ізотопів. Це слід мати на увазі під час точних хімічних дослідів з використанням літію або його сполук. Також відомо ще 7 штучних радіоактивних ізотопів літію і два ядерних ізомери (масові числа від 4Li до 12Li та 10m1Li − 10m2Li відповідно). Найстійкіший з них, 8Li, має період напіврозпаду 0,8403 с. Екзотичний ізотоп 3Li (трипротон), мабуть, не існує як зв'язана система.
7Li є одним з небагатьох ізотопів, що утворилися під час первинного нуклеосинтезу (тобто невдовзі після Великого Вибуху[1]), а не лише в зорях, у кількості не більш як 10−9 від усіх елементів[2][3]. Деяка кількість ізотопу 6Li, принаймні в десять тисяч разів менша, ніж 7Li, також утворилася в первинному нуклеосинтезі[1]. Приблизно в десять разів більше 7Li утворилося в зоряному нуклеосинтезі.
Літій є проміжним продуктом реакції ppII, але при високих температурах він швидко перетворюється на два ядра гелію-4[4][5] (через 8Be).
Розділення ізотопів
ред.Розділення colex
ред.Літій-6 має більшу спорідненість із ртуттю, ніж літій-7. Коли амальгаму літію і ртуть додають до розчину, який містить гідроксид літію, то в амальгамі збільшується концентрації літію-6, а в розчині гідроксиду збільшується концентрація літію-7.
Цю властивість застосовують у методі розділення colex (column exchange, букв. колонний обмін), пропускаючи зустрічні потоки амальгами і гідроксиду через низку каскадів. фракція літію-6 здебільшого захоплюється ртуттю, тоді як літій-7 - розчином гідроксиду. На дні колони літій (збагачений літієм-6) відділяється від амальгами, а ртуть повертається для використання з новою сировиною. Зверху колони розчин гідроксиду літію піддається електролізу, щоб виділити з нього фракцію літію-7. Збагачення, якого вдається досягнути за допомогою цього методу, залежить від висоти колони і швидкості потоків.
Молекулярна перегонка
ред.Метод молекулярної перегонки полягає в тому, що літій нагрівають до температури близько 550 °C у вакуумі. Атоми літію випаровуються з поверхні рідини й осідають на холодній поверхні, яка розташована кількома сантиметрами вище. Оскільки атоми літію-6 мають більшу довжину вільного пробігу, то вони переважно й збираються.
Теоретична ефективність цього методу розділення становить близько 8,0 відсотків. Щоб досягнути більшого ступеню сепарації, потрібні кілька стадій.
Літій-4
ред.Ядро літію-4 містить три протони і один нейтрон. Це найбільш короткоживучий з відомих ізотопів літію, з періодом напіврозпаду близько 9.1×10−23 секунди. Внаслідок протонного розпаду він розпадається до гелію-3.[6] Крім того, літій-4 може утворитися як проміжний продукт в деяких реакціях ядерного синтезу.
Літій-6
ред.Літій-6 цінний як сировина для виробництва тритію і як поглинач нейтронів у реакціях ядерного синтезу. Природний літій містить близько 7,5 відсотка літію-6, а решта - літій-7. Значні кількості літію-6 виділено для застосування в термоядерних бомбах. Нині країни, які займалися виробництвом термоядерних бомб, припинили відділяти літій-6[джерело?], але значна його кількість залишилася на їхніх складах. Літій-6 є одним із лише трьох стабільних ізотопів, спін яких дорівнює 1[7], і його ядро має найменший ненульовий електричний квадрупольний момент зі всіх елементів.
Літій-7
ред.Літій-7 є з великою перевагою найбільш поширеним ізотопом природного літію і становить 92,5 відсотка атомів. Атом літію-7 містить три протони, чотири нейтрони і три електрони. Завдяки властивостям свого ядра літій-7 менш поширений у всесвіті, ніж гелій, берилій, вуглець, азот і оксиген, навіть попри те, що останні чотири елементи мають важчі ядра, ніж літій.
Внаслідок промислового виробництва літію-6 утворюються відходи, які збагачені літієм-7 і збіднені літієм-6. Ці матеріали продавались на ринку, а також їх просто відвалювали в довкілля. Відносний надлишок літію-7, до 35 відсотків вищий, ніж природне співвідношення, зареєстровано в ґрунтових водах у карбонатному водоносному горизонті під струмком Вест Воллі в Пенсільванії, який перебуває нижче за течією від заводу з виробництва літію. У збідненому літії нижня межа відносної частки літію-6 може становити до 20 відсотків від його природного вмісту. Оскільки співвідношення часток ізотопів літію дещо залежить від джерела, то неможливо точно визначити атомну масу проб літію зі всіх джерел.[8]
Літій-7 використовують. як один із компонентів розплавленого фториду літію[ru] в реакторах на розплавах солей. Великий ефективний поперечний переріз захоплення нейтронів літію-6 (близько 940 барн[9]) порівняно з дуже незначною величиною цього показника для літію-7 (близько 45 мілібарн) призводить до необхідності дуже добре очищувати літій-7 з сировини, щоб його можна було застосовувати в реакторах на фториді літію.
Гідроксид літію-7 використовується для олужнення охолоджувача у водно-водяних ядерних реакторах.[10]
Літій-11
ред.Припускають, що ядро літію-11 має гало[en]. Ядро складається з трьох протонів і дев'яти нейтронів, два з яких утворюють ядерне гало. Воно має надзвичайно великий поперечний переріз 3.16 фм, порівняний з цим показником у 208Pb. Воно розпадається внаслідок бета-розпаду до 11Be, який у свою чергу розпадається кількома шляхами (див. таблицю нижче).
Літій-12
ред.Літій-12 має набагато коротший період напіврозпаду, близько 10 наносекунд. Внаслідок нейтронного розпаду він розпадається до 11Li, який у свою чергу розпадається. як написано вище.
Таблиця
ред.Символ ізотопу |
Z(p) | N(n) | Маса ізотопу (u) |
Період напіврозпаду | Типи розпаду[11] |
Дочірні ізотопи[n 1] | Спін і парність ядра |
Поширеність ізотопу в природі (мольна частка) |
Діапазон розподілу в природі (мольна частка) |
---|---|---|---|---|---|---|---|---|---|
Енергія збудження | |||||||||
4Li | 3 | 1 | 4.02719(23) | 91(9)×10−24 с [6.03 МеВ] |
p | 3He | |||
5Li | 3 | 2 | 5.01254(5) | 370(30)×10−24 с [~1.5 МеВ] |
p | 4He | 3/2− | ||
6Li | 3 | 3 | 6.015122795(16) | Стабільний | 1+ | [0.0759(4)] | 0.07714–0.07225 | ||
7Li[n 2] | 3 | 4 | 7.01600455(8) | Стабільний | 3/2− | [0.9241(4)] | 0.92275–0.92786 | ||
8Li | 3 | 5 | 8.02248736(10) | 840.3(9) мс | β− | 8Be[n 3] | 2+ | ||
9Li | 3 | 6 | 9.0267895(21) | 178.3(4) мс | β−, n (50.8%) | 8Be[n 4] | 3/2− | ||
β− (49.2%) | 9Be | ||||||||
10Li | 3 | 7 | 10.035481(16) | 2.0(5)×10−21 с [1.2(3) MeV] |
n | 9Li | (1−,2−) | ||
10Li | 200(40) кеВ | 3.7(15)×10−21 с | 1+ | ||||||
10Li | 480(40) кеВ | 1.35(24)×10−21 с | 2+ | ||||||
11Li[n 5] | 3 | 8 | 11.043798(21) | 8.75(14) мс | β−, n (84.9%) | 10Be | 3/2− | ||
β− (8.07%) | 11Be | ||||||||
β−, 2n (4.1%) | 9Be | ||||||||
β−, 3n (1.9%) | 8Be[n 6] | ||||||||
β−, α (1.0%) | 7He, 4He | ||||||||
β−, поділ (.014%) | 8Li, 3H | ||||||||
β−, поділ (.013%) | 9Li, 2H | ||||||||
12Li | 3 | 9 | 12.05378(107)# | <10 нs | n | 11Li |
- ↑ Жирним для стабільних ізотопів
- ↑ Утворився під час нуклеосинтезу Великого вибуху
- ↑ Одразу ж розпадається на два атоми 4He в результаті реакції 8Li → 24He + e−
- ↑ Одразу ж розпадається на два атоми 4He в результаті реакції 9Li → 24He + 1n + e−
- ↑ Має 2 нейтрони гало
- ↑ Одразу ж розпадається на два атоми 4He в результаті реакції 11Li → 24He + 31n + e−
Нотатки
ред.- Поширеність ізотопів наведена для більшості природних земних зразків. Для інших джерел значення можуть значно відрізнятися.
- Відомі виняткові проби літію з геологічних зразків, у яких поширеність ізотопів лежить поза межами наведеного діапазону розподілу. Похибка у вимірюваннях атомної маси для таких зразків може перевищувати наведену величину.
- Комерційно доступні матеріали могли підлягати прихованому або випадковому розділенню на ізотопи. Можуть траплятись суттєві відхилення від поданої маси і складу.
- У збідненому літії нижня межа відносної частки літію-6 може становити до 20 відсотків від його природного вмісту, даючи виміряну атомну масу в діапазоні від 6.94 а.о.м. до 7.00 а.о.м.
- Оцінки позначені # отримані не з чисто експериментальних даних, але частково із систематичних трендів у сусідніх нуклідів (з такими самими відношеннями Z і N). Спіни зі слабким оцінковим обґрунтуванням взяті в дужки.
- похибку вимірювання подано в скороченій формі в дужках після відповідних останніх цифр. Похибка позначає одне стандартне відхилення, за винятком ізотопної поширеності та атомної маси від IUPAC, яка використовує складніші визначення похибок. Приклади: 29770,6(5) означає 29770,6 ± 0,5; 21,48(15) означає 21,48 ± 0,15; −2200,2(18) означає −2200,2 ± 1,8.
- Незвичайний ізотоп літій-11 має ядерне гало, яке складається з двох слабко-пов'язаних нейтронів, що пояснює значну відмінність у радіусі його ядра.
- Маси радіонуклідів подано за даними Комісії з символів, одиниць, номенклатури, атомних мас і фундаментальних констант (SUNAMCO) IUPAP
- Поширеність ізотопів подано за даними Комісії з ізотопних поширеностей і атомних мас IUPAC
Ланцюги розпаду
ред.Примітки
ред.- ↑ а б BD Fields The Primordial Lithium Problem [Архівовано 19 жовтня 2016 у Wayback Machine.], Annual Reviews of Nuclear and Particle Science 2011 (рос.)
- ↑ Постнов К.А. Лекции по общей астрофизике для физиков. Архів оригіналу за 23 серпня 2011. Процитовано 27 грудня 2016.
{{cite web}}
: Cite має пустий невідомий параметр:|4=
(довідка); див мал. 11.1(англ.) - ↑ Архівована копія (PDF). Архів оригіналу (PDF) за 13 листопада 2013. Процитовано 27 грудня 2016.
{{cite web}}
: Обслуговування CS1: Сторінки з текстом «archived copy» як значення параметру title (посилання) [Архівовано 2013-11-13 у Wayback Machine.](англ.) - ↑ Lecture 27: Stellar Nucleosynthesis [Архівовано 28 травня 2015 у Wayback Machine.] // Університет Toledo — «The Destruction of Lithium in Young Convective Stars» slide 28(англ.)
- ↑ Greg Ruchti, Lithium in the Cosmos [Архівовано 4 березня 2016 у Wayback Machine.] — «Lithium is Fragile» slide 10(англ.)
- ↑ Ізотопи of Lithium. Процитовано 20 October 2013.[недоступне посилання з червня 2019]
- ↑ Chandrakumar, N. (2012). Spin-1 NMR. Springer Science & Business Media. с. 5. ISBN 9783642610899. Архів оригіналу за 3 червня 2016. Процитовано 27 грудня 2016.
- ↑ T. B. Coplen, J. A. Hopple, J. K. Böhlke, H. S. Peiser, S. E. Rieder, H. R. Krouse, K. J. R. Rosman, T. Ding, R. D. Vocke, Jr., K. M. Révész, A. Lamberty, P. Taylor, P. De Bièvre. "Compilation of minimum and maximum isotope ratios of selected elements in naturally occurring terrestrial materials and reagents", U.S. Geological Survey Water-Resources Investigations Report 01-4222 (2002). As quoted in T. B. Coplen та ін. (2002). Isotope-Abundance Variations of Selected Elements (IUPAC technical report) (PDF). Pure and Applied Chemistry. 74 (10): 1987—2017. doi:10.1351/pac200274101987. Архів оригіналу (PDF) за 3 березня 2016. Процитовано 27 грудня 2016. [Архівовано 2016-03-03 у Wayback Machine.]
- ↑ Holden, Norman E. (January–February 2010). The Impact of Depleted 6Li on the Standard Atomic Weight of Lithium. International Union of Pure and Applied Chemistry. Архів оригіналу за 31 серпня 2014. Процитовано 6 May 2014.
- ↑ Managing Critical Isotopes: Stewardship of Lithium-7 Is Needed to Ensure a Stable Supply, GAO-13-716 [Архівовано 20 січня 2017 у Wayback Machine.] // U.S. Government Accountability Office, 19 September 2013; pdf [Архівовано 14 жовтня 2017 у Wayback Machine.]
- ↑ Universal Nuclide Chart. Nucleonica. Архів оригіналу за 19 лютого 2017. Процитовано 27 вересня 2012.
Джерела
ред.- Маси ізотопів взяті з:
- G. Audi; A. H. Wapstra; C. Thibault; J. Blachot; O. Bersillon (2003). The NUBASE evaluation of nuclear and decay properties (PDF). Nuclear Physics A. 729: 3—128. Bibcode:2003NuPhA.729....3A. doi:10.1016/j.nuclphysa.2003.11.001. Архів оригіналу (PDF) за 23 вересня 2008. Процитовано 27 грудня 2016.
- Кількісні співвідношення ізотопів і стандартні атомні маси взяті з:
- J. R. de Laeter; J. K. Böhlke; P. De Bièvre; H. Hidaka; H. S. Peiser; K. J. R. Rosman; P. D. P. Taylor (2003). Atomic weights of the елементs. Review 2000 (IUPAC Technical Report). Pure and Applied Chemistry. 75 (6): 683—800. doi:10.1351/pac200375060683. Архів оригіналу за 1 липня 2018. Процитовано 27 грудня 2016.
- M. E. Wieser (2006). Atomic weights of the елементs 2005 (IUPAC Technical Report). Pure and Applied Chemistry. 78 (11): 2051—2066. doi:10.1351/pac200678112051. Архів оригіналу за 4 січня 2019. Процитовано 27 грудня 2016. Загальний огляд.
- Період напіврозпаду, спін, і дані ізомерів взяті з:
- G. Audi; A. H. Wapstra; C. Thibault; J. Blachot; O. Bersillon (2003). The NUBASE evaluation of nuclear and decay properties (PDF). Nuclear Physics A. 729: 3—128. Bibcode:2003NuPhA.729....3A. doi:10.1016/j.nuclphysa.2003.11.001. Архів оригіналу (PDF) за 23 вересня 2008. Процитовано 27 грудня 2016.
- National Nuclear Data Center. NuDat 2.1 database. Brookhaven National Laboratory. Архів оригіналу за 13 травня 2019. Процитовано September 2005.
- N. E. Holden (2004). Table of the Ізотопи. У D. R. Lide (ред.). CRC Handbook of Chemistry and Physics (вид. 85th). CRC Press. Section 11. ISBN 978-0-8493-0485-9.
Посилання
ред.Lewis, G. N.; MacDonald, R. T. (1936). The Separation of Lithium Ізотопи. Journal of the American Chemical Society. 58 (12): 2519. doi:10.1021/ja01303a045.
H | He | ||||||||||||||||||||||
Li | Be | B | C | N | O | F | Ne | ||||||||||||||||
Na | Mg | Al | Si | P | S | Cl | Ar | ||||||||||||||||
K | Ca | Sc | Ti | V | Cr | Mn | Fe | Co | Ni | Cu | Zn | Ga | Ge | As | Se | Br | Kr | ||||||
Rb | Sr | Y | Zr | Nb | Mo | Tc | Ru | Rh | Pd | Ag | Cd | In | Sn | Sb | Te | I | Xe | ||||||
Cs | Ba | * | Hf | Ta | W | Re | Os | Ir | Pt | Au | Hg | Tl | Pb | Bi | Po | At | Rn | ||||||
Fr | Ra | ** | Rf | Db | Sg | Bh | Hs | Mt | Ds | Rg | Cn | Uut | Fl | Mc | Lv | Ts | Og | ||||||
* | La | Ce | Pr | Nd | Pm | Sm | Eu | Gd | Tb | Dy | Ho | Er | Tm | Yb | Lu | ||||||||
** | Ac | Th | Pa | U | Np | Pu | Am | Cm | Bk | Cf | Es | Fm | Md | No | Lr |