Skip to main content

AD-AUG: Adversarial Data Augmentation for Counterfactual Recommendation

  • Conference paper
  • First Online:
Machine Learning and Knowledge Discovery in Databases (ECML PKDD 2022)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 13713))

  • 1377 Accesses

Abstract

Collaborative filtering (CF) has become one of the most popular and widely used methods in recommender systems, but its performance degrades sharply in practice due to the sparsity and bias of the real-world user feedback data. In this paper, we propose a novel counterfactual data augmentation framework AD-AUG to mitigate the impact of the imperfect training data and empower CF models. The key idea of AD-AUG is to answer the counterfactual question: “what would be a user’s feedback if his previous purchase history had been different?”. Our framework is composed of an augmenter model and a recommender model. The augmenter model aims to generate counterfactual user feedback based on the observed ones, while the recommender leverages the original and counterfactual user feedback data to provide the final recommendation. In particular, we design two adversarial learning-based methods from both “bottom-up” data-oriented and “top-down” model-oriented perspectives for counterfactual learning. Extensive experiments on three real-world datasets show that the AD-AUG can greatly enhance a wide range of CF models, demonstrating our framework’s effectiveness and generality.

Y. Wang and Y. Qin–Both authors contributed equally to this work.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
CHF34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
CHF 24.95
Price includes VAT (Switzerland)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
CHF 85.00
Price excludes VAT (Switzerland)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
CHF 106.50
Price excludes VAT (Switzerland)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    MovieLens: https://grouplens.org/datasets/movielens/.

  2. 2.

    Amazon: http://jmcauley.ucsd.edu/data/amazon/.

  3. 3.

    The implementations are available at https://github.com/Fang6ang/AD-AUG.

References

  1. Abbasnejad, E., Teney, D., Parvaneh, A., Shi, J., van den Hengel, A.: Counterfactual vision and language learning. In: CVPR, pp. 10044–10054 (2020)

    Google Scholar 

  2. Ashual, O., Wolf, L.: Specifying object attributes and relations in interactive scene generation. In: ICCV, pp. 4561–4569 (2019)

    Google Scholar 

  3. Chen, L., Zhang, H., Xiao, J., He, X., Pu, S., Chang, S.F.: Counterfactual critic multi-agent training for scene graph generation. In: ICCV, pp. 4613–4623 (2019)

    Google Scholar 

  4. Chen, T., Kornblith, S., Norouzi, M., Hinton, G.: A simple framework for contrastive learning of visual representations. In: ICML, pp. 1597–1607 (2020)

    Google Scholar 

  5. Creswell, A., White, T., Dumoulin, V., Arulkumaran, K., Sengupta, B., Bharath, A.A.: Generative adversarial networks: an overview. IEEE Sig. Process. Mag. 35(1), 53–65 (2018)

    Article  Google Scholar 

  6. Fu, T.-J., Wang, X.E., Peterson, M.F., Grafton, S.T., Eckstein, M.P., Wang, W.Y.: Counterfactual vision-and-language navigation via adversarial path sampler. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12351, pp. 71–86. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58539-6_5

    Chapter  Google Scholar 

  7. Goyal, Y., Wu, Z., Ernst, J., Batra, D., Parikh, D., Lee, S.: Counterfactual visual explanations. In: ICML,pp. 2376–2384. PMLR (2019)

    Google Scholar 

  8. He, R., McAuley, J.: Ups and downs: modeling the visual evolution of fashion trends with one-class collaborative filtering. In: WWW, pp. 507–517 (2016)

    Google Scholar 

  9. He, X., He, Z., Du, X., Chua, T.S.: Adversarial personalized ranking for recommendation. In: SIGIR, pp. 355–364 (2018)

    Google Scholar 

  10. Higgins, I., et al.: Beta-VAE: learning basic visual concepts with a constrained variational framework. In: ICLR (2017)

    Google Scholar 

  11. Hu, Y., Koren, Y., Volinsky, C.: Collaborative filtering for implicit feedback datasets. In: ICDM, pp. 263–272 (2008)

    Google Scholar 

  12. Isola, P., Zhu, J.Y., Zhou, T., Efros, A.A.: Image-to-image translation with conditional adversarial networks. In: CVPR, pp. 1125–1134 (2017)

    Google Scholar 

  13. Jang, E., Gu, S., Poole, B.: Categorical reparameterization with gumbel-softmax. In: ICLR (2017)

    Google Scholar 

  14. Kingma, D.P., Welling, M.: Auto-encoding variational Bayes. In: ICLR (2014)

    Google Scholar 

  15. Koren, Y., Bell, R.M., Volinsky, C.: Matrix factorization techniques for recommender systems. IEEE Comput. 42(8), 30–37 (2009)

    Article  Google Scholar 

  16. Liang, D., Krishnan, R.G., Hoffman, M.D., Jebara, T.: Variational autoencoders for collaborative filtering. In: WWW, pp. 689–698 (2018)

    Google Scholar 

  17. Lin, K., Li, D., He, X., Zhang, Z., Sun, M.T.: Adversarial ranking for language generation. In: NeuIPS, pp. 3155–3165 (2017)

    Google Scholar 

  18. Ma, J., Zhou, C., Cui, P., Yang, H., Zhu, W.: Learning disentangled representations for recommendation. In: NeuIPS, pp. 5712–5723 (2019)

    Google Scholar 

  19. Van der Maaten, L., Hinton, G.: Visualizing data using t-SNE. J. Mach. Learn. Res. 9(11) (2008)

    Google Scholar 

  20. Ning, X., Karypis, G.: Slim: sparse linear methods for top-n recommender systems. In: ICDM, pp. 497–506 (2011)

    Google Scholar 

  21. Poole, B., Ozair, S., Van Den Oord, A., Alemi, A., Tucker, G.: On variational bounds of mutual information. In: ICML, pp. 5171–5180 (2019)

    Google Scholar 

  22. Rezende, D.J., Mohamed, S., Wierstra, D.: Stochastic backpropagation and approximate inference in deep generative models. In: ICML, pp. 1278–1286. PMLR (2014)

    Google Scholar 

  23. Sedhain, S., Menon, A.K., Sanner, S., Xie, L.: Autorec: autoencoders meet collaborative filtering. In: WWW, pp. 111–112 (2015)

    Google Scholar 

  24. Shenbin, I., Alekseev, A., Tutubalina, E., Malykh, V., Nikolenko, S.I.: RecVAE: a new variational autoencoder for top-n recommendations with implicit feedback. In: WSDM, pp. 528–536 (2020)

    Google Scholar 

  25. Suresh, S., Li, P., Hao, C., Neville, J.: Adversarial graph augmentation to improve graph contrastive learning, pp. 15920–15933 (2021)

    Google Scholar 

  26. Tian, Y., Sun, C., Poole, B., Krishnan, D., Schmid, C., Isola, P.: What makes for good views for contrastive learning? In: NeurIPS, pp. 6827–6839 (2020)

    Google Scholar 

  27. Vincent, P., Larochelle, H., Bengio, Y., Manzagol, P.A.: Extracting and composing robust features with denoising autoencoders. In: ICML, pp. 1096–1103 (2008)

    Google Scholar 

  28. Wang, Z., et al.: Counterfactual data-augmented sequential recommendation. In: SIGIR, pp. 347–356 (2021)

    Google Scholar 

  29. Wu, Y., DuBois, C., Zheng, A.X., Ester, M.: Collaborative denoising auto-encoders for top-n recommender systems. In: WSDM, pp. 153–162 (2016)

    Google Scholar 

  30. Xu, D., Cheng, W., Luo, D., Chen, H., Zhang, X.: Infogcl: Information-aware graph contrastive learning. In: NeurIPS, pp. 30414–30425 (2021)

    Google Scholar 

  31. Xu, T., et al.: AttnGAN: fine-grained text to image generation with attentional generative adversarial networks. In: CVPR, pp. 1316–1324 (2018)

    Google Scholar 

  32. Yang, M., Dai, Q., Dong, Z., Chen, X., He, X., Wang, J.: Top-n recommendation with counterfactual user preference simulation. In: CIKM, pp. 2342–2351 (2021)

    Google Scholar 

  33. Zmigrod, R., Mielke, S.J., Wallach, H., Cotterell, R.: Counterfactual data augmentation for mitigating gender stereotypes in languages with rich morphology. arXiv preprint arXiv:1906.04571 (2019)

Download references

Acknowledgments

This research is partially supported by National Key Research and Development Program of China with Grant No. 2018AAA0101902, the National Natural Science Foundation of China (NSFC Grant 62106008 & 62006004).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hongxia Yang or Ming Zhang .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (zip 60 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wang, Y. et al. (2023). AD-AUG: Adversarial Data Augmentation for Counterfactual Recommendation. In: Amini, MR., Canu, S., Fischer, A., Guns, T., Kralj Novak, P., Tsoumakas, G. (eds) Machine Learning and Knowledge Discovery in Databases. ECML PKDD 2022. Lecture Notes in Computer Science(), vol 13713. Springer, Cham. https://doi.org/10.1007/978-3-031-26387-3_29

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-26387-3_29

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-26386-6

  • Online ISBN: 978-3-031-26387-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics

  NODES
COMMUNITY 1
Idea 1
idea 1
Note 3