Abstract
We consider one problem of partitioning a finite set of points in Euclidean space into clusters so as to minimize the sum over all clusters of the intracluster sums of the squared distances between clusters elements and their centers. The centers of some clusters are given as an input, while the other centers are unknown and defined as centroids (geometrical centers). It is known that the general case of the problem is strongly NP-hard. We show that there exists an exact polynomial algorithm for the one-dimensional case of the problem.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Fisher, R.A.: Statistical Methods and Scientific Inference. Hafner, New York (1956)
MacQueen, J.B.: Some methods for classification and analysis of multivariate observations. In: Proceedings of the 5th Berkeley Symposium on Mathematical Statistics and Probability, vol. 1, pp. 281–297. University of California Press, Berkeley (1967)
Aloise, D., Deshpande, A., Hansen, P., Popat, P.: NP-hardness of euclidean sum-of-squares clustering. Mach. Learn. 75(2), 245–248 (2009)
Rao, M.: Cluster analysis and mathematical programming. J. Am. Stat. Assoc. 66, 622–626 (1971)
Bellman, R.: Dynamic Programming. Princeton University Press, Princeton (1957)
Glebov, N.I.: On the convex sequences. Discrete Anal. 4, 10–22 (1965). in Russian
Gimadutdinov, E.K.: On the properties of solutions of one location problem of points on a segment. Control. Syst. 2, 77–91 (1969). in Russian
Gimadutdinov, E.K.: On one class of nonlinear programming problems. Control. Syst. 3, 101–113 (1969). in Russian
Gimadi (Gimadutdinov) E.Kh.: The choice of optimal scales in one class of location, unification and standardization problems. Control. Syst. 6, 57–70 (1970). in Russian
Wu, X.: Optimal quantization by matrix searching. J. Algorithms 12(4), 663–673 (1991)
Grønlund, A., Larsen, K.G., Mathiasen, A., Nielsen, J.S., Schneider, S., Song, M.: Fast exact \(k\)-means, \(k\)-medians and Bregman divergence clustering in 1D. CoRR arXiv:1701.07204 (2017)
Kel’manov, A.V., Khamidullin, S.A., Kel’manova, M.A.: Joint finding and evaluation of a repeating fragment in noised number sequence with given number of quasiperiodic repetitions. In: Book of Abstract of the Russian Conference “Discrete Analysis and Operations Research” (DAOR-4), p. 185. Sobolev Institute of Mathematics SB RAN, Novosibirsk (2004)
Gimadi, E.K., Kel’manov, A.V., Kel’manova, M.A., Khamidullin, S.A.: A posteriori detection of a quasi periodic fragment in numerical sequences with given number of recurrences. Sib. J. Ind. Math. 9(1(25)), 55–74 (2006). in Russian
Gimadi, E.K., Kel’manov, A.V., Kel’manova, M.A., Khamidullin, S.A.: A posteriori detecting a quasiperiodic fragment in a numerical sequence. Pattern Recogn. Image Anal. 18(1), 30–42 (2008)
Kel’manov, A.V., Khamidullin, S.A.: Posterior detection of a given number of identical subsequences in a guasi-periodic sequence. Comput. Math. Math. Phys. 41(5), 762–774 (2001)
Kel’manov, A.V., Jeon, B.: A posteriori joint detection and discrimination of pulses in a quasiperiodic pulse train. IEEE Trans. Sig. Process. 52(3), 645–656 (2004)
Carter, J.A., Agol, E., et al.: Kepler-36: a pair of planets with neighboring orbits and dissimilar densities. Science 337(6094), 556–559 (2012)
Kel’manov, A.V., Pyatkin, A.V.: On the complexity of a search for a subset of “similar” vectors. Dokl. Math. 78(1), 574–575 (2008)
Kel’manov, A.V., Pyatkin, A.V.: On a version of the problem of choosing a vector subset. J. Appl. Ind. Math. 3(4), 447–455 (2009)
Kel’manov, A.V., Pyatkin, A.V.: Complexity of certain problems of searching for subsets of vectors and cluster analysis. Comput. Math. Math. Phys. 49(11), 1966–1971 (2009)
Acknowledgments
The study presented in Sects. 3 and 4 was supported by the Russian Foundation for Basic Research, projects 19-01-00308 and 18-31-00398. The study presented in the other sections was supported by the Russian Academy of Science (the Program of basic research), project 0314-2019-0015, and by the Russian Ministry of Science and Education under the 5-100 Excellence Programme.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2020 Springer Nature Switzerland AG
About this paper
Cite this paper
Kel’manov, A., Khandeev, V. (2020). On Polynomial Solvability of One Quadratic Euclidean Clustering Problem on a Line. In: Matsatsinis, N., Marinakis, Y., Pardalos, P. (eds) Learning and Intelligent Optimization. LION 2019. Lecture Notes in Computer Science(), vol 11968. Springer, Cham. https://doi.org/10.1007/978-3-030-38629-0_4
Download citation
DOI: https://doi.org/10.1007/978-3-030-38629-0_4
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-38628-3
Online ISBN: 978-3-030-38629-0
eBook Packages: Mathematics and StatisticsMathematics and Statistics (R0)