Abstract
The aim is to find the maximum size of a set of mutually ske lines on a nonsingular Hermitian surface in PG(3, q) for various values of q. For q = 9 such extremal sets are intricate combinatorial structures intimately connected ith hemisystems, subreguli, and commuting null polarities. It turns out they are also closely related to the classical quartic surface of Kummer. Some bounds and examples are also given in the general case.
Similar content being viewed by others
References
H. F. Baker, Principles of Geometry, IV: Higher Geometry, Cambridge University Press, Cambridge (1925).
J. Cannon and C. Playoust, An Introduction to MAGMA, University of Sydney Press, Sydney, Australia (1993).
D. G. Glynn, A lower bound for maximal partial spreads in P G(3, q), Ars Combin., Vol. 13 (1982) pp. 39-40.
J. W. P. Hirschfeld, Projective Geometries Over Finite Fields, Second edition, Oxford University Press, Oxford (1998).
J. W. P. Hirschfeld, Finite Projective Spaces of Three Dimensions, Oxford University Press, Oxford (1985).
J. W. P. Hirschfeld and J. A. Thas, General Galois Geometries, Oxford University Press, Oxford (1991).
R. W. H. T. Hudson, Kummer's Quartic Surface, Cambridge University Press, Cambridge (1905).
C. M. Jessop, A Treatise on the Line Complex, Cambridge University Press, Cambridge (1903).
B. Segre, Forme e geometrie hermitiane, con particolare riguardo al caso finito, Ann. Mat. Pura Appl., Vol. 70 (1965) pp. 1-201.
E. E. Shult and J. A. Thas, m-systems of polar spaces, J. Combin. Theory Ser. A, Vol. 68 (1994) pp. 184-204.
E. E. Shult and J. A. Thas, m-systems and partial m-systems of polar spaces, Des. Codes Cryptogr., Vol. 8 (1996) pp. 229-238.
Author information
Authors and Affiliations
Rights and permissions
About this article
Cite this article
Ebert, G.L., Hirschfeld, J.W.P. Complete Systems of Lines on a Hermitian Surface over a Finite Field. Designs, Codes and Cryptography 17, 253–268 (1999). https://doi.org/10.1023/A:1026439528939
Issue Date:
DOI: https://doi.org/10.1023/A:1026439528939