Abstract
Anticipating the next events of an ongoing series of activities has many compelling applications in various industries. It can be used to improve customer satisfaction, to enhance operational efficiency, and to streamline health-care services, to name a few. In this work, we propose an algorithm that predicts the next events by leveraging business process models obtained using process mining techniques. Because we are using business process models to build the predictions, it allows business analysts to interpret and alter the predictions. We tested our approach with more than 30 synthetic datasets as well as 6 real datasets. The results have superior accuracy compared to using neural networks while being orders of magnitude faster.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
available here: https://verenich.github.io/ProcessSequencePrediction/.
- 2.
https://data.4tu.nl/repository/uuid:745584e7-8cc0-45b8-8a89-93e9c9dfab05, sets ā1 - scalabilityā, āround 3 to 5ā.
- 3.
- 4.
References
Polato, M., Sperduti, A., Burattin, A., De Leoni, M.: Time and activity sequence prediction of business process instances. Computing 100, 1005ā1031 (2018)
Alaybeyi, S., Baker, V., Clark, W.: Build trust with business users by moving toward explainable AI. Technical report, Gartner, October 2018. https://www.gartner.com/doc/3891245/build-trust-business-users-moving
Tax, N., Verenich, I., La Rosa, M., Dumas, M.: Predictive business process monitoring with LSTM neural networks. In: Dubois, E., Pohl, K. (eds.) CAiSE 2017. LNCS, vol. 10253, pp. 477ā492. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-59536-8_30
van der Aalst, W.: Process Mining: Data Science in Action. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-49851-4
Leemans, S.J.J., Fahland, D., van der Aalst, W.M.P.: Discovering block-structured process models from event logs - a constructive approach. In: Colom, J.-M., Desel, J. (eds.) PETRI NETS 2013. LNCS, vol. 7927, pp. 311ā329. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-38697-8_17
Vanhatalo, J., Vƶlzer, H., Koehler, J.: The refined process structure tree. In: Dumas, M., Reichert, M., Shan, M.-C. (eds.) BPM 2008. LNCS, vol. 5240, pp. 100ā115. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-85758-7_10
Pitkow, J., Pirolli, P.: Mining longest repeating subsequences to predict world wide web surfing. In: Proceedings of the UsENIX Symposium on Internet Technologies and Systems, p. 1 (1999)
Gueniche, T., Fournier-Viger, P., Tseng, V.S.: Compact prediction tree: a lossless model for accurate sequence prediction. In: Motoda, H., Wu, Z., Cao, L., Zaiane, O., Yao, M., Wang, W. (eds.) ADMA 2013. LNCS (LNAI), vol. 8347, pp. 177ā188. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-53917-6_16
Lakshmanan, G.T., Shamsi, D., Doganata, Y.N., Unuvar, M., Khalaf, R.: A Markov prediction model for data-driven semi-structured business processes. Knowl. Inf. Syst. 42(1), 97ā126 (2015)
Breuker, D., Matzner, M., Delfmann, P., Becker, J.: Comprehensible predictive models for business processes. MIS Q. 40(4), 1009ā1034 (2016)
Evermann, J., Rehse, J.-R., Fettke, P.: A deep learning approach for predicting process behaviour at runtime. In: Dumas, M., Fantinato, M. (eds.) BPM 2016. LNBIP, vol. 281, pp. 327ā338. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-58457-7_24
Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8), 1735ā1780 (1997)
Leemans, S.: Robust process mining with guarantees. Ph.D. thesis, Eindhoven University of Technology (2017)
Damerau, F.J.: A technique for computer detection and correction of spelling errors. Commun. ACM 7(3), 171ā176 (1964)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
Ā© 2019 Springer Nature Switzerland AG
About this paper
Cite this paper
Bernard, G., Andritsos, P. (2019). Accurate and Transparent Path Prediction Using Process Mining. In: Welzer, T., Eder, J., Podgorelec, V., KamiÅ”aliÄ LatifiÄ, A. (eds) Advances in Databases and Information Systems. ADBIS 2019. Lecture Notes in Computer Science(), vol 11695. Springer, Cham. https://doi.org/10.1007/978-3-030-28730-6_15
Download citation
DOI: https://doi.org/10.1007/978-3-030-28730-6_15
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-28729-0
Online ISBN: 978-3-030-28730-6
eBook Packages: Computer ScienceComputer Science (R0)