Abstract
In this paper we prove the nonexistence of the hypothetical arcs with parameters (395, 100), (396, 100), (448, 113), and (449, 113) in \({{\,\mathrm{PG}\,}}(4,4)\). This rules out the existence of Griesmer codes with parameters \([395,5,295]_4\), \([396,5,296]_4\), \([448,5,335]_4\), \([449,5,336]_4\) and solves four instances of the main problem of coding theory for \(q=4\), \(k=5\). The proof relies on the characterization of (100, 26)- and (113, 29)-arcs in \({{\,\mathrm{PG}\,}}(3,4)\) and is entirely computer-free.
Similar content being viewed by others
References
Ball S., Hill R., Landjev I., Ward H.N.: On \((q^2+q+2, q+2)\)-arcs in the projective plane \(PG(2, q)\). Des. Codes and Cryptogr. 24, 205–224 (2001).
Belov B.I., Logachev V.N., Sandimirov V.P.: Construction of a class of linear binary codes achieving the Varshamov-Griesmer bound. Probl. Inf. Transm. 10(3), 211–217 (1974).
Beutelspacher A.: Blocking sets and partial spreads in finite projective spaces. Geom. Dedicata 9, 130–157 (1980).
Brouwer A.: Bounds on the minimum distance of linear codes. In: Pless V., Cary Huffman W. (eds.) Handbook of Coding Theory, pp. 295–461. Elsevier, Amsterdam (1998).
Dodunekov S.: Optimal Codes, DSc Thesis, Institute of Mathematics, Sofia, (1985).
Dodunekov S., Simonis J.: Codes and projective multisets. Electron. J. Comb. 5, #R37 (1998).
Edel Y., Bierbrauer J.: 41 is the largest size of a cap in \({{\rm PG}}(4,4)\). Des. Codes Cryptogr. 16, 151–160 (1999).
Edel Y., Landjev I.: On multiple caps. Des. Codes Cryptogr. 56, 163–175 (2010).
Farrell P.G.: Linear binary anticodes. Electron. Lett. 6, 419–421 (1970).
Grassl M.: Bounds on the minimum distance of linear codes and quantum codes, http://www.codetable.de
Griesmer J.H.: A bound for error-correcting codes. IBM J. Res. Dev. 4, 532–542 (1960).
Greenough P., Hill R.: Optimal codes over \({{\rm GF}}(4)\). Discret. Math. 125, 187–194 (1994).
Hill R.: Optimal Linear Codes, Cryptography and Coding II (C. Mitchell ed.), Oxford Univ. Press, 75–104 (1992).
Hill R., Lizak P.: Extensions of linear codes, p. 345. Whistler, Canada, Proc. Int. Symp. on Inf. Theory (1995).
Hill R.: An extension theorem for linear codes. Des. Codes Cryptogr. 17, 151–157 (1999).
Hirschfeld J.W.P.: Projective Geometries over Finite Fields, 2nd edn. Oxford University Press, Oxford (1998).
Hirschfeld J.W.P., Storme L.: The packing problem in statistics, coding theory and finite projective spaces, In: Finite Geometries, Proc. of the Fourth Isle of Thorns Conference, (eds. A. Blokhuis et al.), Kluwer, 201–246 (2001).
Kanda H., Maruta T., personal communication, (2019).
Landjev I.: Linear codes over finite fields and finite projective geometries. Discret. Math. 213, 211–244 (2000).
Landjev I.: The geometric approach to linear codes. In: Finite geometries, Proc. of the Fourth Isle of Thorns Conference, (eds. A. Blokhuis et al.), Kluwer, 247–257 (2001).
Landjev I., Maruta T., Hill R.: On the nonexistence of quaternary \([51,4,37]\)-codes. Finite Fields Appl. 2, 96–110 (1996).
Landjev I., Rousseva A.: An extension theorem for arcs and linear codes. Probl. Inf. Trans. 42, 65–76 (2006).
Landjev I., Rousseva A.: The nonexistence of some optimal arcs in \({\rm PG}(4,4)\), pp. 139–144. Varna, Sixth Int Workshop on Optimal Codes (2009).
Landjev I., Rousseva A.: Linear codes close to the Griesmer bound and the related geometric structures. Des. Codes Cryptogr. 87, 841–854 (2019).
Landjev I., Storme L.: Galois Geometries and Coding Theory, Chapter 8 in: “Current Research Topics in Galois Geometry” (eds. Jan De Beule, Leo Storme), NOVA Science Publishers, 187-214 (2012).
Maruta T.: On the nonexistence of \(q\)-ary linear codes of dimension five. Des. Codes Cryptogr. 22, 165–177 (2001).
Maruta T.: The nonexistence of some quaternary linear codes of dimension 5. Discret. Math. 238, 99–113 (2001).
Maruta T.: Griesmer bound for linear codes over finite fields, http://www.mi.s.osakafu-u.ac.jp/~maruta/
Rousseva A.: On the structure of some arcs related to caps and the nonexistence of some optimal codes, Ann. de l’Univ. de Sofia, Fac. de Math. and Inf., to appear (2019).
Ward H.N.: Divisibility of codes meeting the Griesmer bound. J. Combin. Theory Ser. A 83, 79–93 (1998).
Acknowledgements
The research of the first author was supported by the Science Research Fund of Sofia University under Contract 80-10-81/15.04.2019. The research of the second author was supported by the Fund for Strategic Development of the New Bulgarian University under Contract 1428/28.03.2019.
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
This is one of several papers published in Designs, Codes and Cryptography comprising the “Special Issue on Coding and Cryptography 2019”.
Rights and permissions
About this article
Cite this article
Rousseva, A., Landjev, I. The geometric approach to the existence of some quaternary Griesmer codes. Des. Codes Cryptogr. 88, 1925–1940 (2020). https://doi.org/10.1007/s10623-020-00777-0
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10623-020-00777-0
Keywords
- Linear codes
- Griesmer bound
- Griesmer codes
- Griesmer arcs
- Finite projective geometries
- Optimal linear codes