Abstract
Several exponential fitting Runge-Kutta methods of collocation type are derived as a generalization of the Gauss, Radau and Lobatto traditional methods of two steps. The new methods are capable of the exact integration (with only round-off errors) of differential equations whose solutions are linear combinations of an exponential and ordinary polynomials. Theorems of the truncation error reveal the good behavior of the new methods for stiff problems. Plots of their absolute stability regions that include the whole of the negative real axis are provided. A different procedure to find the parameter of the method is proposed. The variable step Radau method of two stages is derived. Finally, numerical examples underscore the efficiency of the proposed codes, especially when they are integrating stiff problems.
Similar content being viewed by others
References
Curtiss, C.F., Hirschfelder, J.O.: Integration of stiff equations. Proc. Natl. Acad. Sci. U. S. A. 38, 235–243 (1952)
Aitken, R.C.: Stiff Computation. Oxford University Press, New York (1985)
Spijker, M.N.: Stiffness in the numerical initial-value problems. J. Comput. Appl. Math. 72, 393–406 (1996)
Hairer, E., Wanner, G.: Solving Ordinary Differential Equations II. Springer, Berlin (1993)
Higham, D.J.: Stiffness of ODEs. BIT 33, 285–303 (1993)
Lambert, J.D.: Numerical Methods for Ordinary Differential Systems. The Initial Value Problem. Wiley, Chichester (1991)
Gear, C.W.: Algorithm 407-DIFSUB for solution of ordinary differential equations. Commun. ACM 14, 185–190 (1971)
Hindmarsh, A.C.: LSODE and LSODI, two new initial value ordinary differential equation solvers. ACM Signum Newslett. 15, 10–11 (1980)
Brown, P.N., Byrne, G.D., Hidmarsh, A.C.: VODE: a variable-coefficient ODE solver. SIAM J. Sci. Statist. Comput. 10, 1038–1051 (1989)
Petzold, L.R.: A description of DASSL: a differential-algebraic system solver. In: Stepleman, R.S., et al. (eds.) IMACS Trans. Scientific Computing, pp. 65–68. North-Holland, Amsterdam (1993)
Cash, J.R.: The integration of stiff initial value problems in ODE’s using modified extended backward differentiation formulae. Comput. Math. Appl. 9, 645–657 (1983)
Fredebul, C.: A-BDF: a generalization of the backward differentiation formulae. SIAM J. Numer. Anal. 35, 1917–1938 (1998)
Ixaru, L.Gr., Rizea, M., Vanden Berghe, G., De Meyer, H.: Weights of the exponential fitting multistep algorithms for ODEs. J. Comput. Appl. Math. 132, 83–93 (2001)
Ixaru, L.Gr., Vanden Berghe, G., De Meyer, H.: Frequency evaluation in exponential fitting multistep algorithms for ODEs. J. Comput. Appl. Math. 140, 423–434 (2002)
Ixaru, L.Gr., Vanden Berghe, G., De Meyer, H.: Exponentially fitted variable two-step BDF algorithms for first order ODEs. Comput. Phys. Commun. 100, 56–70 (2003)
Martin-Vaquero, J., Vigo-Aguiar, J.: Adapted BDF Algorithms: higher-order methods and their stability. J. Sci. Comput. 32, 287–313 (2007)
Alexander, R.: Diagonally implicit Runge-Kutta methods for stiff ODEs. SIAM J. Numer. Anal. 14, 1006–1021 (1977)
Nørsett, S.P.: Semi explicit Runge-Kutta methods. Mathematics and Computing Rpt. N. 6/74, University of Trodheim (1974)
Darvishi, M.T., Khani, F., Kheybari, S.: Spectral collocation solution of a generalized Hirota-Satsuma coupled KdV equation. Int. J. Comput. Math. 84, 541–552 (2007)
Khater, A.H., Temsah, R.S.: Numerical solutions of some nonlinear evaluation equations by Chebyshev spectral collocation methods. Int. J. Comput. Math. 84, 305–316 (2007)
Simos, T.E., Vigo-Aguiar, J.: A modified Runge-Kutta method with phase-lag of order infinity for the numerical solution of the Schrodinger equation and related problems. Comput. Chem. 25, 275–281 (2001)
Simos, T.E., Vigo-Aguiar, J.: Symmetric eighth algebraic order methods with minimal phase-lag for the numerical solution of the Schrodinger equation. J. Math. Chem. 31, 135-144 (2002)
Liniger, W., Willoughby, R.: Efficient integration for stiff systems of ordinary differential equations. SIAM J. Numer. Anal. 7, 47–66 (1970)
Van de Vyver, H.: Frequency evaluation for exponentially fitted Runge-Kutta methods. J. Comput. Appl. Math. 184, 442–463 (2005)
Vanden Berghe, G., Van Daale, M., Vande Vyver, H.: Exponential fitted Runge-Kutta methods of collocation type: fixed or variable knot points. J. Comput. Appl. Math. 159, 217–239 (2003)
Butcher, J.C.: The Numerical Analysis of Ordinary Differential Equations: Runge-Kutta and General Linear Methods. Wiley, Chichester (1987)
Vigo-Aguiar, J., Martín-Vaquero, J., Ramos, H.: Exponential fitting BDF-Runge-Kutta algorithms. Comput. Phys. Commun. 178, 15–34 (2008)
Coleman, J.P., Ixaru, L.Gr.: P-stability and exponential-fitting methods for y”=f(x,y). IMA J. Numer. Anal. 16, 179–199 (1996)
Scherer, R.: A necessary condition for B-stability. BIT 19, 111–115 (1979)
Stetter, H.J.: Analysis of Discretization Methods for Ordinary Differential Equations. Springer, Berlin (1973)
Martín-Vaquero, J., Vigo-Aguiar, J.: Exponential fitting BDF algorithms: explicit and implicit 0-stable methods. J. Comput. Appl. Math. 192, 100–113 (2006)
Vigo-Aguiar, J., Martín-Vaquero, J., Criado, R.: On the stability of exponential fitting BDF algorithms. J. Comput. Appl. Math. 175, 183–194 (2005)
Vigo-Aguiar, J., Martín-Vaquero, J.: Exponential fitting BDF algorithms and their properties. Appl. Math. Comput. 190, 80–110 (2007)
Edwards, W.S., Tuckerman, L.S., Friesner, R.A., Sorensen, D.C.: Krylov methods for the incompressible Navier-Stokes equations. J. Comput. Phys. 110, 82–102 (1994)
Friesner, R.A., Tuckerman, L.S., Dornblaser, B.C., Russo, T.C.: A method for exponential propagation of large systems of stiff nonlinear differential equations. J. Sci. Comput. 4, 327–354 (1989)
Gallopoulos, E., Saad, Y.: Efficient solution of parabolic equations by Krylov approximation methods. SIAM J. Sci. Stat. Comput. 13, 1236–1264 (1992)
Kosloff, R.: Propagation methods for quantum molecular dynamics. Annu. Rev. Phys. Chem. 45, 145–178 (1994)
Sidje, R.B.: Expokit: software package for computing matrix exponentials. ACM Trans. Math. Softw. 24, 130–156 (1998)
Frank, J.E., van der Houwen, P.J.: Parallel Iteration of the Extended Backward Differentiation Formulas. Report MAS-R9913, CWI (1999)
Kaps, P.: Rosenbrock-type methods. In: Dahlquist, G., Jeltsch, R. (eds.) Numerical Methods for Stiff Initial Value Problems. Bericht nr. 9, Inst für Geometrie und Praktische Mathematik der RWTH Aachen, Aachen (1981)
Butcher, J.C., Rattenbury, N.: ARK methods for stiff problems. Appl. Numer. Math. 53, 165–181 (2005)
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Martín-Vaquero, J., Vigo-Aguiar, J. Exponential fitted Gauss, Radau and Lobatto methods of low order. Numer Algor 48, 327–346 (2008). https://doi.org/10.1007/s11075-008-9202-y
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11075-008-9202-y