Abstract
In this paper, we present constructions of abelian Paley type sets by using multiplicative characters of finite fields and Arasu–Dillon–Player difference sets. The constructions produce many new Paley type sets and their configurations that were previous unknown in our classification of Paley type sets in finite fields of small orders.
Similar content being viewed by others
References
Arasu K.T.: Sequences and arrays with desirable correlation properties. http://www.math.uniri.hr/NATO-ASI/abstracts/arasu.pdf.
Arasu K.T.: A reduction theorem for circulant weighing matrices. Australas. J. Comb. 18, 111–114 (1998).
Arasu K.T., Chen Y.Q., Dillon J.F., Liu X., Player K.J.: Abelian difference sets of order n dividing \(\lambda \). Des. Codes Cryptogr. 44, 307–319 (2007).
Arasu K.T., Dillon J.F., Player K.J.: Character sum factorizations yield perfect sequences (in press).
Arasu K.T., Leung K.H., Ma S.L., Nabavi A., Ray-Chaudhuri D.K.: Determination of all possible orders of weight 16 circulant weighing matrices. Finite Fields Appl. 12, 498–538 (2006).
Arasu K.T., Leung K.H., Ma S.L., Nabavi A., Ray-Chaudhuri D.K.: Circulant weighing matrices of weight \(2^{2t}\). Des. Codes Cryptogr. 41, 111–123 (2006).
Arasu K.T., Ma S.L.: Some new results on circulant weighing matrices. J. Algebraic Comb. 14, 91–101 (2001).
Berndt B.C., Evans R.J., Williams K.S.: Gauss and Jacobi Sums, Canadian Mathematical Society Series of Monographs and Advanced Texts. Wiley, New York (1998).
Beth T., Jungnickel D., Lenz H.: Design Theory, vol. 1, 2nd edn. Cambridge University Press, Cambridge (1999).
Carlitz L.: A theorem on permutations in a finite field. Proc. Am. Math. Soc. 11, 456–459 (1960).
Camion P., Mann H.B.: Antisymmetric difference sets. J. Number Theory 4, 266–268 (1972).
Chen Y.Q.: On the existence of abelian Hadamard difference sets and a new family of difference sets. Finite Fields Appl. 3, 234–256 (1997).
Chen Y.Q.: Multiplicative characterization of some difference sets in elementary abelian groups. J. Comb. Inf. Syst. Sci. 34, 95–111 (2009).
Chen Y.Q.: Divisible designs and semi-regular relative difference sets from additive Hadamard cocycles. J. Comb. Theory Ser. A 118, 2185–2206 (2011).
Chen Y.Q., Feng T.: Abelian and non-abelian Paley type group schemes. Des. Codes Cryptogr. 68, 141–154 (2013).
Chen Y.Q., Polhill J.: Paley type group schemes and planar Dembowski–Ostrom polynomials. Discret. Math. 311, 1349–1364 (2011).
Chen Y.Q., Xiang Q., Sehgal S.K.: An exponent bound on skew Hadamard abelian difference sets. Des. Codes Cryptogr. 4, 313–317 (1994).
Coulter R., Kosick P.: Commutative semifields of order 243 and 3125. Finite Fields Theory appl. Contemp. Math. 518, 129–136 (2010).
Davis J.A.: Partial difference sets in p-groups. Arch. Math. 63, 103–110 (1994).
Dillon J.F.: Elementary Hadamard difference sets. Ph.D. thesis, University of Maryland (1974).
Dillon J.F.: Elementary Hadamard difference sets. In: Proceedings of the Sixth Southeastern Conference on Combinatorics, Graph Theory, and Computing (1975), pp. 237–249. Congressus Numerantium, No. XIV, Utilitas Math., Winnipeg, Manitoba (1975).
Dillon J.F.: Multiplicative difference sets via additive characters. Des. Codes Croptogr. 17, 225–235 (1999).
Ding C., Wang Z., Xiang Q.: Skew Hadamard difference sets from the Ree–Tits slice sympletic spreads in PG \((3,3^{2h+1})\). J. Comb. Theory Ser. A 114, 867–887 (2007).
Ding C., Yin J.: A family of skew Hadamard difference sets. J. Comb. Theory Ser. A 113, 1526–1535 (2006).
Feng T.: Non-abelian skew Hadamard difference sets fixed by a prescribed automorphism. J. Comb. Theory Ser. A 118, 27–36 (2011).
Feng T., Momihara K., Xiang Q.: Constructions of strongly regular Cayley graphs and skew Hadamard difference sets from cyclotomic classes, arXiv:1206.3354.
Feng T., Xiang Q.: Cyclotomic constructions of skew Hadamard difference sets. J. Comb. Theory Ser. A 119, 245–256 (2012).
Gordon B., Mills W.H., Welch L.R.: Some new difference sets. Can. J. Math. 14, 614–625 (1962).
Johnson E.C.: Skew-Hadamard abelian group difference sets. J. Algebra 4, 388–402 (1966).
Kantor W.M.: 2-Transitive symmetric designs. Trans. Am. Math. Soc. 146, 1–28 (1969).
Langevin P.: Calcus de certaines sommes de Gauss. J. Number Theory 63, 59–64 (1997).
Leung K.H., Ma S.L., Schmidt B.: Constructions of relative difference sets with classical parameters and circulant weighing matrices. J. Comb. Theory Ser. A 99, 111–127 (2002).
Lubotzky A., Phillips R., Sarnak P.: Ramanujan graphs. Combinatorica 8, 261–277 (1988).
Ma S.L.: Partial difference sets. Discret. Math. 52, 75–89 (1984).
Ma S.L.: Polynomial addition sets and symmetric difference sets. In: Ray-Chandhuri, D. (ed.) Coding Theory and Design Theory Part II: Design Theory, pp. 273–279. Springer, New York (1990).
Ma S.L.: A survey of partial difference sets. Des. Codes Cryptogr. 4, 221–261 (1994).
Ma S.L.: Reversible relative difference sets. Combinatorica 12, 425–432 (1992).
Momihara K.: Skew Hadamard difference sets from cyclotomic strongly regular graphs. arXiv:1211. 2864v1.
Muzychuk M.: On skew Hadamard difference sets. arXiv:1012.2089v1.
Paley R.E.A.C.: On orthogonal matrices. J. Math. Phys. 12, 311–320 (1933).
Peisert W.: All self-complementary symmetric graphs. J. Algebra 240, 209–229 (2001).
Polhill J.: Paley type partial difference sets in non \(p\)-groups. Des. Codes Cryptogr. 52, 163–169 (2009).
Polhill J.: Paley type partial difference sets in groups of order \(n^4\) and \(9n^4\) for any odd \(n\). J. Comb. Theory Ser. A 117, 1027–1036 (2010).
Pott A.: Finite geometry and character theory. Lecture Notes in Mathematics, vol. 1601. Springer, Berlin, (1995).
Weng G., Qiu W., Wang Z., Xiang Q.: Pseudo-Paley graphs and skew Hadamard difference sets from presemifields. Des. Codes Cryptogr. 44, 49–62 (2007).
Xiang Q.: Note on Paley type partial difference sets. Groups, Difference Sets, and the Monster (Columbus, OH, 1993), pp. 239–244. Ohio State University Mathematical Research Institute Publications, Berlin (1996).
Yamamoto K.: On congruences arising from relative Gauss sum. Number Theory and Combinatorics, pp. 423–446. World Scientific, Singapore (1955).
Acknowledgments
Y. Q. Chen would like to thank the Department of Mathematics at Zhejiang University for the hospitality he received during his visit when this research was initiated. The work of T. Feng was supported in part by the Fundamental Research Funds for the Central Universities, Zhejiang Provincial Natural Science Foundation.
Author information
Authors and Affiliations
Corresponding author
Additional information
Communicated by D. Jungnickel.
Rights and permissions
About this article
Cite this article
Chen, Y.Q., Feng, T. Paley type sets from cyclotomic classes and Arasu–Dillon–Player difference sets. Des. Codes Cryptogr. 74, 581–600 (2015). https://doi.org/10.1007/s10623-013-9881-9
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10623-013-9881-9
Keywords
- Difference set
- Paley set
- Paley type set
- Paley type partial difference set
- Skew Hadamard difference set
- Singer difference set