Abstract
In this paper, we shall prove that the minimum length n q (5,d) is equal to g q (5,d) +1 for q4−2q2−2q+1≤ d≤ q4 − 2q2 − q and 2q4 − 2q3 − q2 − 2q+1 ≤ d ≤ 2q4−2q3−q2−q, where g q (5,d) means the Griesmer bound \({\sum_{i = 0}^{4}} \lceil {\frac{d}{q^{i}}}\rceil\).
Similar content being viewed by others
References
Cheon E.J., Kato T., Kim S.J., Nonexistence of [n, 5, d] q codes attaining the Griesmer bound for q4−2q2−2q+1 ≤ d ≤ q4−2q2−q Des. Codes Cryptogr., to appear.
E. J. Cheon, T. Kato and S. J. Kim, Nonexistence of a [g q (5,d), 5, d] q codes for 3q4−4q3−2q+1≤ d≤ 3q4−4q3−q, Discrete Math, to appear.
N. Hamada (1993) ArticleTitleA characterization of some [n, k, d ; q] codes meeting the Griesmer bound using a minihyper in a finite projective geometry Discrete Math 116 229–268 Occurrence Handle10.1016/0012-365X(93)90404-H
R. Hill (1992) Optimal linear codes C. Mitchell (Eds) Cryptography and Coding II Oxford University Press Oxford 75–104
J. W. P. Hirschfeld (1998) Projective Geometries over Finite Fields Clarendon Press Oxford
I. N. Landjev, Nonexistence of [143, 5, 94]3 codes, Proceedings of International Workshop on Optimal Codes and Related Topics, Sozopol, Bulgaria (1995) pp. 108–116.
I. N. Landjev T. Maruta (1999) ArticleTitleOn the minimum length of quaternary linear codes of dimension five Discrete Math. 202 145–161 Occurrence Handle10.1016/S0012-365X(98)00354-9
T. Maruta (2001) ArticleTitleOn the nonexistence of q-ary linear codes of dimension five Des., Codes Cryptogr. 22 165–177
T. Maruta (2001) ArticleTitleThe nonexistence of some quaternary linear codes of dimension 5 Discrete Math. 238 99–113 Occurrence Handle10.1016/S0012-365X(00)00413-1
V. Pless W. C. Huffman (1998) Handbook of Coding Theory Elsevier Science B.V Netherlands
Author information
Authors and Affiliations
Corresponding author
Additional information
Communicated by: J.D. Key
Rights and permissions
About this article
Cite this article
Cheon, E.J., Kato, T. & Kim, S.J. On the Minimum Length of some Linear Codes of Dimension 5. Des Codes Crypt 37, 421–434 (2005). https://doi.org/10.1007/s10623-004-4034-9
Received:
Revised:
Accepted:
Issue Date:
DOI: https://doi.org/10.1007/s10623-004-4034-9