Abstract
A couple of new lower bounds of the minimum distance of Goppa codes is derived, using an extended field code for a Goppa code which contains the Goppa code as its subfield-subcode. Also presented are procedures for both error-only and error-and-erasure decoding for Goppa codes up to the new lower bounds, based on the Berlekamp-Massey algorithm and the Feng-Tzeng multisequence shift-register synthesis algorithms which have been used for decoding cyclic codes up to the BCH and HT(Hartmann-Tzeng) bounds.
Similar content being viewed by others
References
E. R. Berlekamp, On decoding binary BCH codes, IEEE Tran.on Inform.Theory, Vol. IT-11 (1985) pp. 577–580.
E. R. Berlekamp, Goppa codes, IEEE Trans.on Inform.Theory, Vol. IT-19 (1973) pp. 590–592.
G. L. Feng and K. K. Tzeng, A generalized Euclidean algorithm for multisequence shift-register synthesis, IEEE Trans.on Inform.Theory, Vol. IT-35 (1988) pp. 584–594.
G. L. Feng and K. K. Tzeng, A generalization of the Berlekamp-Massey algorithm for multisequence shift-register synthesis with applications to decoding cyclic codes, IEEE Trans.on Inform.Theory, vol. IT-37 (1991) pp. 1274–1287.
G. L. Feng and K. K. Tzeng, Decoding cyclic and BCH codes up to the Hartmann-Tzeng and Roos bound, IEEE Trans.on Inform.Theory, vol. IT-37 (1991) pp. 1716–1722.
G. D. Forney, "On decoding BCH codes," IEEE Trans.on Inform.Theory, Vol. IT-11 (1985) pp. 548–557.
V. D. Goppa, A new class of linear error correcting codes, Probl.Pered.Inform., Vol. 6 (1970) pp. 24–30.
C. R. P. Hartmann and K. K. Tzeng, Generalizations of the BCH bound, Inform.and Control, Vol. 20, No. 5 (1972) pp. 489–498.
M. Loeloeian and J. Conan, Atransform approach to Goppa codes, IEEE Trans.on Inform.Theory, Vol. IT-33 (1987) pp. 105–115.
J. L. Massey, Shift register synthesis and BCH decoding, IEEE Trans.on Inform.Theory, Vol. IT-15 (1969) pp. 122–127.
N. J. Patterson, The algebraic decoding of Goppa codes, IEEE Trans.on Inform.Theory, Vol. IT-21 (1975) pp. 203–207.
C. T. Retter, Decoding Goppa codes with BCH decoder, IEEE Trans.on Inform.Theory, Vol. IT-21 (1975) p. 112.
C. Roos, A new lower bound for the minimum distance of a cyclic code, IEEE Trans.on Inform.Theory, vol. IT-29 (1983) pp. 330–332.
H. Shahri and K. K. Tzeng, On error-and-erasure decoding of cyclic codes, IEEE Trans.on Inform.Theory, Vol. IT-38 (1992) pp. 489–496.
Y. Sugiyama, M. Kasahara, M. Hirasawa, and T. Namekawa, Amethod for solving key equation for decoding Goppa codes, Inform.and Control, Vol. 27 (1975) pp. 87–99.
Y. Sugiyama, M. Kasahara, M. Hirasawa, and T. Namekawa, Further result on Goppa codes and their applications to constructing efficient binary codes, IEEE Trans.on Inform.Theory, Vol. IT-21 (1975) pp. 712–716.
Y. Sugiyama, M. Kasahara, M. Hirasawa, and T. Namekawa, An erasures-and-errors decoding algorithm for Goppa codes, IEEE Trans.on Inform.Theory, Vol. IT-22 (1978) pp. 238–241.
K. K. Tzeng and K. Zimmermann, On extending Goppa codes to cyclic codes, IEEE Trans.on Inform.Theory, Vol. IT-22 (1978) pp. 518–526.
J. H. van Lint and R. M. Wilson, On the minimum distance of cyclic codes, IEEE Trans.on Inform.Theory, vol. IT-32 (1986) pp. 23–40.
Author information
Authors and Affiliations
Rights and permissions
About this article
Cite this article
Park, CS., Feng, GL. & Tzeng, K.K. The New Minimum Distance Bounds of Goppa Codes and Their Decoding. Designs, Codes and Cryptography 9, 157–176 (1996). https://doi.org/10.1023/A:1018066030299
Issue Date:
DOI: https://doi.org/10.1023/A:1018066030299