Abstract
Background: Cancer-related research, as indicated by the number of entries in Medline, the National Library of Medicine of the USA, has dominated the medical literature. An important component of this research is based on the use of computational techniques to analyse the data produced by the many acquisition modalities. This paper presents a review of the computational image analysis techniques that have been applied to cancer. The review was performed through automated mining of Medline/PubMed entries with a combination of keywords. In addition, the programming languages and software platforms through which these techniques are applied were also reviewed.
Methods: Automatic mining of Medline/PubMed was performed with a series of specific keywords that identified different computational techniques. These keywords focused on traditional image processing and computer vision techniques, machine learning techniques, deep learning techniques, programming languages and software platforms.
Results: The entries related to traditional image processing and computer vision techniques have decreased at the same time that machine learning and deep learning have increased significantly. Within deep learning, the keyword that returned the highest number of entries was convolutional neural network. Within the programming languages and software environments, Fiji and ImageJ were the most popular, followed by Matlab, R, and Python. Within the more specialised softwares, QuPath has had a sharp growth overtaking other platforms like ICY and CellProfiler.
Conclusions: The techniques of artificial intelligence techniques and deep learning have grown to overtake most other image analysis techniques and the trend at which they grow is still rising. The most used technique has been convolutional neural networks, commonly used to analyse and classify images. All the code related to this work is available through GitHub: https://github.com/youssefarafat/Scoping-Review.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Abd-Ellah, M.K., Awad, A.I., Khalaf, A.A.M., Hamed, H.F.A.: A review on brain tumor diagnosis from MRI images: practical implications, key achievements, and lessons learned. Magn. Reson. Imaging 61, 300–318 (2019). https://doi.org/10.1016/j.mri.2019.05.028
Bankhead, P., et al.: QuPath: open source software for digital pathology image analysis. Sci. Rep. 7(1), 16878 (2017). https://doi.org/10.1038/s41598-017-17204-5
de Chaumont, F., et al.: Icy: an open bioimage informatics platform for extended reproducible research. Nat. Methods 9(7), 690–696 (2012). https://doi.org/10.1038/nmeth.2075
Fourier, J.: Mémoire sur la propagation de la chaleur dans les corps solides. Nouveau Bulletin des sciences par la Société philomatique de Paris I, 112–116 (1808)
Jamali, N., Dobson, E.T.A., Eliceiri, K.W., Carpenter, A.E., Cimini, B.A.: 2020 bioimage analysis survey: community experiences and needs for the future. Biol. Imaging 1 (2022). https://doi.org/10.1017/S2633903X21000039. https://www.cambridge.org/core/journals/biological-imaging/article/2020-bioimage-analysis-survey-community-experiences-and-needs-for-the-future/9E824DC0C27568FE5B9D12FB59B1BB90
Kather, J.N., et al.: Large-scale database mining reveals hidden trends and future directions for cancer immunotherapy. Oncoimmunology 7(7), e1444412 (2018). https://doi.org/10.1080/2162402X.2018.1444412
Kather, J.N., et al.: Predicting survival from colorectal cancer histology slides using deep learning: a retrospective multicenter study. PLoS Med. 16(1), e1002730 (2019)
Ko, S.Y., et al.: Deep convolutional neural network for the diagnosis of thyroid nodules on ultrasound. Head Neck 41(4), 885–891 (2019). https://doi.org/10.1002/hed.25415. https://onlinelibrary.wiley.com/doi/abs/10.1002/hed.25415
Lamprecht, M.R., Sabatini, D.M., Carpenter, A.E.: CellProfiler: free, versatile software for automated biological image analysis. Biotechniques 42(1), 71–75 (2007). https://doi.org/10.2144/000112257
Lee, C.W., Ren, Y.J., Marella, M., Wang, M., Hartke, J., Couto, S.S.: Multiplex immunofluorescence staining and image analysis assay for diffuse large B cell lymphoma. J. Immunol. Methods 478, 112714 (2020). https://doi.org/10.1016/j.jim.2019.112714
Liberati, A., et al.: The prisma statement for reporting systematic reviews and meta-analyses of studies that evaluate healthcare interventions: explanation and elaboration. BMJ 339, b2700 (2009). https://doi.org/10.1136/bmj.b2700
Mahmood, F., et al.: Deep adversarial training for multi-organ nuclei segmentation in histopathology images. IEEE Trans. Med. Imaging 39(11), 3257–3267 (2020). https://doi.org/10.1109/TMI.2019.2927182. conference Name: IEEE Transactions on Medical Imaging
Mandelbrot, B.B.: The Fractal Geometry of Nature. Freeman, San Francisco (1983)
Moher, D., et al.: Preferred reporting items for systematic review and meta-analysis protocols (PRISMA-P) 2015 statement. Syst. Control Found. Appl. 4(1), 1 (2015). https://doi.org/10.1186/2046-4053-4-1
Oczeretko, E., Juczewska, M., Kasacka, I.: Fractal geometric analysis of lung cancer angiogenic patterns. Folia Histochem. Cytobiol. 39(Suppl 2), 75–76 (2001)
Partin, A.W., Schoeniger, J.S., Mohler, J.L., Coffey, D.S.: Fourier analysis of cell motility: correlation of motility with metastatic potential. Proc. Natl. Acad. Sci. 86(4), 1254–1258 (1989). https://doi.org/10.1073/pnas.86.4.1254
Peters, M.D.J., Godfrey, C.M., Khalil, H., McInerney, P., Parker, D., Soares, C.B.: Guidance for conducting systematic scoping reviews. JBI Evidence Implement. 13(3), 141–146 (2015). https://doi.org/10.1097/XEB.0000000000000050
Reyes-Aldasoro, C.C., Williams, L.J., Akerman, S., Kanthou, C., Tozer, G.M.: An automatic algorithm for the segmentation and morphological analysis of microvessels in immunostained histological tumour sections. J. Microsc. 242(3), 262–278 (2011). https://doi.org/10.1111/j.1365-2818.2010.03464.x
Reyes-Aldasoro, C.C.: The proportion of cancer-related entries in PubMed has increased considerably; is cancer truly “The Emperor of All Maladies”? PLoS One 12(3), e0173671 (2017). https://doi.org/10.1371/journal.pone.0173671
Schindelin, J., et al.: Fiji: an open-source platform for biological-image analysis. Nat. Methods 9(7), 676–682 (2012). https://doi.org/10.1038/nmeth.2019. https://www.nature.com/articles/nmeth.2019, number: 7 Publisher: Nature Publishing Group
Schneider, C.A., Rasband, W.S., Eliceiri, K.W.: NIH image to ImageJ: 25 years of image analysis. Nat. Methods 9(7), 671–675 (2012). https://doi.org/10.1038/nmeth.2089
Serra, J.: Introduction to mathematical morphology. Comput. Vis. Graph. Image Process. 35(3), 283–305 (1986). https://doi.org/10.1016/0734-189X(86)90002-2
Tang, J.H., Yan, F.H., Zhou, M.L., Xu, P.J., Zhou, J., Fan, J.: Evaluation of computer-assisted quantitative volumetric analysis for pre-operative resectability assessment of huge hepatocellular carcinoma. Asian Pac. J. Cancer Prev. APJCP 14(5), 3045–3050 (2013). https://doi.org/10.7314/apjcp.2013.14.5.3045
Theodosiou, T., Vizirianakis, I.S., Angelis, L., Tsaftaris, A., Darzentas, N.: MeSHy: mining unanticipated PubMed information using frequencies of occurrences and concurrences of MeSH terms. J. Biomed. Inform. 44(6), 919–926 (2011). https://doi.org/10.1016/j.jbi.2011.05.009
Tomita, N., Abdollahi, B., Wei, J., Ren, B., Suriawinata, A., Hassanpour, S.: Attention-based deep neural networks for detection of cancerous and precancerous esophagus tissue on histopathological slides. JAMA Netw. Open 2(11), e1914645 (2019). https://doi.org/10.1001/jamanetworkopen.2019.14645
Tricco, A.C., et al.: A scoping review of rapid review methods. BMC Med. 13(1), 224 (2015). https://doi.org/10.1186/s12916-015-0465-6
Xie, Y., Zhang, J., Xia, Y.: Semi-supervised adversarial model for benign-malignant lung nodule classification on chest CT. Med. Image Anal. 57, 237–248 (2019)
Yung, A., Kay, J., Beale, P., Gibson, K.A., Shaw, T.: Computer-based decision tools for shared therapeutic decision-making in oncology: systematic review. JMIR Cancer 7(4), e31616 (2021). https://doi.org/10.2196/31616
Acknowlegements
We acknowledge Dr Robert Noble for the useful discussions regarding this work.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Ethics declarations
The authors declare no conflicts of interest.
Rights and permissions
Copyright information
© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Arafat, Y., Reyes-Aldasoro, C.C. (2022). Computational Image Analysis Techniques, Programming Languages and Software Platforms Used in Cancer Research: A Scoping Review. In: Yang, G., Aviles-Rivero, A., Roberts, M., Schönlieb, CB. (eds) Medical Image Understanding and Analysis. MIUA 2022. Lecture Notes in Computer Science, vol 13413. Springer, Cham. https://doi.org/10.1007/978-3-031-12053-4_61
Download citation
DOI: https://doi.org/10.1007/978-3-031-12053-4_61
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-12052-7
Online ISBN: 978-3-031-12053-4
eBook Packages: Computer ScienceComputer Science (R0)