Abstract
This is a first step toward the determination of the parameters of two-point codes on a Hermitian curve. We describe the dimension of such codes and determine the minimum distance of some two-point codes.
Similar content being viewed by others
References
J.W.P. Hirschfeld (1988) Projective Geometries over Finite Fields Oxford University Press Oxford
M. Homma S.J. Kim (2001) ArticleTitleGoppa codes with Weierstrass pairs Journal of Pure Applied Algebra 162 273–290 Occurrence Handle10.1016/S0022-4049(00)00134-1
S.J. Kim (1994) ArticleTitleOn the index of the Weierstrass semigroup of a pair of points on a curve Archives Mathematics 62 73–82 Occurrence Handle10.1007/BF01200442
G.L. Matthews (2001) ArticleTitleWeierstrass pairs and minimum distance of Goppa codes Designs, Codes and Cryptography 22 107–121
H. Stichtenoth (1973) ArticleTitleÜber die Automorphismengruppe eines algebraischen Funktionenkörpers von Primzahlcharakteristik – Teil II: Ein spezieller Typ von Funktionenkörpern Archives Mathematics 24 615–631 Occurrence Handle10.1007/BF01228261
H. Stichtenoth (1988) ArticleTitleA note on Hermitian codes IEEE Transactions of Information Theory 34 1345–1348 Occurrence Handle10.1109/18.21267
H. Stichtenoth (1992) Algebraic Function Fields and Codes Springer-Verlag Berlin, Heidelberg
M.A. Tsfasman S.G. Vluăducţ (1991) Algebraic-Geometric Codes Kluwer Academic Publishers Dordrecht
H.J. Tiersma (1987) ArticleTitleRemarks on codes from Hermitian curves IEEE Transactions of Information Theory 33 605–609 Occurrence Handle10.1109/TIT.1987.1057327
Yang K., On the weight hierarchy of Hermitian and other geometric Goppa codes., Ph. Thesis D, University of Southern California, (1992).
K. Yang P.V. Kumar (1992) On the true minimum distance of Hermitian codes, Coding Theory and Algebraic Geometry H. Stichtenoth M.A. Tsfasman (Eds) Lecture Note in Mathematics. Springer-Verlag Berlin Heidelberg 99–107
Author information
Authors and Affiliations
Corresponding author
Additional information
Communicated by: J. D. Key
AMS Classification: 94B27, 14H50, 11T71, 11G20
Masaaki Homma - Partially supported by Grant-in-Aid for Scientific Research (15500017), JSPS.
Seon Jeong Kim - Partially supported by Korea Research Foundation Grant (KRF-2002-041-C00010).
Rights and permissions
About this article
Cite this article
Homma, M., Kim, S.J. Toward the Determination of the Minimum Distance of Two-Point Codes on a Hermitian Curve. Des Codes Crypt 37, 111–132 (2005). https://doi.org/10.1007/s10623-004-3807-5
Received:
Revised:
Accepted:
Issue Date:
DOI: https://doi.org/10.1007/s10623-004-3807-5