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Abstract: 

In this paper, a novel procedure for fault detection and diagnosis in the direct current (DC) side of PV 
system, based on probabilistic neural network (PNN) classifier, is proposed. The suggested procedure 
consists of four main stages: (i) PV module parameters extraction, (ii) PV array simulation and 
experimental validation (iii) elaboration of a relevant database of both healthy and faulty operations, 
and (iv) network construction, training and testing. In the first stage, the unknown electrical 
parameters of the one diode model (ODM) are accurately identified using the best-so-far ABC 
algorithm. Then, based on these parameters the PV array is simulated and experimentally validated by 
using a PSIM™/Matlab™ co-simulation. Finally, efficient fault detection and diagnosis procedure 
based on PNN classifier is implemented. Four operating cases were tested in a grid connected PV 
system of 9.54 kWp: Healthy system, three modules short-circuited in one string, ten modules short-
circuited in one string, and a string disconnected from the array. Moreover, the PNN method was 
compared, under real operating conditions, with the feed forward back-propagation Artificial Neural 
Network (ANN) classifiers method, for noiseless and noisy data to evaluate the suggested method’s 
accuracy and test its aptitude to support noisy data. The obtained results have demonstrated the high 
efficiency of the proposed method to detect and diagnose DC side anomalies for both noiseless and 
noisy data cases. 

Keywords: Photovoltaic, Fault Detection, Diagnosis, Probabilistic neural network, Artificial neural 
network, Best-so-far ABC, Maximum Power Point. 

1. Introduction :
1.1. State of the art :

The amount of photovoltaic (PV) plants, around the world, has risen in a very remarkable way 
these last few decades. This is mainly due to the raised concerns for solving environmental pollution 
issues, harsh climate changes, and depletion of fossil energy sources [1]. Indeed, traditional energy 
sources, such as nuclear, oil and coal, have undesirable effects on ecosystem biodiversity, human 
health and climate change. In contrast, renewable energy sources, such as PV systems, are sustainable, 
safe and eco-friendly with zero CO2 emissions [2–5]. An investigation study by Masson et al. [6] has 
revealed that more than 53 million tons of CO2 emissions could be avoided in Europe in 2012 by 
producing 100 GW from PV systems. 

PV systems, especially the DC side “PV array”, are designed to operate under harsh outdoor 
conditions such as bad weather conditions, wind vibration effects on PV modules, ultraviolet radiation 
and corrosion [7]. Under such conditions, several malfunctions and failures may occur, resulting in PV 
modules lifetime reduction, lower total energy yield, loss of availability and safety hazards [8–12]. 
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Due to the aforementioned considerations, fault detection and diagnosis of PV systems has seen a 
particular interest in the last few decades, where several research studies and investigation have 
addressed the issue [13]. These methods are mainly classified into two categories: conventional 
threshold approaches and machine learning based approaches [7]. In conventional threshold 
approaches, fault detection and diagnosis can be achieved by analyzing several electrical indicators, 
such as operating current and voltage, and the output generated power. For instance, Chouder et al. 
[14] suggested an efficient procedure for a supervision and fault detection in PV systems on the basis 
of power losses analysis. This method defines four new indicators to reach the fault detection and 
supervision goal: current ratio, voltage ratio, thermal capture losses and miscellaneous capture losses. 
A fault detection and remote monitoring strategy has been proposed by Drews et al. in [15]. This 
method uses irradiance values derived from satellite data instead of using real on-site measurements. 
The fault occurrence is declared when a significant deviation between the measured and simulated 
output power is detected. Garoudja et al. [2] proposed a novel fault detection and diagnosis strategy 
based on the exponentially weighed moving average (EWMA) monitoring chart. This method 
computes MPP residuals of current, voltage and power using actual measurements and the simulated 
fault-free data. The EWMA based method can detect three types of DC side faults such as: short 
circuit faults, open circuit faults and temporary shading faults. 

Although threshold assessment approaches are straightforward and can yield reliable results, they 
still suffer from manual threshold calculations and require the photovoltaic array to operate at the 
MPP. The second category of fault detection and diagnosis in PV systems is machine learning based 
approaches. Actually, machine learning-based approaches require the collection and preprocessing of 
faulty and healthy data, from an operational PV system, to detect and diagnose eventual faults. For 
instance, a three-layered artificial neural network (ANN) based method has been proposed by 
Karatepe et al. in [16]. This method can only detect and localize short-circuit PV modules in a PV 
array. Zhao et al. [17–20] proposed several methods based on outlier detection rules, graph based semi 
supervised learning, and decision tree methods to detect and diagnose several faults in a PV system 
such as: open circuit faults, short circuit faults, line-line faults, partial shading occurrence and 
degradation fault. Outlier detection rules method requires the use of current and voltage measurements 
of each separate PV module, which makes it a very costly strategy. Additionally, decision tree method 
requires a lot of high-quality data to establish an accurate training stage. 

Artificial neural network (ANN) has been also used to detect and classify eight categories of PV 
system failures in [21,22]. In these works, ANN has been combined with other threshold based 
methods to achieve fault detection and diagnosis in PV systems. The fault detection was carried out 
using a threshold approach while faults classification was reached by ANN classifier. In all these 
works, ANN networks are of multilayer perceptron (MLP) type, trained iteratively via gradient 
descendant algorithm to compute the back propagation (BP) difference between real outputs and 
targets. This type of network suffers from its slow training steps, and it could fall in local minima 
instead of global minima. These weaknesses could affect its reliability, efficiency and even its real-
time implementation [7]. Moreover, this kind of network requires a lot of high-quality labeled data 
that describes very well the process [7]. 

Probabilistic neural network (PNN) [23,24] has been recognized as an efficient strategy to solve 
classification problems. It has several important advantages such its computation speed and simplicity 
during the training process [23]. This is mainly due to the no need to weights adaptations. Also, this 
network can classify any new incoming sample without repeating extensively the entire training 
process [23]. More particularly, PNN classifier has a strong robustness against noisy data generated by 
the measurement equipment and involved sensors. In the present work, a fault detection and diagnosis 



of a grid connected PV system approach, based on PNN classifier, is proposed. In this approach, a 
trusted model of an actual operating PV systems is firstly established using the one diode model 
(ODM) and a parameters extraction procedure. After experimental validation of the PV generator 
model, healthy samples as well as faulty samples are generated and then used as inputs to the PNN 
classifier. This approach uses two PNN classifiers; the first one is used to detect faults occurrence, 
while the second classifier aims to diagnose the type of fault. The proposed method of fault detection 
and diagnosis consists of four main stages: (i) PV module parameters extraction based on the best-so-
far ABC algorithm [25], (ii) Model validation, (iii) relevant dataset elaboration, and finally (iv) fault 
detection and diagnosis based on PNN classifiers. The main advantages of this approach are its high 
robustness against noisy data generated by measuring equipment and sensors. In fact, until recently, 
none of the proposed strategies tests the robustness of its method against noisy measurements. 

This strategy has been tested based on real experimental data collected from 9.54 kWp Grid 
connected PV system, situated at the rooftop of the administrative building of CDER “Centre de 
Développement des Energies Renouvelables” in Algiers, Algeria. This method was tested under four 
operating cases: healthy system, three modules shortcircuited in one string, ten modules short-circuited 
in one string, and a string disconnected from the array. In addition, the proposed method based on 
PNN classifier was compared, under real operating conditions, with a feed forward back propagation 
artificial neural network (ANN) method. This comparison was established for noiseless and noisy data 
in order to test the proposed strategy's efficiency and robustness. 

The present paper is arranged in the following manner. Section 2 outlines the description of the PV 
system and the faults detection and diagnosis strategy. Section 3 describes in detail the proposed 
detection and diagnosis strategy. In Section 4, simulations and experimental results are shown and 
analyzed in details. Finally, Section 5 is reserved to the drawn conclusions. 

2. Description of the PV system and the faults detection and diagnosis strategy 
2.1. PV description 

      PV plant under study is an actual Algerian grid-connected photovoltaic (GCPV) plant located in 
Algiers (Algeria) (Latitude: 36 °43′N,Longitude: 3 °15′E). This PV plant is a 9.54 kWp arranged in 3 
subarrays of 3.18 kWp each one. Each sub-array contains 30 Isofoton 106W-12V PV modules 
mounted in 2 parallel strings of 15 PV modules in series and connected to a 2.5 kW (IG30 Fronius) 
single phase inverter. 

Tilted and horizontal irradiances are measured using a Kipp & Zonen CM11 thermoelectric 
pyranometer, while PV module temperature is measured using K-type thermocouple. Meteorological 
variables as well as electrical variables measurements are performed by a data logger (Agilent 34970) 
as depicted in Fig. 1. Table 1 summarizes the main electrical parameters of Isofoton 106-12 PV 
module given under standard test conditions (STC) (Temperature level of 25 °C and irradiance level of 
1000 W/m2). 



 
Fig. 1. PV plant under study and the monitoring system. 

 

Table 1: Isofoton 106-12 PV module main electrical parameters under STC 

Parameters Impp0 [A] Vmpp0 [V] Pmpp0 [W] Isc [A] Voc [V] 
Values 6.4 17.4 106 6.54 21.6 
 

 

2.2 Faults detection and diagnosis strategy 

The main objective of this work is to design an efficient and reliable procedure, based on PNN 
classifier, to detect faults in a photovoltaic system and to diagnose their origin. However, using this 



type of  method, to deal with the classification problem, requires the availability of high-quality 
database that describes very well the process for each class. Practically speaking, obtaining such a 
database cannot often be guaranteed, especially in PV systems. In fact, operating a PV system under 
some types of failures can make the system completely insecure and cause catastrophic damages and 
safety hazards. Therefore, the best way to deal with this concern is to have a trusted simulation model 
that mimics the actual behavior of a PV system under healthy and faulty states. The flowchart, given 
in Fig. 2, summarizes the adopted steps followed to construct the fault detection and diagnosis 
strategy, namely: PV module parameters extraction, experimental validation, database elaboration and 
finally fault detection and diagnosis. 

2.2.1. PV module parameters extraction 

Usually, the solar cell/PV module is described by the well-known one diode model (ODM). 
This model describes the PV module behavior by the following electrical circuit (see Fig. 3):  

In this model, the output current versus output voltage is given by the following equation [2,14]: 

  (1) 

where: IPV and VPV are current and voltage outputs of the PV module respectively; Iph stands for the 
light-generated current. I0 is the diode saturation current; Rs and Rsh are series and parallel resistances 
respectively; n is the diode ideality factors; kB is Boltzmann constant (kB = 1.3806503 × 10− 23 j/k) , T 
is the solar cell/PV module temperature and q is the electronic charge ( q= 1.60217646 × 10−19 c). 

The ODM parameters extraction stage can be described as an optimization problem, where the cost 
criteria to be minimized is the Root Mean Square Error (RMSE) between the measured current and 
estimated current using Eq. (1), as given bellow: 
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Imeas and Vmeas are the PV module output generated  current and voltage respectively, and which are 
obtained from a set of  experimental outdoor measurements using an IV curve tracer (PVPM40). The 
letter γ defines the vector of ODM parameters, and S is the size of experimental (I-V) curve data used 
during the ODM parameters extraction stage. ODM parameters extraction procedure is highlighted in 
Fig. 4. The used temperature during this step denotes PV module temperature. The main goal of this 



stage is to find the optimal ODM parameters [I∗ph,I∗0,n∗,R∗s,R∗sh] that minimize the cost criteria and 
gives the lowest RMSE value. 

 

Fig. 2. Flowchart of the followed steps of the proposed faults detection and diagnosis strategy. 



 

Fig. 3. Solar cell circuit model. 

 

In this work, the use of the best-so-far ABC algorithm; an improved variant of the canonical 
ABC algorithm; to accurately extract the ODM five electrical parameters is proposed. The best-so-far 
ABC algorithm is efficient and accurate in solving optimization problems [26–28]. This is mainly due 
to its capacity to converge, regardless initial conditions, to accurate global solutions, high convergence 
speed and its simplicity in terms of implementation [25]. Moreover, in our previous works [2,29–31], 
the canonical ABC algorithm [32] was successfully applied to extract the ODM parameters. 

2.2.2. Model validation 

The identified ODM parameters are, subsequently, used to simulate the real PV system for 
normal conditions using PSIM™/Matlab™ Cosimulation. Indeed, the physical model of solar module 
included in PSIM™ software is used to simulate the physical behavior of the actual PV system. This 
can be reached by introducing the ODM identified parameters into this model, and then simulate the 
whole PV system for real daily profile measurements of temperatures and irradiances. On the other 
hand, data processing and involved calculations are performed in Matlab/Simulink™ environment. 
Finally, the simulated power (Psim) and the measured one (Pmeas) are then compared. 

2.2.3. Database elaboration 

This stage consists of elaborating a high-quality database that accurately describes the system 
behavior, in normal and faulty conditions. To this end, the validated PV system model is used to 
generate healthy and faulty samples, by intentionally introducing the desired faults, with real daily 
temperature and irradiance profiles. The recorded samples, corresponding to each operating condition, 
include four attributes: module Temperature “T”, tilted Irradiance “G”, Current at MPP “Impp” and 
Voltage at MPP “Vmpp”. 

2.2.4. Fault detection and diagnosis based on PNN classifier 

Based on the elaborated data base, the last step consists of constructing two probabilistic 
neural network (PNN) classifiers: the first one is dedicated to fault detection and the second is 
responsible for diagnosing the origin of faults. The methodology of PNN construction, training and 
test are explained in details hereafter. 



 

Figure 4: The ODM parameters identification procedure. 

 

3 Detection and diagnosis strategy 

3.1. Probabilistic neural network 

Probabilistic neural network (PNN) [23,24], as a learning based method, has been considered 
as a powerful classification technique. Similarly to the other neural network strategies, the PNN uses a 
training set to extract pattern statistics, and a testing set to check the classification accuracy. Its 
architecture is similar to that of the back propagation one [33], except of using the exponential 
function, as an activation function, instead of using the sigmoid function [24]. As shown in Fig. 5, the 
probabilistic neural network consists of input units, pattern units, summation units and output units. 

The aim of the input units is to directly distribute the input vector X to the pattern units, while 
the number of neurons in these units corresponds to the training set size. Besides, the pattern units, 
described by Fig. 6, consider the use of the same number of neurons as the input units. The pattern 
units are responsible for dot multiplication of the elements of the input vector and their respective 
weights Zi = X·Wi, given that the weight coefficient Wi of each pattern unit is set to the same value 
Xi of the training set. The result, Zi, will be then introduced to a nonlinear activation function, given 
by the following expression: 
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Figure 5. PNN structure for classification problem of two dimensions. 

 

In the case of normalized input and weight vectors, the activation function (Equation 4) will result in: 
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where σ denotes the smoothing parameter. 

The outputs of the pattern units will then be transmitted to the summation units, in which the number 
of neurons matches the number of classes. The outputs of each summation unit are given by: 

( ) ( )tm
i Ai i Ai

A P 2
i 1P2

W X W X1 1f (X) exp
m 2(2 ) =

 − − −
=  

σ  p σ
∑       (6) 

where: Af (X) is the Probability Density Function (PDF) of the input vector X ; P is the number of 
patterns; m  is the learning set size; XAi describes the corresponding ith training pattern of class A. The 
outputs units define the decision blocks. PNN comprises only one neuron in its output layer. This layer 
receives, from the summation layer, the probability density functions (PDF) values of each class and 
predicts the adequate class of the new sample. In other terms, this last layer outputs the adequate target 
that corresponds to the highest probability density function in summation units. The efficiency of PNN 
classifier depends on the used PDF accuracy, which is defined by the best choice of its smoothing 
parameter value [24]. 

Compared with conventional back-propagation network, PNN owns several important advantages 
[23,24] such as: 

• Its training stage requires only one single pass (neither iterations nor weights computation). 
• It can support both erroneous and noisy samples. 
• It has only one adjustable parameter (the smoothing parameter σ). 



 

 
 

Figure 6. PNN Pattern unit. 
 

 
 
 
  

 
 

3.2 PNN based method for fault detection and diagnosis. 

As stated before, the objective of this work is to detect and diagnose faults in the DC side of a grid 
connected PV systems based on PNN classifier. Using PNN as fault detection and diagnosis approach 
requires four essential steps: elaboration of a relevant database that contains the necessary data to train 
and test the network, network construction, training the network using the learning set, and finally test 
and evaluation of the network efficiency based on the testing set. 

3.2.1. Elaboration of the relevant database 

To be able to obtain a pertinent database for both healthy and faulty systems, the physical 
model of the PV module implemented in PSIM™ software, is used to simulate, under healthy and 
faulty conditions, the real operation of the previously described Algerian grid connected PV system. 
The employed PV array comprises two parallel strings of fifteen PV modules in series (Isofoton 
106W-12V). During this simulation, the physical model of the PV array requires the introduction of 
the five electrical parameters values, which are obtained using the identification algorithm described in 
Section 2.2. The proposed strategy for simulating the photovoltaic system using the PSIM™ software 
is characterized by its physical nature, which makes it possible to easily simulate the behavior of 
several faults that usually happen in the DC side of PV systems, such as: shading faults, short circuit 
faults, open circuit faults and line-line faults, …etc. Moreover, the used simulation model requires 
much reduced time to simulate the behavior of PV system whatever its physical configuration, and 
even for a very high number of meteorological data. 

In this paper, the simulations of four operating cases have been considered: healthy system; 
three modules short-circuited in a string; ten modules short-circuited in a string, and finally a 
completely disconnected string in an array, as depicted in Fig. 7. To finish with, the final database is 
constructed considering four attributes [T, G, Impp,and Vmpp] for each operating case. Fig. 8 shows 
the flowchart of PNN dataset elaboration. 



3.2.2. The networks construction 

Since the proposed work aims both fault detection and diagnosis, two PNN classifiers are then 
constructed. Indeed, the occurrence of any fault in the PV system is detected by the first network, 
while the diagnosis of its type is carried out by the second one. The detection network, shown in Fig. 
9, has four inputs (T, G, Impp and Vmpp) and two outputs (healthy state, faulty state), while the 
diagnosis network, shown in Fig. 10, has the same inputs as the first one, and three outputs (fault #1, 
fault #2, fault #3) corresponding to the three faulty operating cases. PNN classifiers of fault detection 
and diagnosis (Figs. 9 and 10) comprise only one neuron in their output layers. This neuron outputs 
the class that corresponds to the highest probability density function in summation units. 

In order to avoid any conflict, the detection and diagnostic networks are connected in series so 
that the diagnostic network will not be activated as long as the faulty alarm does not occur from the 
detection network. This concept is explicitly explained by the flowchart of Fig. 11, given below. 

3.2.3. Learning stage 

Now, the detection and diagnostic networks are formed using the learning data set previously 
obtained. It should be noted here that, on one hand, the input data (T, G, Impp and Vmpp), are of 
continuous type which are directly processed by the two PNNs. On the other hand, the outputs 
(healthy state, faulty state, fault #1, fault #2 and fault #3) are nominal variables that are not supported 
by this type of networks. For this reason, particular codes, arbitrary chosen, have been assigned to the 
PNN outputs as mentioned below: 

• Healthy system: code “2”, and which will be used for faults detection network to describe the healthy 
operating case. 

• Faulty system: code “8”, and which will be used for faults detection network to describe the 
occurrence of possible DC side faults. 

• Fault #1: code “4”, and which will be used for the diagnosis network to describe the occurrence of 
short circuit of three PV modules in one string. 

• Fault #2: code “6”, and which will be used for the diagnosis network to describe the occurrence of 
short circuit of ten PV modules in one string. 

• Fault #3: code “9”, and which will be used for the diagnosis network to describe the occurrence of a 
complete string disconnection from the PV array. 

Finally, to train detection and diagnosis networks, learning set values and the codes of their 
corresponding classes are used as input and target vectors respectively. 

 

 

 



 

 

Figure 7. The tested open circuit and short circuit failures of the Algerian PV system. 
 

 

 

 



 

 

Figure 8.  The database construction flowchart 

3.2.4. Testing stage 

After having learned both detection and diagnosis networks, the next stage is to test their 
effectiveness while using the testing set. Similarly, to the training stage, the input testing set to the two 
PNN classifiers are the four attributes (T, G, Impp and Vmpp), while their outputs represent their 
corresponding estimated classes. 

In order to assess the networks efficiency, a performance test of the classifiers has been carried out 
using the following four standard metrics [34]: 
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where: 

TP is the True Positive classifications number, which denotes the number of samples which 
are supposed to be classified in class “x” and they are really classified into this class. FN is the False 
Negative classifications number, which denotes the number of samples from class “x” and are 
classified into another class than class “x”. TN is the True Negative classifications number, which 
denotes the number of samples which are not supposed to be classified in class “x” and are really 
classified, according to the classifier, into another class than class “x”. FP is the False Positive 
classifications number, which denotes the number of samples which are not supposed to be 
classified into class “x”, while they really are classified, according to the classifiers, into this class, and 
‘d’ defines the size of the testing set. 

In addition to these performance evaluation standard metrics, the confusion matrix is another metric 
usually used to evaluate classifier performances. In fact, confusion matrix (also called contingency 
table) is a clean and unambiguous way to depict the classification results. As an example of a binary 
classification problem (Problem with two possible classes), the confusion matrix is composed of two 
rows and two columns, as can be seen in table 2. 

 

 

 Fig. 9. PNN detection network.  

 

Fig. 10. PNN diagnosis network. 



Table 2 

The confusion matrix of a binary classification problem.

 

 

Fig. 11. Flowchart of the two classifiers’ connection. 

4 Simulation and experimenta results 

In order to verify the performance and effectiveness of the proposed approach, described 
previously in Section 2, a simulation study and an experimental evaluation are carried out, and the 
main results are highlighted. This section is subdivided into three sub-sections: PV module parameters 
extraction results, model validation results, and finally, PNN based fault detection and diagnosis 
results. 

4.1. PV module parameters extraction results 

In the first stage, the efficiency of PV module parameters extraction method based on the best-so-
far ABC algorithm was validated experimentally.  

To this end, experimental (I-V) curve measurements, using an I-V curve tracer (PVPM40), were 
recorded and compared with the prediction model (Eq. (1)). Module temperature and the irradiance 
level used in this particular test were 27.2 °C and 755 W/m2 respectively. 



The best-so-far ABC algorithm adjustable parameters are summarized in Table 3, while optimal 
values of the electrical parameters [Iph, I0, n, Rs, Rsh], determined by the best-so-far ABC algorithm, 
are summarized in Table 4. 

 

The simulation result of the prediction model (Eq. (1)), obtained with the optimal parameters, and 
the experimental curves are shown in Fig. 12. It is clearly shown the good agreement between the 
experimental curve and the predicted one when simulated with the extracted parameters. Also, the 
smallest value of the RMSE, given in table 4, reveals the high accuracy of the best-so-far ABC 
algorithm to extract the best fitting parameters. 

 

 

Fig. 12. Real measured I-V curve against the estimated one. 



 

Fig. 13. Best-so-far ABC algorithm convergence rate. 

In Fig. 13, it is shown the best-so-far ABC algorithm convergence rate for each cycle until reaching 
the convergence condition (smallest RMSE value). While in Fig. 14, it is depicted the absolute error 
between measured current (Imeas) and estimated current (Iest), computed by the following equation. 

       (11) 

According to Fig. 14, the highest value of the absolute error does not exceed 0.06 which confirm 
the high accuracy of the best-so-far ABC optimization based algorithm to extract the best fitting 
parameters of ODM. 

 

Fig. 14. Absolute error evolution between measured and estimated current. 

 

4.2 Model validation results 

The extracted parameters, calculated in the previous section, are now introduced into the whole PV 
plant that models the actual grid connected PV system located in CDER (Algiers), in normal operating 
conditions. The inputs to this model are the actual measured daily profiles of temperature and 
irradiance. In this work, a co-simulation methodology was adopted combining PSIM™ and Matlab™ 



software, where the physical system (PV generator and MPPT) is implemented in PSIM while data 
processing and the involved calculations are implemented in Matlab/Simulink™. The simulated output 
power (Pmppsim)is then compared to the output measured power (Pmpp-mea), under the same 
temperature and irradiance inputs, as shown in Fig. 15. 

 

Fig. 15. Real measured against simulated peak power. 

 

As this stage is crucial for the fault detection and diagnosis stage, detailed in the next section, 
the results given in Fig. 15 must be quantified in terms of discrepancy between measured and 
simulated powers. To this end, the Mean Absolute Error (MAE), given by Eq. (12), was considered to 
evaluate the daily mean gap between Pmpp-sim and Pmpp-meas. The calculated MAE for this 
particular day, characterized by fast-moving clouds, is found to be about 8 W. 

(12) 

where: L denotes the length of MPP power vector. 



 
Diagnosis networks tested with 
noiseless data    
The  classifier type Classification accuracy (%) Sensitivity (%) 

  Fault 1 Fault 2 Fault 
3 

ANN 73.18 86.96 100 32.61 
PNN 100 100 100 100 

 

 

 



 

4.3. Fault detection and diagnosis results 

In this subsection, the effectiveness of the proposed fault detection and diagnosis approach is 
presented in detail. At first, the PNN construction, training and validation are conducted with noiseless 
data, obtained from the simulation model, in normal and faulty operation. In the second step, the 
constructed PNNs are tested against noisy data, obtained by adding a predefined noise to the simulated 
data. In addition, a comparison study with classical ANN classifier for both noiseless and noisy data is 
also carried out in this subsection. 

4.3.1. Noiseless data case 

Once the simulation model has been validated, the previously described DC side failures have 
been simulated under measured daily profiles of temperature and irradiance. This simulation aims the 
elaboration of a high-quality database for both healthy and faulty systems as described in Section 3. 
The formed database contains 2960 data for each operating case, which means a total of 11840 data 
for the four simulated scenarios. For the training phase, we have chosen 75% (8880 data) while the 
test set contains the remaining 25% (2960 data). The details of the total database construction are 
given bellow: 

• 740 data are associated with each of the four attributes (T, G, Impp and Vmpp) for each 
operating case. Thus, a total of 2960 =740 × 4 data set is associated with each operating case. More 
precisely, the vector of each attribute is subdivided into two sub-vectors: a first one comprises 556 
samples (75% of 740) and it is stated as the classifier training set, while the second sub-vector includes 
the remaining 184 samples (25% of 740), and it is used as the classifier testing set. 

• The test dataset comprises 184× 4= 736 data for each attribute, organized in the following 
manner: 

The test set of healthy system includes 184 samples. 



 The test set of fault #1 includes 184 samples. 

 The test set of fault #2 includes 184 samples. 

The test set of fault #3 includes 184 samples. 

• On the other hand, this paper proposes the use of two classifiers (two different networks). The first 
PNN is responsible of failures detection, while the second classifier aims to diagnose accurately the 
type of the occurred fault. Therefore, the performance of the detection network is assessed using the 
test set in the following manner: 
 Healthy system test set includes 184 samples for each attribute. 

Faulty system test set includes 184 × 3= 552 samples (Denoted by the three faulty cases: Fault #1, 
Fault #2 and Fault #3) for each attribute. 

• While the performance of diagnosis network is assessed using the test set in the following manner: 

Fault #1 test set includes 184 samples for each attribute. 

Fault #2 test set includes 184 samples for each attribute. 

Fault #3 test set includes 184 samples for each attribute. 

It is worth mentioning here that the measured data from the real operating system are 
considered as noiseless data as the quantification of error measurements and sensor drifts is a very 
difficult task. For comparison purpose, the performances of the proposed fault detection and diagnosis 
in PV systems are compared with those abstained with the classical ANN classifier. Toward this end, 
two ANNs have been constructed, trained and tested with the same dataset as the PNN. The number of 
the hidden layers in the ANN networks and the smoothing parameter, σ, for the PNN networks are 
obtained by trial and error tests. The main parameters used in this work, for each network, are 
summarized in Table 5. Classifiers efficiency (total efficiency) and classification sensitivity results for 
ANN and PNN classifiers are summarized in Table 6. While the confusion matrixes of the two 
networks (ANN and PNN for detection and diagnosis) are summarized in Table 7 and Table 8 
respectively. 

For more clarity of the obtained classification results, the confusion matrixes have been 
displayed graphically for the two networks (PNN and ANN). Figs. 16 and 17 show the simulation 
results of the ANN classifiers in detection and diagnosis stages respectively, while Figs. 18 and 19 
show the results of the PNN classifiers. 

The simulation results in terms of Specificity and Positive Predictivity for noiseless data are 
summarized in Tables 9 (ANN networks) and 10 (PNN networks) respectively.  

According to the results given above, the high classification abilities of the proposed method, 
based on PNN classifiers, are clearly demonstrated, whether at the detection stage or at the diagnosis 
stage. In fact, all the evaluated metrics (classification accuracy, sensitivity, specificity and positive 
predictivity) give a 100% success rate for the classification of the input samples in their corresponding 
classes (see Table 6 and 10). 

 



Table 9. Classification Specificity and Positive Predictivity for ANN networks under noiseless data 

Detection network type ANN tested on the noiseless test data 
classes Specificity (%) Positive Predictivity (%) 

Healthy case  87.14 72.16 
Faulty case 100 100 

Diagnosis network type ANN tested on the noiseless test data 
classes Specificity (%) Positive Predictivity (%) 
Fault1 67.66 57.35 
Fault2 92.12 86.38 
Fault3 100 100 

 

Table 10. Classification Specificity and Positive Predictivity for PNN networks under noiseless data 

Detection network type PNN tested on the noiseless test data 
classes Specificity (%) Positive Predictivity (%) 

Healthy case  100  100  
Faulty case 100  100  

Diagnosis network type PNN tested on the noiseless test data 
classes Specificity (%) Positive Predictivity (%) 
Fault1 100  100  
Fault2 100  100  
Fault3 100  100  

 

Furthermore, these high performances, to correctly classify the incoming samples in their right classes, 
are highlighted by the confusion matrices given in Table 8 and represented graphically in Figs. 18 and 
19. However, the evaluation metrics for ANN classifiers (Table 6) have given lower percentage rate in 
both detection and diagnosis stages. For instance, a very low percentage rate is obtained for sensitivity 
metric (32.61%) in case of fault#3. This luck to classify some samples in their right classes, observed 
in ANN classifiers, is clearly observed in the confusion matrixes plots where data belonging to certain 
classes are wrongly classified in another classes (Figs. 16 and 17). Thus, with the case of noiseless 
data, the PNN classifiers have given better results than ANN classifiers regarding fault detection and 
diagnosis. 



 

Figure 16. Fault detection results based ANN classifier for the case of noiseless data.  

 

Figure 17. Fault diagnosis results based ANN classifier for the case of noiseless data.  
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Figure 18. Fault detection results based PNN classifier for the case of noiseless data. 

 

Figure 19. Fault detection results based PNN classifier for the case of noiseless data.  

 

4.3.2. Noisy data case 
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In practical cases, the measured quantities from the PV system are subjected to various types 
of disturbances and noises caused mainly by the tolerances of the measuring devices and sensor drifts. 
However, since these disturbances are difficult to quantify from a practical point of view and in order 
to test the performances of the proposed PNN with noisy data, we have considered the measured data 
as noiseless data where a predefined noise function is added to each attribute to form noisy data. This 
predefined noise function is a simple Matlab™ routine given by the following expression: 

Disturbance randn(1, N)= a +b×         (13) 

where 

α is the mean of the disturbance signal; β is the standard deviation of the disturbance signal and which 
defines its magnitude; “randn” is an implemented Matlab function used to generate a normal 
distributed number, and N the size of the disturbance signal. Subsequently, the two networks (ANN 
and PNN), previously constructed in Section 3.2.2 are tested on noisy data as follow: 

  The disturbance signal is added to the corresponding attribute (T, G, Impp and Vmpp) using Eq. (13). 

  The added noisy signals are characterized by their means equal to zero and the standard deviations 
equal to the disturbance magnitude. 

 The chosen magnitudes of each disturbed attribute are:  

βT = 4 °C, βG = 5 W/m2, βImpp = 2 A, and βVmpp = 5 V. 

In order to test the networks efficiency with noisy data, the used learning set is composed of 
noiseless data, while the test set includes only the noisy attributes. By following the same assessment 
steps, described in Section 4.3.1, the simulation results in terms of Classification Accuracy (Total 
Efficiency), Classification Sensitivity, Confusion Matrixes, Specificity and Positive Predictivity for 
the case of noisy data are summarized in Tables 11–15 and graphically represented in Figs. 20–23. 
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Figure 20.Fault detection results based ANN classifier for the case of noisy data. 

 

Figure 21. Fault diagnosis results based ANN classifier for the case of noisy data  

 

Figure 22. Fault detection results based PNN classifier for the case of noisy data.  
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Figure 23. Fault diagnosis results based PNN classifier for the case of noisy data. 

 

By closely analyzing the above results, it can be noted that even the exaggerated magnitudes 
of the noisy attributes (βT = 4 °C, βG =5 W/m2, βImpp = 2 A, and βVmpp = 5 V), the two PNN classifiers 
still have a motivated results in both detection and diagnosis stages. In addition, according to Tables 
11 and 15, the main performance metrics have not undergone a serious decline even under this test 
condition. For instance, the recorded classification efficiency, for the proposed classifiers, is 82.34% 
for detection network, and 98.19% for diagnosis network. In contrast, the test of the ANN classifiers 
under noisy data has led to a significant decrease of almost all the performance metric indicators. For 
instance, the recorded classification efficiency is 58.02%  for detection network. Moreover, a very low 
percentage rate is obtained for positive predictivity metric (33.15%) in case of healthy state (Table 14). 
This significant decrease of the performances of ANN classifiers is also clearly observed in the 
confusion matrixes plots where several amounts of data belonging to certain class are wrongly 
classified in another classes (Figs. 20 and 21). 

 

4.3.3. PNN classifiers’ efficiency under real operating conditions 

4.3.3.1. PNN classifier’ efficiency under noiseless data.  

As mentioned in the previous sections, the on-site measurements have been considered 

as noiseless data in this work. Thus, in this subsection a real measured daily profile of temperature and 
irradiance is used to assess the detection and diagnosis capabilities of the proposed PNN classifier 
when the prescribed faults occur in a particular time of day. For clarity purposes, the measurements of 
a clear day are taken as a test pattern, where faults are intentionally introduced in the following 
manner: 
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From 2 h:00 to 8 h:00, the PV system is in normal working conditions (no faults), then a short-
circuit of three PV module (Fault#1) in the same string has been introduced at 8 h:01. The system 
remains in that faulty condition until 9 h:30. At this time, the fault is cleared and the system comes 
back to its normal state. At 11 h:00, the system was forced to work under a condition of ten (10) short-
circuited modules (Fault#2). The system keep working in this state until 12 h:30 where the fault is 
cleared and the PV system come back to its normal condition. After then, from 14 h:00 to 15 h:30 the 
first string of the PV array is completely disconnected (Fault#3). Thereafter, this fault is removed and 
the system continues working in normal conditions. These details are graphically shown in Figs. 24 
and 25, for the monitored irradiance and module temperature, and Figs. 26, 27 and 28, for Impp, 
Vmpp and Pmpp. 

The main results, obtained when using the previous patterns, are shown in Fig. 29 (detection) and 
in Fig. 30 (diagnosis). It is clearly shown that, before the occurrence of any fault, the detection PNN 
network (Fig. 29) generates ‘Class 2’, indicating healthy operating state While the diagnosis PNN 
generates, in this particular case, “class 0” which denotes that is not yet activated. Therefore, the entire 
photovoltaic array is considered to be in a normal operating state. In case of faulty operation, the 
detection PNN generates “Class 8” indicating the occurrence of a fault (see Fig. 29), while the 
diagnosis PNN generates “Class 4, Class 6 and Class 9”, which are the corresponding classes for the 
considered faults diagnosed at the time of their appearance (Fig. 30). 

4.3.3.2. PNN classifiers’ efficiency under noisy data.  

In this last test, the effectiveness of the proposed PNN fault detection and diagnosis is carried out 
by superimposing the predefined noise levels (Eq. (13)) to the monitored data. The same patterns, 
described above, have been used in this test. Fault detection and diagnosis results are summarized in 
Figs. 31 and 32 respectively. 

In this particular test, the results shown in Figs. 31 and 32 include some misclassifications mainly 
due to the exaggerated magnitudes of the superimposed noises. Obviously, such noise levels can lead 
to highly distorted attributes. But, despite the use of noise signals of a such magnitude, fault detection 
and diagnosis results based on PNN classifier are very motivating even with the appearance of these 
misclassifications. In fact, the recorded PNN classifier efficiency is of 82.34% for detection network 
and 98.19% for diagnosis network. 

Table 31. Classification accuracy and Sensitivity results with noisy data  

Detection networks tested on the noisy test data 
 

The classifier type 
Classification accuracy 

% 
Sensitivity % 

Healthy operating case  Faulty operating case  
ANN 58.01 61.96 55.07 
PNN 82.33 61.96 89.13 

Diagnosis networks tested on the noisy data 
 

The classifier type 
Classification accuracy 

% 
Sensitivity % 

Fault 1 Fault 2 Fault 3 
ANN 76.63 69.02 91.85 69.02 
PNN 98.19 100 94.57 100 

 



Table 4. Confusions matrixes of ANN networks with noisy data 

Detection network type ANN tested on the noisy test data 
The real classes  The predicted classes 

Healthy case Faulty case 
Healthy case 123 61 
Faulty case 248 304 

Diagnosis network type ANN tested on the noisy test data 
The real classes The predicted classes 

Fault 1 Fault 2 Fault 3 
Fault 1 127 57 0 
Fault 2 15 169 0 
Fault 3 15 42 127 

 

Table 5 Confusions matrixes of PNN networks for the case of noisy data 

Detection network type PNN tested on the noisy test data 
The real classes  The predicted classes 

Healthy case Faulty case 
Healthy case 114 70 
Faulty case 60 492 

Diagnosis network type PNN tested on the noisy test data 
The real classes The predicted classes 

Fault 1 Fault 2 Fault 3 
Fault 1 184 0 0 
Fault 2 10 174 0 
Fault 3 0 0 184 

 

Table 6 Classification specificity and Positive Predictivity for ANN networks under noisy data 

Detection network type ANN tested on the noisy test data 
classes Specificity (%) Positive Predictivity (%) 

Healthy case  55.07 33.15 
Faulty case 66.85 83.29 

Diagnosis network type ANN tested on the noisy test data 
classes Specificity (%) Positive Predictivity (%) 
Fault1 91.85 80.89 
Fault2 73.10 63.06 
Fault3 100 100 

 

Table 7. Classification specificity and Positive Predictivity for PNN networks under noisy data 

Detection network type PNN tested on the noisy test data 
classes Specificity (%) Positive Predictivity (%) 

Healthy case  89.13 65.52 
Faulty case 61.96 87.54 

Diagnosis network type PNN tested on the noisy test data 
classes Specificity (%) Positive Predictivity (%) 
Fault1 97.28 94.85 



Fault2 100 100 
Fault3 100 100 

 

 

Fig. 24. The used daily profile of onsite irradiance level. 

 

Fig. 25. The used daily profile of onsite temperature level. 



 

Fig. 26. The used daily profile of real measured current at MPP “Impp”. 

 

Fig. 27. The used daily profile of real measured voltage at MPP “Vmpp”. 



 

Fig. 28. The used daily profile of real measured power at MPP “Pmpp”. 

 

 



Fig. 29. Fault detection results of PNN classifier in the presence of multiple faults and tested under 
noiseless data. 

 

Fig. 30. Fault diagnosis results of PNN classifier in the presence of multiple faults with noiseless data. 



 

Fig. 31. Fault detection results of PNN classifier in the presence of multiple faults with noisy data. 

 

Fig. 32. Fault diagnosis results of PNN classifier in the presence of multiple faults with noisy data. 



 

5. Conclusion 

 This work has proposed an enhanced machine learning based approach for fault detection and 
diagnosis of PV systems. The proposed strategy consists of four main stages: PV module parameters 
extraction based on the best-so-far ABC algorithm; the entire PV system simulation and experimental 
validation based on a PSIM™/Matlab™ co-simulation; the elaboration of a high-quality database for 
healthy and faulty operations, and finally, the suggestion of an efficient fault detection and diagnosis 
procedure based on PNN classifiers. 

First of all, the electrical parameters of the used PV module are accurately identified using the best-
so-far ABC algorithm. Then, once these parameters are identified, the entire PV system is simulated 
and experimentally validated using a PSIM™/Matlab™ co-simulation. Finally, the efficiency of the 
proposed PNN classifier to detect and diagnose failures occurrence has been tested and validated using 
experimental measurements and simulated data. 

Three faulty operating cases of the Algerian PV system have been considered in this work: three 
modules short-circuited in a PV string, ten modules short-circuited in a PV string and a completely 
disconnected string from an array. In the other side, the proposed strategy based on PNN classifiers 
has been tested and compared with conventional feed-forward artificial neural network (ANN) for 
both noisy and noiseless data. 

Finally, this method has been evaluated under real operating conditions using real experimental 
measurements collected from the tested PV system in order to evaluate its performances and 
robustness. Results have shown the high efficiency of this method to detect and diagnose DC side 
anomalies occurrences for both noiseless and noisy data. However, the efficiency of this approach to 
detect and diagnose shortcircuit faults is guaranteed from at least two short-circuited PV modules. In 
fact, short-circuit of one PV module cannot be detected using this approach. This is due to its high 
similarity with healthy system for a large scale PV plant. 
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