Abstract
Wireless Mesh networks (WMN) are widely used in scenarios such as emergency communications, military self-organizing networks, and urban network access based on the capabilities of self-organization, self-configuration, and mesh multi-hop. Nowadays, various areas have increasingly requirements of mobility support, low latency, and quick response for WMN. However, the performance of traditional WMN is affected by frequent interruption and switch when the WMN nodes are moving. Re-establishing the connection will lead to additional time costs, which greatly increases network delay and instability. In addition, the receiving end sends retransmission requests because of packet loss and receive responses via long-distance multi-hop transmission, which leads to obvious relays and uncertainty. As a result, the utilization rate of network resources is dramatically reduced, and this kind of network is unable to cover the needs of dynamic or long-distance scene such as battlefields and emergency communications. Therefore, we innovatively propose a mechanism named Advanced Cache Retransmission Mechanism (ACRM) in this paper. ACRM includes the Cache Retransmission Mechanism (CRM) and the Trend-Jacobson (TJ) algorithm. Besides, the unique message format, interaction logic and relay node caching are used to enhance the WMN system based on UDP protocol transmission. The simulation shows that ACRM can improve the transmission efficiency and stability of WMN networks in dynamic or long-distance multi-hop Scenes.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Akyildiza, I.F., Wang, X.D., Wang, W.L.: Wireless mesh networks: a survey. Comput. Netw. 47(4), 445–487 (2005)
IEEE Computer Society: Wireless LAN medium access control (MAC) and physical layer (PHY) specifications. ANSI/IEEE Std 802.11, June 2003
Camp, J.D., Knightly, E.W., Reed, W.S.: Developing and deploying multihop wireless networks for low-income communities. J. Urban Technol. 13(129), 1063–1732 (2006)
Hara, T.: Effective replica allocation in ad hoc networks for improving data accessibility. In: Proceedings of INFOCOM 2001 (2001)
Perkins, C., Bhagwat, P.: Highly dynamic DSDV routing for mobile computers. In: Proceedings of SIGCOMM 1994 (1994)
Sampaio, S., Souto, P., Vasques, F.: A review of scalability and topological stability issues in IEEE 802.11s wireless mesh networks deployments. Int. J. Commun. Syst. 29(4), 671–693 (2016)
Nuggehalli, P., Srinivasan, V., Chiasserini, C.: Energy-efficient caching strategies in ad hoc wireless networks. IEEE/ACM Trans. Networking 14(5), 25–34 (2006)
Sailhan, F., Issarny, V.: Cooperative caching in ad hoc networks. In: Chen, M.-S., Chrysanthis, P.K., Sloman, M., Zaslavsky, A. (eds.) MDM 2003. LNCS, vol. 2574, pp. 13–28. Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-36389-0_2
Alasaad, A., Gopalakrishnan, S., Leung, V.C.: Peer-to-peer file sharing over wireless mesh networks. In: Proceeding of the IEEE PacRim 2009, Victoria, Canada, pp. 697–702 (2009)
BT selects Motorolla to deploy wireless cities across the UKs. Government technology news report. http://www.govtech.com/gt/articles/102602
Tang, B., Gupta, H., Das, S.: Benefit-based data caching in ad hoc networks. IEEE Trans. Mob. Comput. 7(3), 289–304 (2008)
Breslau, L., Cao, P., Fan, L., Phillips, G., Shenker, S.: Web caching and zipf-like distributions: evidence and implications. In: Proceedings of INFOCOM 1999 (1999)
Yin, L., Cao, G.: Supporting cooperative caching in ad hoc networks. IEEE Trans. Mob. Comput. 5(1), 77–89 (2006)
Wu, W., Cao, J., Fan, X.: Overhearing-aided data caching in wireless ad hoc networks. In: 6th IEEE ICDCS International Workshop on Wireless Ad Hoc and Sensor Networks (WWASN 2009), Montreal, Canada, 22–26 June 2009
Zhao, J., Zhang, P., Cao, G., Das, C.R.: Cooperative caching in wireless p2p networks: design, implementation, and evaluation. IEEE Trans. Parallel Distrib. Syst. 21(7), 229–241 (2010)
Acknowledgment
This Work was supported by Youth Innovation Promotion Association of Chinese Academy of Sciences (2020175).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2021 Springer Nature Switzerland AG
About this paper
Cite this paper
Liu, B. et al. (2021). An Advanced Cache Retransmission Mechanism for Wireless Mesh Network. In: Liu, Z., Wu, F., Das, S.K. (eds) Wireless Algorithms, Systems, and Applications. WASA 2021. Lecture Notes in Computer Science(), vol 12939. Springer, Cham. https://doi.org/10.1007/978-3-030-86137-7_30
Download citation
DOI: https://doi.org/10.1007/978-3-030-86137-7_30
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-86136-0
Online ISBN: 978-3-030-86137-7
eBook Packages: Computer ScienceComputer Science (R0)