Abstract
Providing an efficient public transportation system is a key issue to increase the livability and sustainability of modern cities. This article addresses the bus timetabling problem for enhancing multi-leg trips or transfers. For this purpose, a mixed-integer programming model is proposed, aimed at maximizing the amount of transfers while considering budgetary and quality of service constraints. The proposed model is evaluated on real scenarios from the case study of the public transportation system in Montevideo, Uruguay. Results indicate that the solutions of the proposed model outperforms the current timetable used in the city in terms of number of transfers, cost, and number of required buses.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Avenali, A., Boitani, A., Catalano, G., D’Alfonso, T., Matteucci, G.: Assessing standard costs in local public bus transport: a hybrid cost model. Transp. Policy 62, 48–57 (2018)
Ceder, A., Tal, O.: Timetable synchronization for buses. In: Wilson, N.H.M. (ed.) Computer-Aided Transit Scheduling. Lecture Notes in Economics and Mathematical Systems, vol. 471, pp. 245–258. Springer, Heidelberg (1999). https://doi.org/10.1007/978-3-642-85970-0_12
Ceder, A., Wilson, N.: Bus network design. Transp. Rese. Part B: Methodol. 20(4), 331–344 (1986)
Cherwony, W., Gleichman, G., Porter, B., Hamilton, B.: Bus route costing procedures: a review. Urban Mass Transportation Administration (1981)
Cherwony, W., Mundle, S.: Peak-base cost allocation models. Transp. Res. Rec. 663(663), 52–56 (1978)
Chu, J., Korsesthakarn, K., Hsu, Y., Wu, H.: Models and a solution algorithm for planning transfer synchronization of bus timetables. Transp. Res. Part E: Logist. Transp. Rev. 131, 247–266 (2019)
Deakin, M., Al Waer, H.: From intelligent to smart cities. Intell. Build. Int. 3(3), 140–152 (2011)
Fouilhoux, P., Ibarra, O., Kedad, S., Rios, Y.: Valid inequalities for the synchronization bus timetabling problem. Eur. J. Oper. Res. 251(2), 442–450 (2016)
Grava, S.: Urban Transportation Systems: Choices for Communities. McGraw-Hill (2002)
Hipogrosso, S., Nesmachnow, S.: Analysis of sustainable public transportation and mobility recommendations for Montevideo and Parque Rodó neighborhood. Smart Cities 3(2), 479–510 (2020)
Ibarra, O., Delgado, F., Giesen, R., Muñoz, J.: Planning, operation, and control of bus transport systems: a literature review. Transp. Res. Part B: Methodol. 77, 38–75 (2015)
Ibarra, O., Rios, Y.: Synchronization of bus timetabling. Transp. Res. Part B: Methodol. 46(5), 599–614 (2012)
Marquez, G.: Informe sobre tarifas y subsidios a usuarios del sistema de transporte público de pasajeros de Montevideo (2019)
Massobrio, R., Nesmachnow, S.: Urban mobility data analysis for public transportation systems: a case study in Montevideo, Uruguay. Appl. Sci. 10(16), 5400 (2020)
Massobrio, R., Nesmachnow, S., Muraña, J., Dorronsoro, B.: Learning to optimize timetables for efficient transfers in public transportation systems. Appl. Soft Comput. 119, 108616 (2022)
Mehran, B., Yang, Y., Mishra, S.: Analytical models for comparing operational costs of regular bus and semi-flexible transit services. Public Transp. 12(1), 147–169 (2020). https://doi.org/10.1007/s12469-019-00222-z
Mishra, S., Mehran, B., Sahu, P.: Assessment of delivery models for semi-flexible transit operation in low-demand conditions. Transp. Policy 99, 275–287 (2020)
Nesmachnow, S., Baña, S., Massobrio, R.: A distributed platform for big data analysis in smart cities: combining intelligent transportation systems and socioeconomic data for Montevideo, Uruguay. EAI Endors. Trans. Smart Cities 2(5), 1–18 (2017)
Nesmachnow, S., Hipogrosso, S.: Transit oriented development analysis of Parque Rodó neighborhood, Montevideo, Uruguay. World Dev. Sustain. 1, 100017 (2022)
Nesmachnow, S., Iturriaga, S.: Cluster-UY: collaborative scientific high performance computing in Uruguay. In: Torres, M., Klapp, J. (eds.) ISUM 2019. CCIS, vol. 1151, pp. 188–202. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-38043-4_16
Nesmachnow, S., Muraña, J., Goñi, G., Massobrio, R., Tchernykh, A.: Evolutionary approach for bus synchronization. In: Crespo-Mariño, J.L., Meneses-Rojas, E. (eds.) CARLA 2019. CCIS, vol. 1087, pp. 320–336. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-41005-6_22
Nesmachnow, S., Risso, C.: Exact and evolutionary algorithms for synchronization of public transportation timetables considering extended transfer zones. Appl. Sci. 11(15), 7138 (2021)
Risso, C., Nesmachnow, S.: Designing a backbone trunk for the public transportation network in Montevideo, Uruguay. In: Nesmachnow, S., Hernández Callejo, L. (eds.) ICSC-CITIES 2019. CCIS, vol. 1152, pp. 228–243. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-38889-8_18
Rossit, D., Nesmachnow, S., Toutouh, J.: Multiobjective design of sustainable public transportation systems. In: CEUR Workshop Proceedings, vol. 2858, pp. 152–159 (2021)
Sinner, M., Weidmann, U., Nash, A.: Application of a cost-allocation model to swiss bus and train lines. Transp. Res. Rec. 2672(8), 431–442 (2018)
Taylor, B., Garrett, M., Iseki, H.: Measuring cost variability in provision of transit service. Transp. Res. Rec. 1735(1), 101–112 (2000)
Tolley, R. (ed.): Sustainable Transport. Elsevier, Amsterdam (2003)
Toutouh, J., Nesmachnow, S., Rossit, D.: Generative adversarial networks to model air pollution under uncertainty. In: CEUR Workshop Proceedings, vol. 2858, pp. 169–174 (2021)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Risso, C., Nesmachnow, S., Rossit, D. (2023). Smart Mobility for Public Transportation Systems: Improved Bus Timetabling for Synchronizing Transfers. In: Nesmachnow, S., Hernández Callejo, L. (eds) Smart Cities. ICSC-CITIES 2022. Communications in Computer and Information Science, vol 1706. Springer, Cham. https://doi.org/10.1007/978-3-031-28454-0_11
Download citation
DOI: https://doi.org/10.1007/978-3-031-28454-0_11
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-28453-3
Online ISBN: 978-3-031-28454-0
eBook Packages: Computer ScienceComputer Science (R0)