Abstract
We show how the theory of real quadratic congruence function fields can be used to produce a secure key distribution protocol. The technique is similar to that advocated by Diffie and Hellman in 1976, but instead of making use of a group for its underlying structure, makes use of a structure which is "almost" a group. The method is an extension of the recent ideas of Scheidler, Buchmann and Williams, but, because it is implemented in these function fields, several of the difficulties with their protocol can be eliminated. A detailed description of the protocol is provided, together with a discussion of the algorithms needed to effect it.
Similar content being viewed by others
References
C. S. Abel, in Algorithmus zur Berechnung der Klassenzah und des Regulators reelquadratischer Ordnungen, Dissertation, Universifat des Saarlandes, Saarbrucken (1994).
G. Agnew, R. C. Mullin and S. A. Vanstone, An implementatian of elliptic curve cryptosystems over \({\mathbb{F}}_{2^{155} } \) , IEEE J. Selected Areas in Communications, Vol. II (1993) pp. 804–813.
E. Artin, Quadratische Korper im Geiete der hoheren Kongruenzen I, II, Math Zeitschr, Vol. 19 (1924) pp. 153–206.
H. Cohen, A Course in Computation Algebraic Number Theory, Springer, Berlin (1994).
H. Cohen and H. W. Lenstra, Heuristics on class groups, in Number Theory (H. Jager, ed.) (Noordwijkerhout, 1983), Lecture Notes in Mathematics, Springer, New York, 1052 (1984) pp. 26–36.
H. Cohen and H. W. Lenstra, Heuristics on class groups of number fields, in Number Theory (H. Jager, ed.) (Noordwijkerhout, 1983), Lecture Notes in Mathematics, Springer, New York, 1068 (1984) pp. 33–62.
M. Deuring, Lectures on the Theory of Algebraic Functions of One Variable, Lecture Notes in Mathematics, Berlin 314 (1973).
W. Diffie and M. E. Hellman, New directions in cryptography, IEEE Trans. Inform. Theory, Vol. 22, No. 6, (1976) pp. 644–654.
M. Eichler, Introduction to the theory of Algebraic Numbers and Functions, Academic Press, New York (1966).
E. Friedman and L. C. Washington, On the distribution of divisor class groups of curves over finite fields, Theorie des Nombres, Proc. Int. Number Theory Conf. Level, 1997, Walter de Gruyter, Berlin and New York (1989) pp. 227–239.
H. W. Lenstra Jr., On the calculation of regulators and class numbers of quadratic fields, London Malth. Soc. Lec. Note Ser., Vol. 56, (1982) pp. 123–150.
R. Scheidler, J. A. Buchmann and H. C. Williams, A key exchange protocol using real quadratic fields, J. Cryptology, Vol. 7, (1994) pp. 171–199.
F. K. Schmidt, Analytische Zahlemheorie in Korpern der Charakterisik p., Math. Zeitschr., Vol. 33 (1931) pp. 1–32.
R. J. Schoof, Quadratic fields and factorzation, Computational Methods In Number Theory (H. W. Lentra and R. Tijdemans, eds.), Math. Centrum Tracts, Part II, Amsterdam 155 (1983) pp. 235–286.
D. Shanks, The infrastructure of a real quadratic field and its applications, Proc. 1972 Number Theory Conf., Boulder, Colorado (1972) pp. 217–224.
A. Stein, Baby step-Gian step-Verfahren in reell-quadratischen Kongruenzfunktionenkorpen mit Charakteristik angleich 2, Diplomarbeit, Universitat des Saarlandes, Saarbruken (1992).
A. Stein, Equivalences between Elliptic Curves and Real Quadratic Congruence Function Fields, in preparation.
A. Stein and H. G. Zimmer, An algorithm for determining the regulator and the fundamental unit of a hyperelliptic congruence function field. Proc. 1991 Int. Symp. on Symbolic and Algebraic Computation, Bonn, ACM Press. July 15–17 (1991) pp. 183–184.
B. Weis and H. G. Zimmer, Artin's Theorie der quadratischen Kongruenzfunktionenkorper und ihre Anwendung auf die Berechnung der Einheiten-und Klassengruppen. Mill Math. Ges. Hamburg, Sond., Vol. XII, No. 2 (1991) pp. 261–286.
E. Weiss, Algebraic Numbcr Theory, McGraw Hill, New York (1963).
X. Zhang, Ambiguous classes and 2-rank of class groups of quadratic function fields, J. of China University of Science and Technology, Vol. 17, No. 4, (1987) pp. 425–431.
Author information
Authors and Affiliations
Rights and permissions
About this article
Cite this article
Scheidler, R., Stein, A. & Williams, H.C. Key-Exchange in Real Quadratic Congruence Function Fields. Designs, Codes and Cryptography 7, 153–174 (1996). https://doi.org/10.1023/A:1018065117011
Issue Date:
DOI: https://doi.org/10.1023/A:1018065117011