Abstract
We introduce a special class of T-matrices, say, T 1, T 2, T 3, and T 4 satisfying
where A′ is the transpose of A, and prove that if there exist base sequences of lengths m + p, m + p, m, m(p odd), and T-matrices of order t of the special kind, there exist T-matrices of order t(2m + p). And we find T -matrices of the special kind of order t for t = 3, 5, 7, 9, 11, 13, 15, which can be used to generate a large family of T-matrices.
Similar content being viewed by others
References
Koukouvinos C.: Base sequences BS(n + 1, n) (2006) (www.math.ntua.gr/people/ckoukouv/baseeq.htm).
Kharaghani H., Tayfeh-Rezaiea B.: A Hadamard matrix of order 428. J. Combin. Designs 13(6), 435–440 (2005)
Seberry J., Yamada M.: Hadamard matrices, sequences, and block designs. In: Stinson, D.R., Dinitz, J.H. (eds) Contemporary Design Theory: A Collection of Surveys, pp. 431–560. John Wiley & Sons, New York (1992)
Turyn R.J.: Hadamard matrices, Baumert-Hall units, four-symbol sequences, pulse compression, and surface wave encodings. J. Combin. Theory Ser. A 16(3), 313–333 (1974)
Xia M., Xia T.: A family of C-partitions and T-matrices. J. Combin. Designs 7(4), 269–281 (1999)
Xia M., Xia T., Seberry J., Zuo G.: A new method for constructing T-matrices. Aust. J. Combin. 32(5), 61–78 (2005)
Yang C.H.: Hadamard matrices and δ-codes of length 3n. Proc. Am. Math. Soc. 85, 480–482 (1982)
Yang C.H.: A composition theorem for δ-codes. Proc. Am. Math. Soc. 89, 375–378 (1983)
Yang C.H.: Lagrange identity for polynomials and δ-codes of lengths 7t and 13t. Proc. Am. Math. Soc. 88, 746–750 (1983)
Koukouvinos C., Kounias S., Seberry J., Yang C.H., Yang J.: On sequences with zero autocorrelation. Des. Codes Cryptogr. 4(3), 327–340 (1994)
Holzmann W.H., Kharaghani H.: Weak amicable T-matrices and Plotkin arrays. J. Combin. Designs 16(1), 44–52 (2008)
Author information
Authors and Affiliations
Corresponding author
Additional information
Communicated by Jonathan Jedwab.
Rights and permissions
About this article
Cite this article
Zuo, G., Xia, M. A special class of T-matrices. Des. Codes Cryptogr. 54, 21–28 (2010). https://doi.org/10.1007/s10623-009-9306-y
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10623-009-9306-y