Skip to main content

Sharing the LUOV: Threshold Post-quantum Signatures

  • Conference paper
  • First Online:
Cryptography and Coding (IMACC 2019)

Abstract

We examine all of the signature submissions to Round-2 of the NIST PQC “competition” in the context of whether one can transform them into threshold signature schemes in a relatively straight forward manner. We conclude that all schemes, except the ones in the MQ family, have significant issues when one wishes to convert them using relatively generic MPC techniques. The lattice based schemes are hampered by requiring a mix of operations which are suited to both linear secret shared schemes (LSSS)-based and garbled circuits (GC)-based MPC techniques (thus requiring costly transfers between the two paradigms). The Picnic and SPHINCS+ algorithms are hampered by the need to compute a large number of hash function queries on secret data. Of the nine submissions the two which would appear to be most suitable for using in a threshold like manner are Rainbow and LUOV, with LUOV requiring less rounds and less data storage.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
CHF34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
CHF 24.95
Price includes VAT (Switzerland)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
CHF 47.00
Price excludes VAT (Switzerland)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
CHF 59.00
Price excludes VAT (Switzerland)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://www.nist.gov/news-events/events/2019/03/nist-threshold-cryptography-workshop-2019.

  2. 2.

    This is not strictly true as one often does not represent the function as a pure arithmetic circuit. But as a first order approximation this holds.

  3. 3.

    Arithmetic modulo a prime of size \(2^{20}\) is faster, but on the other hand one then has to perform more work to obtain the same level of active security.

  4. 4.

    Note the definition of \({\mathsf {len}}_1\) in the specification is wrong and need correcting which we do below.

  5. 5.

    To enable comparison with the NIST submissions we use the same notation in the sections which follow as used in the submissions. We hope this does not confuse the reader.

References

  1. Albrecht, M.R., Rechberger, C., Schneider, T., Tiessen, T., Zohner, M.: Ciphers for MPC and FHE. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015, Part I. LNCS, vol. 9056, pp. 430–454. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46800-5_17

    Chapter  Google Scholar 

  2. Bernstein, D.J., et al.: SPHINCS: practical stateless hash-based signatures. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015, Part I. LNCS, vol. 9056, pp. 368–397. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46800-5_15

    Chapter  Google Scholar 

  3. Beullens, W., Preneel, B., Szepieniec, A., Vercauteren, F.: LUOV (2019). Submission to NIST PQC “competition” Round-2

    Google Scholar 

  4. Bindel, N., et al.: Lattice-based digital signature scheme qTESLA (2019). Submission to NIST PQC “competition” Round-2

    Google Scholar 

  5. Casanova, A., Faugère, J.C., Patarin, G.M.R.J., Perret, L., Ryckeghem, J.: GeMSS: a great multivariate short signature (2019). Submission to NIST PQC “competition” Round-2

    Google Scholar 

  6. Catrina, O., de Hoogh, S.: Improved primitives for secure multiparty integer computation. In: Garay, J.A., De Prisco, R. (eds.) SCN 2010. LNCS, vol. 6280, pp. 182–199. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15317-4_13

    Chapter  MATH  Google Scholar 

  7. Chida, K., et al.: Fast large-scale honest-majority MPC for malicious adversaries. In: Shacham, H., Boldyreva, A. (eds.) CRYPTO 2018, Part III. LNCS, vol. 10993, pp. 34–64. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-96878-0_2

    Chapter  Google Scholar 

  8. Cogliati, B., et al.: Provable security of (tweakable) block ciphers based on substitution-permutation networks. In: Shacham, H., Boldyreva, A. (eds.) CRYPTO 2018, Part I. LNCS, vol. 10991, pp. 722–753. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-96884-1_24

    Chapter  Google Scholar 

  9. Cramer, R., Damgård, I., Escudero, D., Scholl, P., Xing, C.: SPD \(\mathbb{Z}_{2^k}\): efficient MPC mod \(2^k\) for dishonest majority. In: Shacham, H., Boldyreva, A. (eds.) CRYPTO 2018, Part II. LNCS, vol. 10992, pp. 769–798. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-96881-0_26

    Chapter  Google Scholar 

  10. Damgård, I., Fitzi, M., Kiltz, E., Nielsen, J.B., Toft, T.: Unconditionally secure constant-rounds multi-party computation for equality, comparison, bits and exponentiation. In: Halevi, S., Rabin, T. (eds.) TCC 2006. LNCS, vol. 3876, pp. 285–304. Springer, Heidelberg (2006). https://doi.org/10.1007/11681878_15

    Chapter  Google Scholar 

  11. Damgård, I., Koprowski, M.: Practical threshold RSA signatures without a trusted dealer. In: Pfitzmann, B. (ed.) EUROCRYPT 2001. LNCS, vol. 2045, pp. 152–165. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-44987-6_10

    Chapter  Google Scholar 

  12. Damgård, I., Pastro, V., Smart, N., Zakarias, S.: Multiparty computation from somewhat homomorphic encryption. In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS, vol. 7417, pp. 643–662. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-32009-5_38

    Chapter  Google Scholar 

  13. Desmedt, Y., Frankel, Y.: Threshold cryptosystems. In: Brassard, G. (ed.) CRYPTO 1989. LNCS, vol. 435, pp. 307–315. Springer, New York (1990). https://doi.org/10.1007/0-387-34805-0_28

    Chapter  Google Scholar 

  14. Ding, J., Chen, M.S., Petzoldt, A., Schmidt, D., Yang, B.Y.: Rainbow (2019). Submission to NIST PQC “competition” Round-2

    Google Scholar 

  15. Ding, J., Zhang, Z., Deaton, J., Schmidt, K., Vishakha, F.: New attacks on lifted unbalanced oil vinegar. In: The 2nd NIST PQC Standardization Conference (2019)

    Google Scholar 

  16. Doerner, J., Kondi, Y., Lee, E., Shelat, A.: Secure two-party threshold ECDSA from ECDSA assumptions. In: 2018 IEEE Symposium on Security and Privacy, pp. 980–997. IEEE Computer Society Press, May 2018

    Google Scholar 

  17. Gennaro, R., Goldfeder, S.: Fast multiparty threshold ECDSA with fast trustless setup. In: Lie, D., Mannan, M., Backes, M., Wang, X. (eds.) ACM CCS 2018, pp. 1179–1194. ACM Press, New York (2018)

    Google Scholar 

  18. Gennaro, R., Goldfeder, S., Narayanan, A.: Threshold-optimal DSA/ECDSA signatures and an application to bitcoin wallet security. In: Manulis, M., Sadeghi, A.-R., Schneider, S. (eds.) ACNS 2016. LNCS, vol. 9696, pp. 156–174. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-39555-5_9

    Chapter  MATH  Google Scholar 

  19. Gennaro, R., Jarecki, S., Krawczyk, H., Rabin, T.: Robust threshold DSS signatures. In: Maurer, U. (ed.) EUROCRYPT 1996. LNCS, vol. 1070, pp. 354–371. Springer, Heidelberg (1996). https://doi.org/10.1007/3-540-68339-9_31

    Chapter  Google Scholar 

  20. Gentry, C., Peikert, C., Vaikuntanathan, V.: Trapdoors for hard lattices and new cryptographic constructions. In: Ladner, R.E., Dwork, C. (eds.) 40th ACM STOC, pp. 197–206. ACM Press, New York (2008)

    Google Scholar 

  21. Gentry, C., Szydlo, M.: Cryptanalysis of the revised NTRU signature scheme. In: Knudsen, L.R. (ed.) EUROCRYPT 2002. LNCS, vol. 2332, pp. 299–320. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-46035-7_20

    Chapter  Google Scholar 

  22. Giacomelli, I., Madsen, J., Orlandi, C.: ZKBoo: faster zero-knowledge for boolean circuits. In: Holz, T., Savage, S. (eds.) USENIX Security 2016, pp. 1069–1083. USENIX Association, Berkeley (2016)

    Google Scholar 

  23. Goldreich, O.: Two remarks concerning the Goldwasser-Micali-Rivest signature scheme. In: Odlyzko, A.M. (ed.) CRYPTO 1986. LNCS, vol. 263, pp. 104–110. Springer, Heidelberg (1987). https://doi.org/10.1007/3-540-47721-7_8

    Chapter  Google Scholar 

  24. Goldreich, O.: Foundations of Cryptography: Basic Applications, vol. 2. Cambridge University Press, Cambridge (2004)

    Book  Google Scholar 

  25. Hazay, C., Scholl, P., Soria-Vazquez, E.: Low cost constant round MPC combining BMR and oblivious transfer. In: Takagi, T., Peyrin, T. (eds.) ASIACRYPT 2017, Part I. LNCS, vol. 10624, pp. 598–628. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-70694-8_21

    Chapter  Google Scholar 

  26. Hoffstein, J., Howgrave-Graham, N., Pipher, J., Silverman, J.H., Whyte, W.: NTRUSign: digital signatures using the NTRU lattice. In: Joye, M. (ed.) CT-RSA 2003. LNCS, vol. 2612, pp. 122–140. Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-36563-X_9

    Chapter  Google Scholar 

  27. Hulsing, A., et al.: SPHINCS+ (2019). Submission to NIST PQC “competition” Round-2

    Google Scholar 

  28. Ishai, Y., Kushilevitz, E., Ostrovsky, R., Sahai, A.: Zero-knowledge from secure multiparty computation. In: Johnson, D.S., Feige, U. (eds.) 39th ACM STOC, pp. 21–30. ACM Press, New York (2007)

    Google Scholar 

  29. Kipnis, A., Patarin, J., Goubin, L.: Unbalanced oil and vinegar signature schemes. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 206–222. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48910-X_15

    Chapter  Google Scholar 

  30. Kraitsberg, M., Lindell, Y., Osheter, V., Smart, N.P., Talibi Alaoui, Y.: Adding Distributed Decryption and Key Generation to a Ring-LWE Based CCA Encryption Scheme. In: Jang-Jaccard, J., Guo, F. (eds.) ACISP 2019. LNCS, vol. 11547, pp. 192–210. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-21548-4_11

    Chapter  Google Scholar 

  31. Lamport, L.: Constructing digital signatures from a one-way function. Technical report SRI-CSL-98, SRI International Computer Science Laboratory, October 1979

    Google Scholar 

  32. Larraia, E., Orsini, E., Smart, N.P.: Dishonest majority multi-party computation for binary circuits. In: Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014, Part II. LNCS, vol. 8617, pp. 495–512. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-44381-1_28

    Chapter  Google Scholar 

  33. Lindell, Y.: Fast secure two-party ECDSA signing. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017, Part II. LNCS, vol. 10402, pp. 613–644. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-63715-0_21

    Chapter  Google Scholar 

  34. Lindell, Y., Nof, A.: Fast secure multiparty ECDSA with practical distributed key generation and applications to cryptocurrency custody. In: Lie, D., Mannan, M., Backes, M., Wang, X. (eds.) ACM CCS 2018, pp. 1837–1854. ACM Press, New York (2018)

    Google Scholar 

  35. Lindell, Y., Nof, A., Ranellucci, S.: Fast secure multiparty ECDSA with practical distributed key generation and applications to cryptocurrency custody. IACR Cryptology ePrint Archive 2018, 987 (2018). https://eprint.iacr.org/2018/987

  36. Lyubashevsky, V.: Fiat-Shamir with aborts: applications to lattice and factoring-based signatures. In: Matsui, M. (ed.) ASIACRYPT 2009. LNCS, vol. 5912, pp. 598–616. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-10366-7_35

    Chapter  Google Scholar 

  37. Lyubashevsky, V., et al.: Crystals-dilithium (2019). Submission to NIST PQC “competition” Round-2

    Google Scholar 

  38. MacKenzie, P., Reiter, M.K.: Two-party generation of DSA signatures. In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 137–154. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-44647-8_8

    Chapter  Google Scholar 

  39. Matsumoto, T., Imai, H.: Public quadratic polynomial-tuples for efficient signature-verification and message-encryption. In: Barstow, D., et al. (eds.) EUROCRYPT 1988. LNCS, vol. 330, pp. 419–453. Springer, Heidelberg (1988). https://doi.org/10.1007/3-540-45961-8_39

    Chapter  Google Scholar 

  40. Merkle, R.C.: A certified digital signature. In: Brassard, G. (ed.) CRYPTO 1989. LNCS, vol. 435, pp. 218–238. Springer, New York (1990). https://doi.org/10.1007/0-387-34805-0_21

    Chapter  Google Scholar 

  41. Mohassel, P., Rosulek, M., Zhang, Y.: Fast and secure three-party computation: the garbled circuit approach. In: Ray, I., Li, N., Kruegel, C. (eds.) ACM CCS 2015, pp. 591–602. ACM Press, New York (2015)

    Google Scholar 

  42. Nielsen, J.B., Nordholt, P.S., Orlandi, C., Burra, S.S.: A new approach to practical active-secure two-party computation. In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS, vol. 7417, pp. 681–700. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-32009-5_40

    Chapter  Google Scholar 

  43. Patarin, J.: The oil and vinegar signature scheme. In: Presentation at the Dagstuhl Workshop on Cryptography (1997)

    Google Scholar 

  44. Prest, T., et al.: Falcon: fast-Fourier lattice-based compact signatures over NTRU (2019). Submission to NIST PQC “competition” Round-2

    Google Scholar 

  45. Reyzin, L., Reyzin, N.: Better than BiBa: short one-time signatures with fast signing and verifying. In: Batten, L., Seberry, J. (eds.) ACISP 2002. LNCS, vol. 2384, pp. 144–153. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-45450-0_11

    Chapter  MATH  Google Scholar 

  46. Rotaru, D., Wood, T.: Marbled circuits: mixing arithmetic and boolean circuits with active security. IACR Cryptology ePrint Archive 2019, 207 (2019). https://eprint.iacr.org/2019/207

  47. Samardjiska, S., Chen, M.S., Hulsing, A., Rijneveld, J., Schwabe, P.: MQDSS (2019). Submission to NIST PQC “competition” Round-2

    Google Scholar 

  48. Shoup, V.: Practical threshold signatures. In: Preneel, B. (ed.) EUROCRYPT 2000. LNCS, vol. 1807, pp. 207–220. Springer, Heidelberg (2000). https://doi.org/10.1007/3-540-45539-6_15

    Chapter  Google Scholar 

  49. Smart, N.P., Wood, T.: Error detection in monotone span programs with application to communication-efficient multi-party computation. In: Matsui, M. (ed.) CT-RSA 2019. LNCS, vol. 11405, pp. 210–229. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-12612-4_11

    Chapter  Google Scholar 

  50. Wang, X., Ranellucci, S., Katz, J.: Global-scale secure multiparty computation. In: Thuraisingham, B.M., Evans, D., Malkin, T., Xu, D. (eds.) ACM CCS 2017, pp. 39–56. ACM Press, New York (2017)

    Google Scholar 

  51. Zaverucha, G., et al.: The picnic signature scheme (2019). Submission to NIST PQC “competition” Round-2

    Google Scholar 

Download references

Acknowledgments

This work has been supported in part by ERC Advanced Grant ERC-2015-AdG-IMPaCT, by the Defense Advanced Research Projects Agency (DARPA) and Space and Naval Warfare Systems Center, Pacific (SSC Pacific) under contracts No. N66001-15-C-4070 and FA8750-19-C-0502, and by the FWO under an Odysseus project GOH9718N. Any opinions, findings and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the ERC, United States Air Force, DARPA or FWO. The authors would like to thank Cyprien Delpech de Saint Guilhem and Dragos Rotaru for helpful discussions whilst this work was carried out.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nigel P. Smart .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Cozzo, D., Smart, N.P. (2019). Sharing the LUOV: Threshold Post-quantum Signatures. In: Albrecht, M. (eds) Cryptography and Coding. IMACC 2019. Lecture Notes in Computer Science(), vol 11929. Springer, Cham. https://doi.org/10.1007/978-3-030-35199-1_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-35199-1_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-35198-4

  • Online ISBN: 978-3-030-35199-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics

  NODES
Association 1
INTERN 2
Note 4
Project 2
Verify 1