Skip to main content

Accurate and Transparent Path Prediction Using Process Mining

  • Conference paper
  • First Online:
Advances in Databases and Information Systems (ADBIS 2019)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 11695))

Included in the following conference series:

Abstract

Anticipating the next events of an ongoing series of activities has many compelling applications in various industries. It can be used to improve customer satisfaction, to enhance operational efficiency, and to streamline health-care services, to name a few. In this work, we propose an algorithm that predicts the next events by leveraging business process models obtained using process mining techniques. Because we are using business process models to build the predictions, it allows business analysts to interpret and alter the predictions. We tested our approach with more than 30 synthetic datasets as well as 6 real datasets. The results have superior accuracy compared to using neural networks while being orders of magnitude faster.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
CHF34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
CHF 24.95
Price includes VAT (Switzerland)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
CHF 70.00
Price excludes VAT (Switzerland)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
CHF 87.50
Price excludes VAT (Switzerland)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    available here: https://verenich.github.io/ProcessSequencePrediction/.

  2. 2.

    https://data.4tu.nl/repository/uuid:745584e7-8cc0-45b8-8a89-93e9c9dfab05, sets ā€˜1 - scalabilityā€™, ā€˜round 3 to 5ā€™.

  3. 3.

    https://github.com/scikit-learn-contrib/hdbscan.

  4. 4.

    http://scikit-learn.org/stable/modules/sgd.html.

References

  1. Polato, M., Sperduti, A., Burattin, A., De Leoni, M.: Time and activity sequence prediction of business process instances. Computing 100, 1005ā€“1031 (2018)

    ArticleĀ  MathSciNetĀ  Google ScholarĀ 

  2. Alaybeyi, S., Baker, V., Clark, W.: Build trust with business users by moving toward explainable AI. Technical report, Gartner, October 2018. https://www.gartner.com/doc/3891245/build-trust-business-users-moving

  3. Tax, N., Verenich, I., La Rosa, M., Dumas, M.: Predictive business process monitoring with LSTM neural networks. In: Dubois, E., Pohl, K. (eds.) CAiSE 2017. LNCS, vol. 10253, pp. 477ā€“492. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-59536-8_30

    ChapterĀ  Google ScholarĀ 

  4. van der Aalst, W.: Process Mining: Data Science in Action. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-49851-4

    BookĀ  Google ScholarĀ 

  5. Leemans, S.J.J., Fahland, D., van der Aalst, W.M.P.: Discovering block-structured process models from event logs - a constructive approach. In: Colom, J.-M., Desel, J. (eds.) PETRI NETS 2013. LNCS, vol. 7927, pp. 311ā€“329. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-38697-8_17

    ChapterĀ  Google ScholarĀ 

  6. Vanhatalo, J., Vƶlzer, H., Koehler, J.: The refined process structure tree. In: Dumas, M., Reichert, M., Shan, M.-C. (eds.) BPM 2008. LNCS, vol. 5240, pp. 100ā€“115. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-85758-7_10

    ChapterĀ  Google ScholarĀ 

  7. Pitkow, J., Pirolli, P.: Mining longest repeating subsequences to predict world wide web surfing. In: Proceedings of the UsENIX Symposium on Internet Technologies and Systems, p. 1 (1999)

    Google ScholarĀ 

  8. Gueniche, T., Fournier-Viger, P., Tseng, V.S.: Compact prediction tree: a lossless model for accurate sequence prediction. In: Motoda, H., Wu, Z., Cao, L., Zaiane, O., Yao, M., Wang, W. (eds.) ADMA 2013. LNCS (LNAI), vol. 8347, pp. 177ā€“188. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-53917-6_16

    ChapterĀ  Google ScholarĀ 

  9. Lakshmanan, G.T., Shamsi, D., Doganata, Y.N., Unuvar, M., Khalaf, R.: A Markov prediction model for data-driven semi-structured business processes. Knowl. Inf. Syst. 42(1), 97ā€“126 (2015)

    ArticleĀ  Google ScholarĀ 

  10. Breuker, D., Matzner, M., Delfmann, P., Becker, J.: Comprehensible predictive models for business processes. MIS Q. 40(4), 1009ā€“1034 (2016)

    ArticleĀ  Google ScholarĀ 

  11. Evermann, J., Rehse, J.-R., Fettke, P.: A deep learning approach for predicting process behaviour at runtime. In: Dumas, M., Fantinato, M. (eds.) BPM 2016. LNBIP, vol. 281, pp. 327ā€“338. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-58457-7_24

    ChapterĀ  Google ScholarĀ 

  12. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8), 1735ā€“1780 (1997)

    ArticleĀ  Google ScholarĀ 

  13. Leemans, S.: Robust process mining with guarantees. Ph.D. thesis, Eindhoven University of Technology (2017)

    Google ScholarĀ 

  14. Damerau, F.J.: A technique for computer detection and correction of spelling errors. Commun. ACM 7(3), 171ā€“176 (1964)

    ArticleĀ  Google ScholarĀ 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gaƫl Bernard .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

Ā© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Bernard, G., Andritsos, P. (2019). Accurate and Transparent Path Prediction Using Process Mining. In: Welzer, T., Eder, J., Podgorelec, V., KamiÅ”alić Latifić, A. (eds) Advances in Databases and Information Systems. ADBIS 2019. Lecture Notes in Computer Science(), vol 11695. Springer, Cham. https://doi.org/10.1007/978-3-030-28730-6_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-28730-6_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-28729-0

  • Online ISBN: 978-3-030-28730-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics

  NODES
INTERN 1
Note 3
USERS 2