Abstract
We examine all of the signature submissions to Round-2 of the NIST PQC “competition” in the context of whether one can transform them into threshold signature schemes in a relatively straight forward manner. We conclude that all schemes, except the ones in the MQ family, have significant issues when one wishes to convert them using relatively generic MPC techniques. The lattice based schemes are hampered by requiring a mix of operations which are suited to both linear secret shared schemes (LSSS)-based and garbled circuits (GC)-based MPC techniques (thus requiring costly transfers between the two paradigms). The Picnic and SPHINCS+ algorithms are hampered by the need to compute a large number of hash function queries on secret data. Of the nine submissions the two which would appear to be most suitable for using in a threshold like manner are Rainbow and LUOV, with LUOV requiring less rounds and less data storage.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
- 2.
This is not strictly true as one often does not represent the function as a pure arithmetic circuit. But as a first order approximation this holds.
- 3.
Arithmetic modulo a prime of size \(2^{20}\) is faster, but on the other hand one then has to perform more work to obtain the same level of active security.
- 4.
Note the definition of \({\mathsf {len}}_1\) in the specification is wrong and need correcting which we do below.
- 5.
To enable comparison with the NIST submissions we use the same notation in the sections which follow as used in the submissions. We hope this does not confuse the reader.
References
Albrecht, M.R., Rechberger, C., Schneider, T., Tiessen, T., Zohner, M.: Ciphers for MPC and FHE. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015, Part I. LNCS, vol. 9056, pp. 430–454. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46800-5_17
Bernstein, D.J., et al.: SPHINCS: practical stateless hash-based signatures. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015, Part I. LNCS, vol. 9056, pp. 368–397. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46800-5_15
Beullens, W., Preneel, B., Szepieniec, A., Vercauteren, F.: LUOV (2019). Submission to NIST PQC “competition” Round-2
Bindel, N., et al.: Lattice-based digital signature scheme qTESLA (2019). Submission to NIST PQC “competition” Round-2
Casanova, A., Faugère, J.C., Patarin, G.M.R.J., Perret, L., Ryckeghem, J.: GeMSS: a great multivariate short signature (2019). Submission to NIST PQC “competition” Round-2
Catrina, O., de Hoogh, S.: Improved primitives for secure multiparty integer computation. In: Garay, J.A., De Prisco, R. (eds.) SCN 2010. LNCS, vol. 6280, pp. 182–199. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15317-4_13
Chida, K., et al.: Fast large-scale honest-majority MPC for malicious adversaries. In: Shacham, H., Boldyreva, A. (eds.) CRYPTO 2018, Part III. LNCS, vol. 10993, pp. 34–64. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-96878-0_2
Cogliati, B., et al.: Provable security of (tweakable) block ciphers based on substitution-permutation networks. In: Shacham, H., Boldyreva, A. (eds.) CRYPTO 2018, Part I. LNCS, vol. 10991, pp. 722–753. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-96884-1_24
Cramer, R., Damgård, I., Escudero, D., Scholl, P., Xing, C.: SPD \(\mathbb{Z}_{2^k}\): efficient MPC mod \(2^k\) for dishonest majority. In: Shacham, H., Boldyreva, A. (eds.) CRYPTO 2018, Part II. LNCS, vol. 10992, pp. 769–798. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-96881-0_26
Damgård, I., Fitzi, M., Kiltz, E., Nielsen, J.B., Toft, T.: Unconditionally secure constant-rounds multi-party computation for equality, comparison, bits and exponentiation. In: Halevi, S., Rabin, T. (eds.) TCC 2006. LNCS, vol. 3876, pp. 285–304. Springer, Heidelberg (2006). https://doi.org/10.1007/11681878_15
Damgård, I., Koprowski, M.: Practical threshold RSA signatures without a trusted dealer. In: Pfitzmann, B. (ed.) EUROCRYPT 2001. LNCS, vol. 2045, pp. 152–165. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-44987-6_10
Damgård, I., Pastro, V., Smart, N., Zakarias, S.: Multiparty computation from somewhat homomorphic encryption. In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS, vol. 7417, pp. 643–662. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-32009-5_38
Desmedt, Y., Frankel, Y.: Threshold cryptosystems. In: Brassard, G. (ed.) CRYPTO 1989. LNCS, vol. 435, pp. 307–315. Springer, New York (1990). https://doi.org/10.1007/0-387-34805-0_28
Ding, J., Chen, M.S., Petzoldt, A., Schmidt, D., Yang, B.Y.: Rainbow (2019). Submission to NIST PQC “competition” Round-2
Ding, J., Zhang, Z., Deaton, J., Schmidt, K., Vishakha, F.: New attacks on lifted unbalanced oil vinegar. In: The 2nd NIST PQC Standardization Conference (2019)
Doerner, J., Kondi, Y., Lee, E., Shelat, A.: Secure two-party threshold ECDSA from ECDSA assumptions. In: 2018 IEEE Symposium on Security and Privacy, pp. 980–997. IEEE Computer Society Press, May 2018
Gennaro, R., Goldfeder, S.: Fast multiparty threshold ECDSA with fast trustless setup. In: Lie, D., Mannan, M., Backes, M., Wang, X. (eds.) ACM CCS 2018, pp. 1179–1194. ACM Press, New York (2018)
Gennaro, R., Goldfeder, S., Narayanan, A.: Threshold-optimal DSA/ECDSA signatures and an application to bitcoin wallet security. In: Manulis, M., Sadeghi, A.-R., Schneider, S. (eds.) ACNS 2016. LNCS, vol. 9696, pp. 156–174. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-39555-5_9
Gennaro, R., Jarecki, S., Krawczyk, H., Rabin, T.: Robust threshold DSS signatures. In: Maurer, U. (ed.) EUROCRYPT 1996. LNCS, vol. 1070, pp. 354–371. Springer, Heidelberg (1996). https://doi.org/10.1007/3-540-68339-9_31
Gentry, C., Peikert, C., Vaikuntanathan, V.: Trapdoors for hard lattices and new cryptographic constructions. In: Ladner, R.E., Dwork, C. (eds.) 40th ACM STOC, pp. 197–206. ACM Press, New York (2008)
Gentry, C., Szydlo, M.: Cryptanalysis of the revised NTRU signature scheme. In: Knudsen, L.R. (ed.) EUROCRYPT 2002. LNCS, vol. 2332, pp. 299–320. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-46035-7_20
Giacomelli, I., Madsen, J., Orlandi, C.: ZKBoo: faster zero-knowledge for boolean circuits. In: Holz, T., Savage, S. (eds.) USENIX Security 2016, pp. 1069–1083. USENIX Association, Berkeley (2016)
Goldreich, O.: Two remarks concerning the Goldwasser-Micali-Rivest signature scheme. In: Odlyzko, A.M. (ed.) CRYPTO 1986. LNCS, vol. 263, pp. 104–110. Springer, Heidelberg (1987). https://doi.org/10.1007/3-540-47721-7_8
Goldreich, O.: Foundations of Cryptography: Basic Applications, vol. 2. Cambridge University Press, Cambridge (2004)
Hazay, C., Scholl, P., Soria-Vazquez, E.: Low cost constant round MPC combining BMR and oblivious transfer. In: Takagi, T., Peyrin, T. (eds.) ASIACRYPT 2017, Part I. LNCS, vol. 10624, pp. 598–628. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-70694-8_21
Hoffstein, J., Howgrave-Graham, N., Pipher, J., Silverman, J.H., Whyte, W.: NTRUSign: digital signatures using the NTRU lattice. In: Joye, M. (ed.) CT-RSA 2003. LNCS, vol. 2612, pp. 122–140. Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-36563-X_9
Hulsing, A., et al.: SPHINCS+ (2019). Submission to NIST PQC “competition” Round-2
Ishai, Y., Kushilevitz, E., Ostrovsky, R., Sahai, A.: Zero-knowledge from secure multiparty computation. In: Johnson, D.S., Feige, U. (eds.) 39th ACM STOC, pp. 21–30. ACM Press, New York (2007)
Kipnis, A., Patarin, J., Goubin, L.: Unbalanced oil and vinegar signature schemes. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 206–222. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48910-X_15
Kraitsberg, M., Lindell, Y., Osheter, V., Smart, N.P., Talibi Alaoui, Y.: Adding Distributed Decryption and Key Generation to a Ring-LWE Based CCA Encryption Scheme. In: Jang-Jaccard, J., Guo, F. (eds.) ACISP 2019. LNCS, vol. 11547, pp. 192–210. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-21548-4_11
Lamport, L.: Constructing digital signatures from a one-way function. Technical report SRI-CSL-98, SRI International Computer Science Laboratory, October 1979
Larraia, E., Orsini, E., Smart, N.P.: Dishonest majority multi-party computation for binary circuits. In: Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014, Part II. LNCS, vol. 8617, pp. 495–512. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-44381-1_28
Lindell, Y.: Fast secure two-party ECDSA signing. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017, Part II. LNCS, vol. 10402, pp. 613–644. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-63715-0_21
Lindell, Y., Nof, A.: Fast secure multiparty ECDSA with practical distributed key generation and applications to cryptocurrency custody. In: Lie, D., Mannan, M., Backes, M., Wang, X. (eds.) ACM CCS 2018, pp. 1837–1854. ACM Press, New York (2018)
Lindell, Y., Nof, A., Ranellucci, S.: Fast secure multiparty ECDSA with practical distributed key generation and applications to cryptocurrency custody. IACR Cryptology ePrint Archive 2018, 987 (2018). https://eprint.iacr.org/2018/987
Lyubashevsky, V.: Fiat-Shamir with aborts: applications to lattice and factoring-based signatures. In: Matsui, M. (ed.) ASIACRYPT 2009. LNCS, vol. 5912, pp. 598–616. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-10366-7_35
Lyubashevsky, V., et al.: Crystals-dilithium (2019). Submission to NIST PQC “competition” Round-2
MacKenzie, P., Reiter, M.K.: Two-party generation of DSA signatures. In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 137–154. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-44647-8_8
Matsumoto, T., Imai, H.: Public quadratic polynomial-tuples for efficient signature-verification and message-encryption. In: Barstow, D., et al. (eds.) EUROCRYPT 1988. LNCS, vol. 330, pp. 419–453. Springer, Heidelberg (1988). https://doi.org/10.1007/3-540-45961-8_39
Merkle, R.C.: A certified digital signature. In: Brassard, G. (ed.) CRYPTO 1989. LNCS, vol. 435, pp. 218–238. Springer, New York (1990). https://doi.org/10.1007/0-387-34805-0_21
Mohassel, P., Rosulek, M., Zhang, Y.: Fast and secure three-party computation: the garbled circuit approach. In: Ray, I., Li, N., Kruegel, C. (eds.) ACM CCS 2015, pp. 591–602. ACM Press, New York (2015)
Nielsen, J.B., Nordholt, P.S., Orlandi, C., Burra, S.S.: A new approach to practical active-secure two-party computation. In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS, vol. 7417, pp. 681–700. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-32009-5_40
Patarin, J.: The oil and vinegar signature scheme. In: Presentation at the Dagstuhl Workshop on Cryptography (1997)
Prest, T., et al.: Falcon: fast-Fourier lattice-based compact signatures over NTRU (2019). Submission to NIST PQC “competition” Round-2
Reyzin, L., Reyzin, N.: Better than BiBa: short one-time signatures with fast signing and verifying. In: Batten, L., Seberry, J. (eds.) ACISP 2002. LNCS, vol. 2384, pp. 144–153. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-45450-0_11
Rotaru, D., Wood, T.: Marbled circuits: mixing arithmetic and boolean circuits with active security. IACR Cryptology ePrint Archive 2019, 207 (2019). https://eprint.iacr.org/2019/207
Samardjiska, S., Chen, M.S., Hulsing, A., Rijneveld, J., Schwabe, P.: MQDSS (2019). Submission to NIST PQC “competition” Round-2
Shoup, V.: Practical threshold signatures. In: Preneel, B. (ed.) EUROCRYPT 2000. LNCS, vol. 1807, pp. 207–220. Springer, Heidelberg (2000). https://doi.org/10.1007/3-540-45539-6_15
Smart, N.P., Wood, T.: Error detection in monotone span programs with application to communication-efficient multi-party computation. In: Matsui, M. (ed.) CT-RSA 2019. LNCS, vol. 11405, pp. 210–229. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-12612-4_11
Wang, X., Ranellucci, S., Katz, J.: Global-scale secure multiparty computation. In: Thuraisingham, B.M., Evans, D., Malkin, T., Xu, D. (eds.) ACM CCS 2017, pp. 39–56. ACM Press, New York (2017)
Zaverucha, G., et al.: The picnic signature scheme (2019). Submission to NIST PQC “competition” Round-2
Acknowledgments
This work has been supported in part by ERC Advanced Grant ERC-2015-AdG-IMPaCT, by the Defense Advanced Research Projects Agency (DARPA) and Space and Naval Warfare Systems Center, Pacific (SSC Pacific) under contracts No. N66001-15-C-4070 and FA8750-19-C-0502, and by the FWO under an Odysseus project GOH9718N. Any opinions, findings and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the ERC, United States Air Force, DARPA or FWO. The authors would like to thank Cyprien Delpech de Saint Guilhem and Dragos Rotaru for helpful discussions whilst this work was carried out.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2019 Springer Nature Switzerland AG
About this paper
Cite this paper
Cozzo, D., Smart, N.P. (2019). Sharing the LUOV: Threshold Post-quantum Signatures. In: Albrecht, M. (eds) Cryptography and Coding. IMACC 2019. Lecture Notes in Computer Science(), vol 11929. Springer, Cham. https://doi.org/10.1007/978-3-030-35199-1_7
Download citation
DOI: https://doi.org/10.1007/978-3-030-35199-1_7
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-35198-4
Online ISBN: 978-3-030-35199-1
eBook Packages: Computer ScienceComputer Science (R0)