Skip to main content

How Not to Create an Isogeny-Based PAKE

  • Conference paper
  • First Online:
Applied Cryptography and Network Security (ACNS 2020)

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 12146))

Included in the following conference series:

Abstract

Isogeny-based key establishment protocols are believed to be resistant to quantum cryptanalysis. Two such protocols—supersingular isogeny Diffie-Hellman (SIDH) and commutative supersingular isogeny Diffie-Hellman (CSIDH)—are of particular interest because of their extremely small public key sizes compared with other post-quantum candidates. Although SIDH and CSIDH allow us to achieve key establishment against passive adversaries and authenticated key establishment (using generic constructions), there has been little progress in the creation of provably-secure isogeny-based password-authenticated key establishment protocols (PAKEs). This is in stark contrast with the classical setting, where the Diffie-Hellman protocol can be tweaked in a number of straightforward ways to construct PAKEs, such as EKE, SPEKE, PAK (and variants), J-PAKE, and Dragonfly. Although SIDH and CSIDH superficially resemble Diffie-Hellman, it is often difficult or impossible to “translate” these Diffie-Hellman-based protocols to the SIDH or CSIDH setting; worse still, even when the construction can be “translated,” the resultant protocol may be insecure, even if the Diffie-Hellman based protocol is secure. In particular, a recent paper of Terada and Yoneyama and ProvSec 2019 purports to instantiate encrypted key exchange (EKE) over SIDH and CSIDH; however, there is a subtle problem which leads to an offline dictionary attack on the protocol, rendering it insecure. In this work we present man-in-the-middle and offline dictionary attacks on isogeny-based PAKEs from the literature, and explain why other classical constructions do not “translate” securely to the isogeny-based setting.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
CHF34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
CHF 24.95
Price includes VAT (Switzerland)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
CHF 75.50
Price excludes VAT (Switzerland)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
CHF 94.50
Price excludes VAT (Switzerland)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Abdalla, M., Benhamouda, F., MacKenzie, P.: Security of the J-PAKE password-authenticated key exchange protocol. In: 2015 IEEE Symposium on Security and Privacy, pp. 571–587, May 2015

    Google Scholar 

  2. Adj, G., Cervantes-Vázquez, D., Chi-Domínguez, J.-J., Menezes, A., Rodríguez-Henríquez, F.: On the cost of computing isogenies between supersingular elliptic curves. In: Cid, C., Jacobson Jr., M.J. (eds.) SAC 2018SAC 2018SAC 2018SAC 2018. LNCS, vol. 11349, pp. 322–343. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-10970-7_15

    Chapter  Google Scholar 

  3. Azarderakhsh, R., Jao, D., Kalach, K., Koziel, B., Leonardi, C.: Key compression for isogeny-based cryptosystems. In: Proceedings of the 3rd ACM International Workshop on ASIA Public-Key Cryptography, pp. 1–10 (2016)

    Google Scholar 

  4. Bellare, M., Pointcheval, D., Rogaway, P.: Authenticated key exchange secure against dictionary attacks. In: Preneel, B. (ed.) EUROCRYPT 2000. LNCS, vol. 1807, pp. 139–155. Springer, Heidelberg (2000). https://doi.org/10.1007/3-540-45539-6_11

    Chapter  Google Scholar 

  5. Bellovin, S.M., Merritt, M.: Augmented encrypted key exchange: a password-based protocol secure against dictionary attacks and password file compromise. In: Proceedings of the 1st ACM Conference on Computer and Communications Security. CCS 1993, pp. 244–250. ACM, New York (1993)

    Google Scholar 

  6. Benhamouda, F., Blazy, O., Ducas, L., Quach, W.: Hash proof systems over lattices revisited. In: Abdalla, M., Dahab, R. (eds.) PKC 2018. LNCS, vol. 10770, pp. 644–674. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-76581-5_22

    Chapter  Google Scholar 

  7. Bottinelli, P., de Quehen, V., Leonardi, C., Mosunov, A., Pawlega, F., Sheth, M.: The dark SIDH of isogenies. Cryptology ePrint Archive, Report 2019/1333 (2019). https://eprint.iacr.org/2019/1333

  8. Boyko, V., MacKenzie, P., Patel, S.: Provably secure password-authenticated key exchange using Diffie-Hellman. In: Preneel, B. (ed.) EUROCRYPT 2000. LNCS, vol. 1807, pp. 156–171. Springer, Heidelberg (2000). https://doi.org/10.1007/3-540-45539-6_12

    Chapter  Google Scholar 

  9. Castryck, W., Decru, T.: CSIDH on the surface. Cryptology ePrint Archive, Report 2019/1404 (2019). https://eprint.iacr.org/2019/1404

  10. Castryck, W., Lange, T., Martindale, C., Panny, L., Renes, J.: CSIDH: an efficient post-quantum commutative group action. Cryptology ePrint Archive, Report 2018/383 (2018)

    Google Scholar 

  11. Castryck, W., Panny, L., Vercauteren, F.: Rational isogenies from irrational endomorphisms. Cryptology ePrint Archive, Report 2019/1202 (2019). https://eprint.iacr.org/2019/1202

  12. Cervantes-Vázquez, D., Chenu, M., Chi-Domínguez, J.-J., De Feo, L., Rodríguez-Henríquez, F., Smith, B.: Stronger and faster side-channel protections for CSIDH. In: Schwabe, P., Thériault, N. (eds.) LATINCRYPT 2019. LNCS, vol. 11774, pp. 173–193. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-30530-7_9

    Chapter  Google Scholar 

  13. Charles, D., Lauter, K., Goren, E.: Cryptographic hash functions from expander graphs. J. Cryptol. 22(1), 93–113 (2009)

    Article  MathSciNet  Google Scholar 

  14. Childs, A.M., Jao, D., Soukharev, V.: Constructing elliptic curve isogenies in quantum subexponential time. J. Math. Cryptol. 8(1), 1–29 (2014)

    Article  MathSciNet  Google Scholar 

  15. Costache, A., Feigon, B., Lauter, K., Massierer, M., Puskás, A.: Ramanujan graphs in cryptography. ArXiv e-prints, June 2018. https://arxiv.org/abs/1806.05709

  16. Costello, C., Hisil, H.: A simple and compact algorithm for SIDH with arbitrary degree isogenies. In: Takagi, T., Peyrin, T. (eds.) ASIACRYPT 2017. LNCS, vol. 10625, pp. 303–329. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-70697-9_11

    Chapter  Google Scholar 

  17. Costello, C., Jao, D., Longa, P., Naehrig, M., Renes, J., Urbanik, D.: Efficient compression of SIDH public keys. In: Coron, J.-S., Nielsen, J.B. (eds.) EUROCRYPT 2017. LNCS, vol. 10210, pp. 679–706. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-56620-7_24

    Chapter  Google Scholar 

  18. Costello, C., Longa, P., Naehrig, M.: Efficient algorithms for supersingular isogeny Diffie-Hellman. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016. LNCS, vol. 9814, pp. 572–601. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53018-4_21

    Chapter  Google Scholar 

  19. Couveignes, J.-M.: Hard homogeneous spaces. Cryptology ePrint Archive, Report 2006/291 (2006)

    Google Scholar 

  20. De Feo, L., Jao, D., Plût, J.: Towards quantum-resistant cryptosystems from supersingular elliptic curve isogenies. J. Math. Cryptol. 8(3), 209–247 (2014)

    MathSciNet  MATH  Google Scholar 

  21. Ding, J., Alsayigh, S., Lancrenon, J., RV, S., Snook, M.: Provably secure password authenticated key exchange based on RLWE for the post-quantum world. In: Handschuh, H. (ed.) CT-RSA 2017. LNCS, vol. 10159, pp. 183–204. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-52153-4_11

    Chapter  Google Scholar 

  22. Dobson, S., Galbraith, S.D., LeGrow, J., Ti, Y.B., Zobernig, L.: An adaptive attack on 2-SIDH. Cryptology ePrint Archive, Report 2019/890 (2019). https://eprint.iacr.org/2019/890

  23. Faz-Hernaández, A., López, J., Ochoa-Jiménez, E., Rodríquez-Henríquez, F.: A faster software implementation of the supersingular isogeny Diffie-Hellman key exchange protocol. IEEE Trans. Comput. 67(11), 1622–1636 (2018)

    Article  MathSciNet  Google Scholar 

  24. Galbraith, S.D., Petit, C., Shani, B., Ti, Y.B.: On the security of supersingular isogeny cryptosystems. In: Cheon, J.H., Takagi, T. (eds.) ASIACRYPT 2016. LNCS, vol. 10031, pp. 63–91. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53887-6_3

    Chapter  Google Scholar 

  25. Galbraith, S.D., Petit, C., Silva, J.: Identification protocols and signature schemes based on supersingular isogeny problems. In: Takagi, T., Peyrin, T. (eds.) ASIACRYPT 2017. LNCS, vol. 10624, pp. 3–33. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-70694-8_1

    Chapter  Google Scholar 

  26. Hao, F., Ryan, P.: J-PAKE: authenticated key exchange without PKI. In: Gavrilova, M.L., Tan, C.J.K., Moreno, E.D. (eds.) Transactions on Computational Science XI. LNCS, vol. 6480, pp. 192–206. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-17697-5_10

    Chapter  Google Scholar 

  27. Harkins, D.: Simultaneous authentication of equals: a secure, password-based key exchange for mesh networks. In: 2008 Second International Conference on Sensor Technologies and Applications (sensorcomm 2008), pp. 839–844 (2008)

    Google Scholar 

  28. Hutchinson, A., Karabina, K.: Constructing canonical strategies for parallel implementation of isogeny based cryptography. In: Chakraborty, D., Iwata, T. (eds.) INDOCRYPT 2018. LNCS, vol. 11356, pp. 169–189. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-05378-9_10

    Chapter  Google Scholar 

  29. Hutchinson, A., LeGrow, J., Koziel, B., Azarderakhsh, R.: Further optimizations of CSIDH: a systematic approach to efficient strategies, permutations, and bound vectors. Cryptology ePrint Archive, Report 2019/1121 (2019). https://eprint.iacr.org/2019/1121

  30. Jablon, D.P.: Strong password-only authenticated key exchange. SIGCOMM Comput. Commun. Rev. 26(5), 5–26 (1996)

    Article  Google Scholar 

  31. Jao, D., et al.: Supersingular Isogeny Key Encapsulation. Submission to the NIST Post-Quantum Standardization Project (2017)

    Google Scholar 

  32. Jao, D., De Feo, L.: Towards quantum-resistant cryptosystems from supersingular elliptic curve isogenies. In: Yang, B.-Y. (ed.) PQCrypto 2011. LNCS, vol. 7071, pp. 19–34. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-25405-5_2

    Chapter  MATH  Google Scholar 

  33. Katz, J., Vaikuntanathan, V.: Smooth projective hashing and password-based authenticated key exchange from lattices. In: Matsui, M. (ed.) ASIACRYPT 2009. LNCS, vol. 5912, pp. 636–652. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-10366-7_37

    Chapter  Google Scholar 

  34. Koziel, B., Azarderakhsh, R., Mozaffari-Kermani, M.: Fast hardware architectures for supersingular isogeny Diffie-Hellman key exchange on FPGA. In: Dunkelman, O., Sanadhya, S.K. (eds.) INDOCRYPT 2016. LNCS, vol. 10095, pp. 191–206. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-49890-4_11

    Chapter  Google Scholar 

  35. Koziel, B., Azarderakhsh, R., Mozaffari-Kermani, M.: A high-performance and scalable hardware architecture for isogeny-based cryptography. IEEE Trans. Comput. 67(11), 1594–1609 (2018)

    Article  MathSciNet  Google Scholar 

  36. Koziel, B., Azarderakhsh, R., Mozaffari-Kermani, M., Jao, D.: Post-quantum cryptography on FPGA based on isogenies on elliptic curves. IEEE Trans. Circuits Syst. I: Regul. Pap. 64(1), 86–99 (2017)

    Article  Google Scholar 

  37. Koziel, B., Jalali, A., Azarderakhsh, R., Jao, D., Mozaffari-Kermani, M.: NEON-SIDH: efficient implementation of supersingular isogeny Diffie-Hellman key exchange protocol on ARM. In: Foresti, S., Persiano, G. (eds.) CANS 2016. LNCS, vol. 10052, pp. 88–103. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-48965-0_6

    Chapter  Google Scholar 

  38. Li, Z., Wang, D.: Two-round PAKE protocol over lattices without NIZK. In: Guo, F., Huang, X., Yung, M. (eds.) Inscrypt 2018. LNCS, vol. 11449, pp. 138–159. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-14234-6_8

    Chapter  Google Scholar 

  39. Love, J., Boneh, D.: Supersingular curves with small non-integer endomorphisms (2019). https://arxiv.org/abs/1910.03180

  40. MacKenzie, P.: On the security of the SPEKE password-authenticated key exchange protocol. Cryptology ePrint Archive, Report 2001/057 (2001). https://eprint.iacr.org/2001/057

  41. Meyer, M., Campos, F., Reith, S.: On lions and elligators: an efficient constant-time implementation of CSIDH. In: Ding, J., Steinwandt, R. (eds.) PQCrypto 2019. LNCS, vol. 11505, pp. 307–325. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-25510-7_17

    Chapter  Google Scholar 

  42. Meyer, M., Reith, S.: A faster way to the CSIDH. In: Chakraborty, D., Iwata, T. (eds.) INDOCRYPT 2018. LNCS, vol. 11356, pp. 137–152. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-05378-9_8

    Chapter  Google Scholar 

  43. Onuki, H., Aikawa, Y., Yamazaki, T., Takagi, T.: (Short Paper) A faster constant-time algorithm of CSIDH keeping two points. In: Attrapadung, N., Yagi, T. (eds.) IWSEC 2019. LNCS, vol. 11689, pp. 23–33. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-26834-3_2

    Chapter  Google Scholar 

  44. Petit, C.: Faster algorithms for isogeny problems using torsion point images. In: Takagi, T., Peyrin, T. (eds.) ASIACRYPT 2017. LNCS, vol. 10625, pp. 330–353. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-70697-9_12

    Chapter  Google Scholar 

  45. Rostovtsev, A., Stolbunov, A.: Public-key cryptosystem based on isogenies. Cryptology ePrint Archive, Report 2006/145 (2006)

    Google Scholar 

  46. Shor, P.W.: Algorithms for quantum computation: discrete logarithms and factoring. In: 35th Annual Symposium on Foundations of Computer Science (FOCS 1994), pp. 124–134 (1994)

    Google Scholar 

  47. Silverman, J.H.: The Arithmetic of Elliptic Curves. GTM, vol. 106. Springer, New York (1992)

    Google Scholar 

  48. Taraskin, O., Soukharev, V., Jao, D., LeGrow, J.: An isogeny-based password-authenticated key establishment protocol. Cryptology ePrint Archive, Report 2018/886 (2018). https://eprint.iacr.org/2018/886

  49. Terada, S., Yoneyama, K.: Password-based authenticated key exchange from standard isogeny assumptions. In: Steinfeld, R., Yuen, T.H. (eds.) ProvSec 2019. LNCS, vol. 11821, pp. 41–56. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-31919-9_3

    Chapter  Google Scholar 

  50. Yoo, Y., Azarderakhsh, R., Jalali, A., Jao, D., Soukharev, V.: A post-quantum digital signature scheme based on supersingular isogenies. In: Kiayias, A. (ed.) FC 2017. LNCS, vol. 10322, pp. 163–181. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-70972-7_9

    Chapter  Google Scholar 

  51. Zhang, J., Yu, Yu.: Two-round PAKE from approximate SPH and instantiations from lattices. In: Takagi, T., Peyrin, T. (eds.) ASIACRYPT 2017. LNCS, vol. 10626, pp. 37–67. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-70700-6_2

    Chapter  Google Scholar 

Download references

Acknowledgement

The authors would like to thank the reviewers for their helpful comments. This work is supported in parts by NSF CNS-1801341, NSF GRFP-1939266, NIST-60NANB17D184, and Florida Center for Cybersecurity (FC2). Also, parts of this research was undertaken by funding from the Canada First Research Excellence Fund, CryptoWorks21, NSERC, Public Works and Government Services Canada, and the Royal Bank of Canada.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Reza Azarderakhsh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Azarderakhsh, R., Jao, D., Koziel, B., LeGrow, J.T., Soukharev, V., Taraskin, O. (2020). How Not to Create an Isogeny-Based PAKE. In: Conti, M., Zhou, J., Casalicchio, E., Spognardi, A. (eds) Applied Cryptography and Network Security. ACNS 2020. Lecture Notes in Computer Science(), vol 12146. Springer, Cham. https://doi.org/10.1007/978-3-030-57808-4_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-57808-4_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-57807-7

  • Online ISBN: 978-3-030-57808-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics

  NODES
INTERN 3
Note 2
Project 2