
Java Programming/Print version

Wikibooks.org

February 15, 2012

Contents

1 INTRODUCTION 3
1.1 ARE YOU NEW TO PROGRAMMING? . 3
1.2 PROGRAMMING WITH JAVA™ . 4

2 ABOUT THIS BOOK 5
2.1 WHO SHOULD READ THIS BOOK? . 5
2.2 HOW CAN YOU PARTICIPATE . 6
2.3 NECESSARY PREREQUISITES . 7

3 HISTORY 13
3.1 THE GREEN TEAM . 13
3.2 RESHAPING THOUGHT . 14
3.3 THE DEMISE OF AN IDEA, BIRTH OF ANOTHER . 17
3.4 RECENT HISTORY . 17
3.5 VERSIONS . 17
3.6 CITATIONS . 20

4 THE JAVA PLATFORM 21
4.1 JAVA RUNTIME ENVIRONMENT (JRE) . 21
4.2 JAVA DEVELOPMENT KIT (JDK) . 25
4.3 SIMILAR CONCEPTS . 29

5 GETTING STARTED 33
5.1 GETTING STARTED . 33

6 COMPILATION 35
6.1 COMPILING TO BYTECODE . 35
6.2 AUTOMATIC COMPILATION OF DEPENDENT CLASSES 36
6.3 PACKAGES, SUBDIRECTORIES, AND RESOURCES . 36
6.4 FILENAME CASE . 37
6.5 COMPILER OPTIONS . 37
6.6 ADDITIONAL TOOLS . 37
6.7 JBUILDER . 38
6.8 JCREATOR . 38
6.9 ECLIPSE . 38
6.10 NETBEANS . 39
6.11 BLUEJ . 39
6.12 KAWA . 39
6.13 ANT . 40
6.14 THE JIT COMPILER . 42

III

Contents

7 EXECUTION 43
7.1 JSE CODE EXECUTION . 43
7.2 J2EE CODE EXECUTION . 46
7.3 JINI . 49

8 UNDERSTANDING A JAVA PROGRAM 51
8.1 THE DISTANCE CLASS: INTENT, SOURCE, AND USE 51
8.2 DETAILED PROGRAM STRUCTURE AND OVERVIEW 52
8.3 COMMENTS IN JAVA PROGRAMS . 60

9 SYNTAX 61
9.1 UNICODE . 62
9.2 LITERALS . 63
9.3 BLOCKS . 64
9.4 WHITESPACES . 65
9.5 REQUIRED WHITESPACE . 65
9.6 INDENTATION . 66

10 STATEMENTS 67
10.1 WHAT EXACTLY ARE STATEMENTS? . 67
10.2 WHERE DO YOU FIND STATEMENTS . 67
10.3 VARIABLES . 67
10.4 DATA TYPES . 68
10.5 WHOLE NUMBERS AND FLOATING POINT NUMBERS 68
10.6 ASSIGNMENT STATEMENTS . 69

11 CLASSES, OBJECTS AND TYPES 71
11.1 OBJECTS AND CLASSES . 71
11.2 INSTANTIATION AND CONSTRUCTORS . 71
11.3 TYPE . 72
11.4 MULTIPLE CLASSES IN A JAVA FILE . 73
11.5 EXTERNAL LINKS . 74

12 PACKAGES 75
12.1 JAVA PACKAGE / NAME SPACE . 75
12.2 WILDCARD IMPORTS . 76
12.3 IMPORTING PACKAGES FROM .JAR FILES . 76
12.4 CLASS LOADING / NAME SPACE . 77

13 NESTED CLASSES 79
13.1 NEST A CLASS INSIDE A CLASS . 79
13.2 NEST A CLASS INSIDE A METHOD . 80
13.3 ANONYMOUS CLASSES . 80

14 ACCESS MODIFIERS 83
14.1 ACCESS MODIFIERS . 83

15 METHODS 85
15.1 METHOD DEFINITION . 85
15.2 METHOD OVERLOADING . 85

IV

Contents

15.3 METHOD OVERRIDING . 87
15.4 PARAMETER PASSING . 88
15.5 FUNCTIONS . 89
15.6 RETURN PARAMETER . 89
15.7 SPECIAL METHOD, THE CONSTRUCTOR . 91
15.8 STATIC METHODS . 92
15.9 EXTERNAL LINKS . 93

16 PRIMITIVE TYPES 95

17 TYPES 97
17.1 DATA TYPES IN JAVA . 97
17.2 JAVA AS HYBRID LANGUAGE . 98
17.3 EXAMPLES OF TYPES . 98
17.4 ARRAY TYPES . 99
17.5 PRIMITIVE DATA TYPES . 100
17.6 DATA CONVERSION (CASTING) . 101
17.7 AUTOBOXING/UNBOXING . 101

18 JAVA.LANG.STRING 103
18.1 JAVA.LANG.STRING . 103
18.2 USING STRINGBUFFER/STRINGBUILDER TO CONCATENATE STRINGS 104
18.3 COMPARING STRINGS . 105
18.4 SPLITTING A STRING . 106
18.5 CREATING SUBSTRINGS . 107
18.6 MODIFYING STRING CASES . 107
18.7 SEE ALSO . 108

19 ARRAYS 109
19.1 INTRO TO ARRAYS . 109
19.2 ARRAY FUNDAMENTALS . 109
19.3 TWO-DIMENSIONAL ARRAYS . 110
19.4 MULTIDIMENSIONAL ARRAY . 111

20 DATA AND VARIABLES 113
20.1 STRONG TYPING . 114
20.2 CASE CONVENTIONS . 114
20.3 SCOPE . 114

21 GENERICS 117
21.1 WHAT ARE GENERICS? . 117
21.2 INTRODUCTION . 118
21.3 NOTE FOR C++ PROGRAMMERS . 119
21.4 CLASS<T> . 120
21.5 VARIABLE ARGUMENT . 121
21.6 WILDCARD TYPES . 122

22 DEFINING CLASSES 125
22.1 FUNDAMENTALS . 125

V

Contents

23 CREATING OBJECTS 129
23.1 INTRODUCTION . 129
23.2 CREATING OBJECT WITH THE new KEYWORD . 129
23.3 CREATING OBJECT BY CLONING AN OBJECT . 130
23.4 CREATING OBJECT RECEIVING FROM A REMOTE SOURCE 132

24 INTERFACES 135
24.1 INTERFACES . 135
24.2 EXTERNAL LINKS . 136

25 USING STATIC MEMBERS 137
25.1 WHAT DOES STATIC MEAN? . 137
25.2 WHAT CAN IT BE USED FOR? . 137
25.3 DANGER OF STATIC VARIABLES . 138
25.4 EXTERNAL LINKS . 138

26 DESTROYING OBJECTS 139
26.1 FINALIZE() . 139

27 OVERLOADING METHODS AND CONSTRUCTORS 141

28 ARRAYS 143
28.1 INTRO TO ARRAYS . 143
28.2 ARRAY FUNDAMENTALS . 143
28.3 TWO-DIMENSIONAL ARRAYS . 144
28.4 MULTIDIMENSIONAL ARRAY . 145

29 COLLECTION CLASSES 147
29.1 INTRODUCTION TO COLLECTIONS . 147
29.2 GENERICS . 148
29.3 COLLECTION OR MAP . 149
29.4 SET OR LIST OR QUEUE . 151
29.5 MAP CLASSES . 158
29.6 THREAD SAFE COLLECTIONS . 159
29.7 CLASSES DIAGRAM (UML) . 159
29.8 EXTERNAL LINKS . 161

30 THROWING AND CATCHING EXCEPTIONS 163
30.1 EXCEPTION ARGUMENTS . 164
30.2 CATCHING AN EXCEPTION . 165
30.3 EXCEPTION HANDLERS . 165
30.4 EXCEPTION CLASSES IN THE JCL . 166
30.5 CATCH CLAUSES . 168
30.6 EXAMPLE OF HANDLING EXCEPTIONS . 169
30.7 APPLICATION EXCEPTIONS . 170
30.8 RUNTIME EXCEPTIONS . 171
30.9 KEYWORD REFERENCES . 172
30.10 MINIMIZE THE USE OF THE KEYWORD ’NULL’ IN ASSIGNMENT STATEMENTS 173
30.11 MINIMIZE THE USE OF THE NEW TYPE[INT] SYNTAX FOR CREATING ARRAYS OF OB-

JECTS . 173

VI

Contents

30.12 CHECK ALL REFERENCES OBTAINED FROM ’UNTRUSTED’ METHODS 174
30.13 COMPARING STRING VARIABLE WITH A STRING LITERAL 174
30.14 SEE ALSO . 175

31 LINKS 177
31.1 EXTERNAL REFERENCES . 177
31.2 EXTERNAL LINKS . 177

32 LICENSE 181

33 GNU FREE DOCUMENTATION LICENSE 183

34 AUTHORS 185

LIST OF FIGURES 193

1

Contents

2

1 Introduction

The beautiful thing about learning is nobody can take it away from you

Learning a computer programming language is AKIN TO1 a toddler’s first few steps towards an
upright walk. You stumble and you fall but when you start walking, you take upon it as SECOND

NATURE2. Learning to program is similar in many ways to learning to walk. However once you
start programming, you never cease to evolve. Learn one programming language and you know
them all.

This book is a concentrated effort in trying to get you to take your baby steps towards program-
ming in the Java™ programming language. Although this book is primarily meant to act as a
learning aid for beginners, it can equally be helpful as a reference manual and guide for the in-
termediate and experienced programmers. The book is laid out in such a manner that with each
successive chapter, the complexity of programming constructs increase. Thus, programmers are
constantly challenged to develop their skills with a progressive learning curve.

1.1 Are you new to programming?

Figure 1: This stunning image of the sunset on planet Mars wouldn’t
have been possible without Java.

If you have chosen Java as your first programming language, be assured that Java happens to
also be the first choice for educational programs in many universities and colleges. Its simple
and intuitive SYNTAX3 (that’s grammar for programming languages) helps beginners feel at ease
with complex programming constructs in no time.

But be aware, Java is not just any basic programming language. In fact, NASA used Java as the
driving force (quite literally) behind its Mars Rover missions. Computers, mobile phones, set-
top boxes, and even digital television sets can all be programmed using the Java programming

1 HTTP://EN.WIKTIONARY.ORG/WIKI/AKIN
2 HTTP://EN.WIKTIONARY.ORG/WIKI/SECOND%20NATURE
3 HTTP://EN.WIKTIONARY.ORG/WIKI/SYNTAX

3

http://en.wiktionary.org/wiki/akin
http://en.wiktionary.org/wiki/second%20nature
http://en.wiktionary.org/wiki/syntax

Introduction

language. Robots, air traffic control systems and the self-checkout barcode scanners in your
favourite supermarkets are all being programmed in Java.

1.2 Programming with Java™

By now, you might truly be able to grasp the power of the Java programming language − there is
still lots more you can do with Java. Not every programmer gets to program applications that take
unmanned vehicles onto other planets. Software that we encounter in our daily life is somewhat
humble in that respect. Software programs and applications written in Java however cover vast
area of the computing ecosphere. Here are just some examples of the ubiquitous nature of Java
applications in real-life:

• OPENOFFICE.ORG4, a desktop office management suite that rivals the Microsoft Office suite
has been written in Java.

• The popular building game MINECRAFT5 is also written in Java.
• Online browser-based games like RUNESCAPE6, a 3D massively multi-player online role playing

game (MMORPG), run on graphics routines, 3D rendering and networking capabilities pow-
ered by the Java programming language.

• Two of the world’s renowned digital video recorders, TIVO7 and BSkyB’s SKY+8 use built-in live
television recording software to record, rewind and play your favourite television shows. These
applications make extensive use of the Java programming language.

The above mentioned application illustrates the reach and ubiquity of Java applications. Here’s
another fact − almost 80% of mobile phone vendors adopt Java as their primary platform for the
development of applications. The second most widely used mobile-based operating system, AN-
DROID9, uses Java as one of its key application platforms − developers are encouraged to develop
application for Android in the Java programming language.

1.2.1 What can Java not do?

Well, to be honest, there is nothing that Java can not do. You can program just about anything in
Java. This book would however get you acquainted with the basics of the language in order for
you to create that masterpiece of a software you dream of creating one day.

People have written operating systems in Java, they have programmed robots in the language
and managed power stations and conveyor belts in factories; thus, you can do anything and
everything with Java. Your applications and code need not fear any bounds because with Java,
possibilities are endless − all you need is creativity.

4 HTTP://EN.WIKIPEDIA.ORG/WIKI/OPENOFFICE.ORG
5 HTTP://EN.WIKIPEDIA.ORG/WIKI/MINECRAFT
6 HTTP://EN.WIKIPEDIA.ORG/WIKI/RUNESCAPE
7 HTTP://EN.WIKIPEDIA.ORG/WIKI/TIVO
8 HTTP://EN.WIKIPEDIA.ORG/WIKI/SKY%2B
9 HTTP://EN.WIKIPEDIA.ORG/WIKI/ANDROID%20%28OPERATING%20SYSTEM%29

4

http://en.wikipedia.org/wiki/OpenOffice.org
http://en.wikipedia.org/wiki/Minecraft
http://en.wikipedia.org/wiki/Runescape
http://en.wikipedia.org/wiki/TiVo
http://en.wikipedia.org/wiki/Sky%2B
http://en.wikipedia.org/wiki/Android%20%28operating%20system%29

2 About This Book

The Java Programming Wikibook is a shared effort in amassing a comprehensive guide of the
complete Java platform - from programming advice and tutorials for the desktop computer to
programming on mobile phones. The information presented in this book has been concep-
tualised with the combined efforts of various AUTHORS AND CONTRIBUTORS1, and anonymous
editors.

The primary purpose of this book is to teach the Java programming language to an audience of
beginners, but its progressive layout of tutorials increasing in complexity, it can be just as helpful
for intermediate and experienced programmers. Thus, this book is meant to be used as:

• a collection of tutorials building upon one another in a progressive manner;
• a guidebook for efficient programming with the Java programming language; and,
• a comprehensive manual resource for the advanced programmer.

This book is intended to be used in conjunction with various other online resources, such as:

• the JAVA PLATFORM API DOCUMENTATION2;
• the OFFICIAL JAVA WEBSITE3; and,
• active Java communities online, such as JAVA.NET4 and JAVARANCH5, etc.

2.1 Who should read this book?

Every thing you would need to know to write computer programs would be explained in this
book. By the time you finish reading, you will find yourself proficient enough to tackle just about
anything in Java and programs written using it. This book serves as the first few stepping stones
of many you would need to cross the unfriendly waters of computer programming. We have put
a lot of emphasis in structuring this book in a way that lets you start programming from scratch,
with Java as your preferred language of choice. This book is designed for you if any one of the
following is true.

• You are relatively new to programming and have heard how easy it is to learn Java.
• You had some BASIC6 or PASCAL7 in school, and have a grasp of basic programming and logic.
• You already know and have been introduced to programming in earlier versions of Java.

1 HTTP://EN.WIKIBOOKS.ORG/WIKI/JAVA%20PROGRAMMING%2FAUTHORS%20%26%
20CONTRIBUTORS

2 HTTP://DOWNLOAD.ORACLE.COM/JAVASE/7/DOCS/API/OVERVIEW-SUMMARY.HTML
3 HTTP://WWW.ORACLE.COM/US/TECHNOLOGIES/JAVA/INDEX.HTML
4 HTTP://HOME.JAVA.NET
5 HTTP://WWW.JAVARANCH.COM
6 HTTP://EN.WIKIPEDIA.ORG/WIKI/BASIC
7 HTTP://EN.WIKIPEDIA.ORG/WIKI/PASCAL%20%28PROGRAMMING%20LANGUAGE%29

5

http://en.wikibooks.org/wiki/Java%20Programming%2FAuthors%20%26%20Contributors
http://en.wikibooks.org/wiki/Java%20Programming%2FAuthors%20%26%20Contributors
http://download.oracle.com/javase/7/docs/api/overview-summary.html
http://www.oracle.com/us/technologies/java/index.html
http://home.java.net
http://www.javaranch.com
http://en.wikipedia.org/wiki/BASIC
http://en.wikipedia.org/wiki/Pascal%20%28programming%20language%29

About This Book

• You are an experienced developer and know how to program in other languages like C++8,
VISUAL BASIC9, PYTHON10 or RUBY11.

• You’ve heard that Java is great for web applications and web services programming.

Although, this book is generally meant to be for programmers who are beginning to learn pro-
gramming; it can be highly beneficial for intermediate and advanced programmers who may
have missed up on some vital information. By the end of this book, you would be able to solve
any complicated problem and tackle it using the best of your learnt skills in Java. Once you fin-
ish, you are also encouraged to take upon ambitious programming projects of your own as you
certainly would be able to do that as well.

This book assumes that the reader has no prior knowledge of programming in Java, or for that
matter, any object-oriented programming language. The book makes it easier to understand
development methodology as one reads through the book with practical examples and exercises
at the end of each topic and module. Although, if you are a complete beginner, we would suggest
that you move slowly through this book and practice each exercise at your pace.

2.2 How can you participate

Content is constantly being updated and enhanced in this book as is the nature of wiki-based
content. This book is therefore in a constant state of evolution. Any Wikibooks users can partic-
ipate in helping this book to a better standard as both a reader, or an author/contributor.

2.2.1 As a reader

If you are interested in reading the content present in this book, we encourage you to:

• share comments about the technical accuracy, content, or organisation of this book by telling
the authors in the Discussion section for each page. You can find the link Discussion on each
page in this book leading you to appropriate sections for discussion.

• leave a signature when providing feedback, writing comments, or giving suggestion on the
Discussion pages. This can be achieved by appending -- ˜˜˜˜ to your messages. Do not add
your signatures to the Book pages, they are only meant for the Discussion pages.

• review pages − at the bottom of every page of this book, you are likely to find controls that help
you review and give feedback for pages. Content on each page should be rated according to
the four Wikibooks quality metrics: Reliability, Completeness, Neutrality and Presentation.

• share news about the Java Programming Wikibook with your family and friends and let them
know about this comprehensive Java guide online.

• become a contributing author, if you think that you have information that could fill in some
missing gaps in this book.

8 HTTP://EN.WIKIPEDIA.ORG/WIKI/C%2B%2B
9 HTTP://EN.WIKIPEDIA.ORG/WIKI/VISUAL%20BASIC
10 HTTP://EN.WIKIPEDIA.ORG/WIKI/PYTHON%20%28PROGRAMMING%20LANGUAGE%29
11 HTTP://EN.WIKIPEDIA.ORG/WIKI/RUBY%20%28PROGRAMMING%20LANGUAGE%29

6

http://en.wikipedia.org/wiki/C%2B%2B
http://en.wikipedia.org/wiki/Visual%20Basic
http://en.wikipedia.org/wiki/Python%20%28programming%20language%29
http://en.wikipedia.org/wiki/Ruby%20%28programming%20language%29

Necessary prerequisites

2.2.2 As an author or contributor

If you intent on writing content for this book, you need to do the following:

• When writing content for this book, you can always pose as an anonymous author, however
we recommend you sign-in into the Wikibooks website when doing so. It becomes easier to
track and acknowledge changes to certain parts parts of the book. Furthermore, the opinions
and views of logged-in users are given precedence over anonymous users.

• Once you have started contributing content for this book, make sure that you add your name
to THE AUTHORS AND CONTRIBUTORS LIST12.

• BE BOLD13 and try to follow the CONVENTIONS14 for this Wikibook. It is important that the
conventions for this book be followed to the letter to make content consistent and reliable
throughout.

2.3 Necessary prerequisites

2.3.1 Installing the Java platform

For in-depth information, see the chapter on THE JAVA PLATFORM15.

In order to make use of the content in this book, you would need to follow along each and every
tutorial rather than simply reading through the book. But to do so, you would need access to a
computer with the Java platform installed on it − the Java platform is the basic prerequisite for
running and developing Java code, thus it is divided into two essential software:

• the Java Runtime Environment (JRE), which is needed to run Java applications and applets;
and,

• the Java Development Kit (JDK), which is needed to develop those Java applications and ap-
plets.

However as a developer, you would only require the JDK which comes equipped with a JRE as
well. Given below are installation instruction for the JDK for various operating systems:

2.3.2 For Windows

Download instructions

Some Windows based systems come built-in with the JRE, however for the purposes of writing
Java code by following the tutorials in this book, you would require the JDK nevertheless. To
acquire the latest JDK (version 7), you can manually DOWNLOAD THE JAVA SOFTWARE16 from the
Oracle website.

12 HTTP://EN.WIKIBOOKS.ORG/WIKI/..%2FAUTHORS%20%26%20CONTRIBUTORS
13 HTTP://EN.WIKIBOOKS.ORG/WIKI/BE%20BOLD
14 HTTP://EN.WIKIBOOKS.ORG/WIKI/..%2FCONVENTIONS
15 Chapter 4 on page 21
16 HTTP://WWW.ORACLE.COM/TECHNETWORK/JAVA/JAVASE/DOWNLOADS/INDEX.HTML

7

http://en.wikibooks.org/wiki/..%2FAuthors%20%26%20Contributors
http://en.wikibooks.org/wiki/Be%20Bold
http://en.wikibooks.org/wiki/..%2FConventions
http://www.oracle.com/technetwork/java/javase/downloads/index.html

About This Book

For the convenience of our readers, the following table presents direct links to the latest JDK for
the Windows operating system.

Operating system Setup Installer License
Windows x86 DOWNLOAD17 ORACLE BINARY CODE LI-

CENSE AGREEMENT18

Windows x64 DOWNLOAD19 ORACLE BINARY CODE LI-
CENSE AGREEMENT20

You must follow the instructions for the setup installer wizard step-by-step with the default set-
tings to ensure that Java is properly installed on your system. Once the setup is completed, it is
highly recommended to restart your Windows operating system.

If you kept the default settings for the setup installer wizard, you JDK should now be installed at
C:\Program Files\Java\jdk1.7.0_01. You would require the location to your bin folder at a later
time − this is located at C:\Program Files\Java\jdk1.7.0_01\bin

Updating environment variables (Optional)

In order for you to start using the JDK compiler utility with the Command Prompt, you would
need to set the environment variables that points to the bin folder of your recently installed JDK.
Follow the steps below to permanently include your Java platform to your environment variables.

1. For Windows XP, click Start › Control Panel
› System.
For Windows 2000, click Start › Settings ›
Control Panel › System.
For Window Vista or Windows 7, click Start
› Control Panel › System and Maintenance
› System.
Alternatively, you can also press Win + R

to open the Run dialog. With the dialog
open, type the following command at the
prompt:

rundll32 shell32.dll,Control_RunDLL sysdm.cpl

2. Navigate to the Advanced tab on the top,
and select Environment Variables...

3. Under System variables, select the vari-
able named Path and click Edit...

17 HTTP://DOWNLOAD.ORACLE.COM/OTN-PUB/JAVA/JDK/7U1-B08/JDK-7U1-WINDOWS-I586.EXE
18 HTTP://WWW.ORACLE.COM/TECHNETWORK/JAVA/JAVASEBUSINESS/DOCUMENTATION/

JAVA-SE-BCL-LICENSE-430205.HTML
19 HTTP://DOWNLOAD.ORACLE.COM/OTN-PUB/JAVA/JDK/7U1-B08/JDK-7U1-WINDOWS-X64.EXE
20 HTTP://WWW.ORACLE.COM/TECHNETWORK/JAVA/JAVASEBUSINESS/DOCUMENTATION/

JAVA-SE-BCL-LICENSE-430205.HTML

8

http://download.oracle.com/otn-pub/java/jdk/7u1-b08/jdk-7u1-windows-i586.exe
http://www.oracle.com/technetwork/java/javasebusiness/documentation/java-se-bcl-license-430205.html
http://www.oracle.com/technetwork/java/javasebusiness/documentation/java-se-bcl-license-430205.html
http://download.oracle.com/otn-pub/java/jdk/7u1-b08/jdk-7u1-windows-x64.exe
http://www.oracle.com/technetwork/java/javasebusiness/documentation/java-se-bcl-license-430205.html
http://www.oracle.com/technetwork/java/javasebusiness/documentation/java-se-bcl-license-430205.html

Necessary prerequisites

4. In the Edit System Variable dialog, go
the the Variable value field. This field is
a list of directory paths separated by semi-
colons (;).

5. To add a new path, append the location of
your JDK bin folder separated by a semi-
colon (;).

6. Click OK on every opened dialog to save
changes and get past to where you started.

Start writing code

Once you have successfully installed the JDK on your system, you are ready to program code in
the Java programming language. However, to write code, you would need a decent text editor.
Windows comes with a default text editor by default − Notepad. In order to use notepad to write
code in Java, you need to follow the steps below:

1. Click Start › All Programs › Accessories ›
Notepad to invoke the application.
Alternatively, you can also press Win + R

to open the Run dialog. With the dialog
open, type the following command at the
prompt:

notepad

2. Once the Notepad application has fired up,
you can use the editor to write code for the
Java programming language.

The problem with Notepad however is that it does not support developer-friendly features, such
as SYNTAX HIGHLIGHTING21 and CODE COMPLETION22. These features are a vital part of the exer-
cise of writing code. Nevertheless, there are a variety of different open-source editors available
as alternatives to Notepad that support these features.

For the purposes of the tutorials in this book, the most recommended editor
is the Notepad++, a free and open-source fully integrated text editor that sup-
ports syntax highlighting and code completion. You need to DOWNLOAD THE

LATEST VERSION OF NOTEPAD++23 in order to start writing code with the editor.

21 HTTP://EN.WIKIPEDIA.ORG/WIKI/SYNTAX%20HIGHLIGHTING
22 HTTP://EN.WIKIPEDIA.ORG/WIKI/CODE%20COMPLETION
23 HTTP://NOTEPAD-PLUS-PLUS.ORG

9

http://en.wikipedia.org/wiki/Syntax%20highlighting
http://en.wikipedia.org/wiki/Code%20completion
http://notepad-plus-plus.org

About This Book

Note:
Amongst others, there are many editors available online that are specifically designed to code
Java applications. Such editors have countless other features that facilitate programming with
Java, e.g., DEBUGGINGa and application design interfaces, etc. Text editors that have compre-
hensive features and utilities to facilitate programmers are called Integrated Development En-
vironments or IDEs. Java programmers often recommend the two most widely used IDEs for
Java programming needs − these are:
• NetBeans − DOWNLOAD HEREb and READ THE INSTALLATION INSTRUCTIONS HEREc.
• Eclipse − Download 32-BIT HEREd and 64-BIT HEREe. You can READ THE INSTALLATION IN-

STRUCTIONS HEREf.

a HTTP://EN.WIKIPEDIA.ORG/WIKI/DEBUGGING
b HTTP://DOWNLOAD.NETBEANS.ORG/NETBEANS/7.0.1/FINAL/BUNDLES/NETBEANS-7.0.

1-ML-WINDOWS.EXE
c HTTP://NETBEANS.ORG/COMMUNITY/RELEASES/70/INSTALL.HTML
d HTTP://WWW.ECLIPSE.ORG/DOWNLOADS/DOWNLOAD.PHP?FILE=/TECHNOLOGY/EPP/DOWNLOADS/

RELEASE/INDIGO/SR1/ECLIPSE-JAVA-INDIGO-SR1-WIN32.ZIP&R=1
e HTTP://WWW.ECLIPSE.ORG/DOWNLOADS/DOWNLOAD.PHP?FILE=/TECHNOLOGY/EPP/DOWNLOADS/

RELEASE/INDIGO/SR1/ECLIPSE-JAVA-INDIGO-SR1-WIN32-X86_64.ZIP&R=1
f HTTP://WIKI.ECLIPSE.ORG/ECLIPSE/INSTALLATION

2.3.3 For Linux

Installation using Terminal

Downloading and installing the Java platform on Linux machines (in particular Ubuntu Linux)
is very easy and straight-forward. To use the terminal to download and install the Java platform,
follow the instructions below.

1. For Ubuntu, go to Application › Acces-
sories › Terminal.
Alternatively, you can press Alt + F2 to
open the Run Application window. At the
prompt, type xterm or gnome-terminal to
open the Terminal window.

2. At the prompt, write the following:

$ sudo apt-get install openjdk-7-jdk openjdk-7-jre openjdk-7-doc

3. All Java software should be installed and
instantly available now.

Download instructions

Alternatively, you can manually DOWNLOAD THE JAVA SOFTWARE24 from the Oracle website.

24 HTTP://WWW.ORACLE.COM/TECHNETWORK/JAVA/JAVASE/DOWNLOADS/INDEX.HTML

10

http://en.wikipedia.org/wiki/Debugging
http://download.netbeans.org/netbeans/7.0.1/final/bundles/netbeans-7.0.1-ml-windows.exe
http://download.netbeans.org/netbeans/7.0.1/final/bundles/netbeans-7.0.1-ml-windows.exe
http://netbeans.org/community/releases/70/install.html
http://www.eclipse.org/downloads/download.php?file=/technology/epp/downloads/release/indigo/SR1/eclipse-java-indigo-SR1-win32.zip&r=1
http://www.eclipse.org/downloads/download.php?file=/technology/epp/downloads/release/indigo/SR1/eclipse-java-indigo-SR1-win32.zip&r=1
http://www.eclipse.org/downloads/download.php?file=/technology/epp/downloads/release/indigo/SR1/eclipse-java-indigo-SR1-win32-x86_64.zip&r=1
http://www.eclipse.org/downloads/download.php?file=/technology/epp/downloads/release/indigo/SR1/eclipse-java-indigo-SR1-win32-x86_64.zip&r=1
http://wiki.eclipse.org/Eclipse/Installation
http://www.oracle.com/technetwork/java/javase/downloads/index.html

Necessary prerequisites

For the convenience of our readers, the following table presents direct links to the latest JDK for
the Linux operating system.

Operating system RPM Tarball License
Linux x86 DOWNLOAD25 DOWNLOAD26 ORACLE BINARY

CODE LICENSE

AGREEMENT27

Linux x64 DOWNLOAD28 DOWNLOAD29 ORACLE BINARY

CODE LICENSE

AGREEMENT30

Start writing code

The most widely available text editor on Gnome desktops is the Gedit application, while on the
KDE desktops, one can find Kate. However unlike Notepad on Windows, both these editors
support syntax highlighting and code completion and therefore are sufficient for our purposes.

However, if you require a robust and standalone text-editor like the Notepad++ editor on Win-
dows, you would require the use of the minimalistic editor loaded with features − SciTE. Follow
the instructions below if you wish to install SciTE:

1. For Ubuntu, go to Application › Acces-
sories › Terminal.
Alternatively, you can press Alt + F2 to
open the Run Application window. At the
prompt, type xterm or gnome-terminal to
open the Terminal window.

2. At the prompt, write the following:

$ sudo apt-get install scite

3. You should now be able to use the Scite
editor for your programming needs.

25 HTTP://DOWNLOAD.ORACLE.COM/OTN-PUB/JAVA/JDK/7U1-B08/JDK-7U1-LINUX-I586.RPM
26 HTTP://DOWNLOAD.ORACLE.COM/OTN-PUB/JAVA/JDK/7U1-B08/JDK-7U1-LINUX-I586.TAR.

GZ

27 HTTP://WWW.ORACLE.COM/TECHNETWORK/JAVA/JAVASEBUSINESS/DOCUMENTATION/
JAVA-SE-BCL-LICENSE-430205.HTML

28 HTTP://DOWNLOAD.ORACLE.COM/OTN-PUB/JAVA/JDK/7U1-B08/JDK-7U1-LINUX-X64.RPM
29 HTTP://DOWNLOAD.ORACLE.COM/OTN-PUB/JAVA/JDK/7U1-B08/JDK-7U1-LINUX-X64.TAR.GZ
30 HTTP://WWW.ORACLE.COM/TECHNETWORK/JAVA/JAVASEBUSINESS/DOCUMENTATION/

JAVA-SE-BCL-LICENSE-430205.HTML

11

http://download.oracle.com/otn-pub/java/jdk/7u1-b08/jdk-7u1-linux-i586.rpm
http://download.oracle.com/otn-pub/java/jdk/7u1-b08/jdk-7u1-linux-i586.tar.gz
http://download.oracle.com/otn-pub/java/jdk/7u1-b08/jdk-7u1-linux-i586.tar.gz
http://www.oracle.com/technetwork/java/javasebusiness/documentation/java-se-bcl-license-430205.html
http://www.oracle.com/technetwork/java/javasebusiness/documentation/java-se-bcl-license-430205.html
http://download.oracle.com/otn-pub/java/jdk/7u1-b08/jdk-7u1-linux-x64.rpm
http://download.oracle.com/otn-pub/java/jdk/7u1-b08/jdk-7u1-linux-x64.tar.gz
http://www.oracle.com/technetwork/java/javasebusiness/documentation/java-se-bcl-license-430205.html
http://www.oracle.com/technetwork/java/javasebusiness/documentation/java-se-bcl-license-430205.html

About This Book

Note:
Amongst others, there are many editors available online that are specifically designed to code
Java applications. Such editors have countless other features that facilitate programming with
Java, e.g., DEBUGGINGa and application design interfaces, etc. Text editors that have compre-
hensive features and utilities to facilitate programmers are called Integrated Development En-
vironments or IDEs. Java programmers often recommend the two most widely used IDEs for
Java programming needs − these are:
• NetBeans − DOWNLOAD HEREb and READ THE INSTALLATION INSTRUCTIONS HEREc.
• Eclipse − Download 32-BIT HEREd and 64-BIT HEREe. You can READ THE INSTALLATION IN-

STRUCTIONS HEREf.

a HTTP://EN.WIKIPEDIA.ORG/WIKI/DEBUGGING
b HTTP://DOWNLOAD.NETBEANS.ORG/NETBEANS/7.0.1/FINAL/BUNDLES/NETBEANS-7.0.

1-ML-LINUX.SH
c HTTP://NETBEANS.ORG/COMMUNITY/RELEASES/70/INSTALL.HTML
d HTTP://WWW.ECLIPSE.ORG/DOWNLOADS/DOWNLOAD.PHP?FILE=/TECHNOLOGY/EPP/DOWNLOADS/

RELEASE/INDIGO/SR1/ECLIPSE-JAVA-INDIGO-SR1-LINUX-GTK.TAR.GZ&R=1
e HTTP://WWW.ECLIPSE.ORG/DOWNLOADS/DOWNLOAD.PHP?FILE=/TECHNOLOGY/EPP/DOWNLOADS/

RELEASE/INDIGO/SR1/ECLIPSE-JAVA-INDIGO-SR1-LINUX-GTK-X86_64.TAR.GZ&R=1
f HTTP://WIKI.ECLIPSE.ORG/ECLIPSE/INSTALLATION

2.3.4 For Mac OS

2.3.5 For Solaris

12

http://en.wikipedia.org/wiki/Debugging
http://download.netbeans.org/netbeans/7.0.1/final/bundles/netbeans-7.0.1-ml-linux.sh
http://download.netbeans.org/netbeans/7.0.1/final/bundles/netbeans-7.0.1-ml-linux.sh
http://netbeans.org/community/releases/70/install.html
http://www.eclipse.org/downloads/download.php?file=/technology/epp/downloads/release/indigo/SR1/eclipse-java-indigo-SR1-linux-gtk.tar.gz&r=1
http://www.eclipse.org/downloads/download.php?file=/technology/epp/downloads/release/indigo/SR1/eclipse-java-indigo-SR1-linux-gtk.tar.gz&r=1
http://www.eclipse.org/downloads/download.php?file=/technology/epp/downloads/release/indigo/SR1/eclipse-java-indigo-SR1-linux-gtk-x86_64.tar.gz&r=1
http://www.eclipse.org/downloads/download.php?file=/technology/epp/downloads/release/indigo/SR1/eclipse-java-indigo-SR1-linux-gtk-x86_64.tar.gz&r=1
http://wiki.eclipse.org/Eclipse/Installation

3 History

On 23 May 1995, John Gage, the director of the Science Office of the Sun Microsystems along
with Marc Andreesen, co-founder and executive vice president at Netscape announced to an
audience of SunWorldTM that Java technology wasn’t a myth and that it was a reality and that it
was going to be incorporated into Netscape Navigator.1

At the time the total number of people working on Java was less than 30.3 This team would
shape the future in the next decade and no one had any idea as to what was in store. From being
the mind of an unmanned vehicle on Mars to the operating environment on most of the con-
sumer electronics, e.g. cable set-top boxes, VCRs, toasters and also for personal digital assistants
(PDAs).5 Java has come a long way from its inception. Let’s see how it all began.

3.1 The Green team

Figure 2: James Gosling, architect and designer
of the compiler for the Java technology

1 JAVA TECHNOLOGY: THE EARLY YEARS 2. Sun Microsystems . Retrieved 9 May 2008
3 JAVA TECHNOLOGY: THE EARLY YEARS 4. Sun Microsystems . Retrieved 9 May 2008
5 HISTORY OF JAVA 6. Lindsey, Clark S. . Retrieved 7 MAY ˆ{HTTP://EN.WIKIPEDIA.ORG/WIKI/7%20MAY}

2008 ˆ{HTTP://EN.WIKIPEDIA.ORG/WIKI/2008}

13

http://en.wikipedia.org/wiki/7%20May
http://en.wikipedia.org/wiki/2008

History

Behind closed doors, a project was initiated in December of 19907, whose aim was to create a
programming tool that could render obsolete the C and C++ programming languages. Engineer
Patrick Naughton had become extremely frustrated with the state of Sun’s C++ and C APIs (appli-
cation programming interfaces) and tools. While he was considering to move towards NEXT8, he
was offered a chance to work on new technology and the "Stealth Project" was started, a secret
nobody but he knew.

This Stealth Project was later named the "Green Project" when James Gosling and Mike Sheridan
joined Patrick.9 Over the period of time that the Green Project teethed, the prospects of the
project started becoming clearer to the engineers working on it. No longer was its aim to create
a new language far superior to the present ones, but it aimed to target the language to devices
other than the computer.

Staffed at 13 people, they began work in a small office on Sand Hill Road in Menlo Park, Califor-
nia. This team would be called "Green Team" henceforth in time. The project they underwent
was chartered by Sun Microsystems to anticipate and plan for the "next-wave" in computing.
For the team, this meant at least one significant trend, that of the convergence of digitally
controlled consumer devices and computers.11

3.2 Reshaping thought

The team started thinking of replacing C++ with a better version, a faster version, a responsive
version. But the one thing they hadn’t thought of, as of yet, was that the language they were aim-
ing for, had to be developed for an EMBEDDED SYSTEM13 with limited resources. An embedded
system is a computer system scaled to a minimalistic interface demanding only a few functions
from its design. For such a system, C++ or any successor would seem too large as all the lan-
guages at the time demanded a larger footprint than what was desired. And, other than this, the
language lacked some other important features as well. The team thus had to think in a different
way to go about solving all these problems.

Co-founder of Sun Microsystems, Bill Joy, envisioned a language combining the power of Mesa
and C in a paper he wrote for the engineers at Sun named Further. Gathering ideas, Gosling
began work on enhancing C++ and named it "C++ ++ --", a pun on the evolutionary structure of
the language’s name. The ++ and -- meant, putting in and taking out stuff. He soon abandoned
the name and called it Oak14 after the tree that stood outside his office.

7 HTTP://EN.WIKIPEDIA.ORG/WIKI/1990
8 HTTP://EN.WIKIPEDIA.ORG/WIKI/NEXT
9 JAVA TECHNOLOGY: THE EARLY YEARS 10. Sun Microsystems . Retrieved 9 May 2008
11 JAVA TECHNOLOGY: THE EARLY YEARS 12. Sun Microsystems . Retrieved 9 May 2008
13 HTTP://EN.WIKIPEDIA.ORG/WIKI/EMBEDDED%20SYSTEM
14 JAVA TECHNOLOGY: THE EARLY YEARS 15. Sun Microsystems . Retrieved 9 May 2008

14

http://en.wikipedia.org/wiki/1990
http://en.wikipedia.org/wiki/NeXT
http://en.wikipedia.org/wiki/embedded%20system

Reshaping thought

Table 1:
Who’s who of
the Java tech-
nology<ref
name="CITEREFEarlyYearsSun1"/>
Has worked
for GT (Green
Team), FP
(FirstPer-
son) and JP
(Java Prod-
ucts Group)
Name

GT FP JP Details

Lisa Friendly XYes XYes FirstPerson
employee and
member of
the Java Prod-
ucts Group

John Gage Science Office
(Director),
Sun Microsys-
tems

James Gosling XYes XYes XYes Lead engineer
and key ar-
chitect of the
Java technol-
ogy

Bill Joy Co-founder
and VP, Sun
Microsys-
tems; Princi-
pal designer
of the UC
Berkeley, ver-
sion of the
UNIXr OS

Jonni Kanerva XYes Java Products
Group em-
ployee, author
of The Java
FAQ1

Tim Lindholm XYes XYes FirstPerson
employee
and member
Java Products
Group

15

History

Table 1:
Who’s who of
the Java tech-
nology<ref
name="CITEREFEarlyYearsSun1"/>
Has worked
for GT (Green
Team), FP
(FirstPer-
son) and JP
(Java Prod-
ucts Group)
Name

GT FP JP Details

Scott McNealy Chairman,
President, and
CEO of Sun
Microsystems

Patrick
Naughton

XYes XYes Green Team
member,
FirstPerson
co-founder

George
Paolini

Corporate
Marketing
(Director),
Sun’s Java
Software Divi-
sion

Kim Polese XYes FirstPerson
product mar-
keting

Lisa Poulson Original di-
rector of
public re-
lations for
Java technol-
ogy (Burson-
Marsteller)

Wayne Rosing XYes FirstPerson
President

Eric Schmidt Former Sun
Microsystems
Chief Tech-
nology Officer

Mike Sheri-
dan

XYes Green Team
member

16

The demise of an idea, birth of another

3.3 The demise of an idea, birth of another

By now, the work on Oak had been significant but come the year 1993, people saw the demise
of set-top boxes, interactive TV and the PDAs. A failure that completely ushered the inventors’
thoughts to be reinvented. Only a miracle could make the project a success now. And such a
miracle awaited anticipation.

NATIONAL CENTER FOR SUPERCOMPUTING APPLICATIONS16 (NCSA) had just unveiled its new
commercial web browser for the internet the previous year. The focus of the team, now diverted
towards where they thought the "next-wave" of computing would be − the internet. The team
then divulged into the realms of creating the same embeddable technology to be used in the
web browser space calling it AN APPLET17 − a small application. The team now needed a proper
identity and they decided on naming the new technology they created Java ushering a new gen-
eration of products for the internet boom. A by-product of the project was a cartoon named
"DUKE18" created by Joe Parlang which became its identity then.

Finally at the SunWorldTM conference, Andreesen unveiled the new technology to the masses.
Riding along with the explosion of interest and publicity in the Internet, Java quickly received
widespread recognition and expectations grew for it to become the dominant software for
browser and consumer applications.19

3.4 Recent history

Initially Java was owned by Sun Microsystems, but later it was released to open source; the term
Java was a trademark of Sun Microsystems. Sun released the source code for its HotSpot Virtual
Machine and compiler in November 2006, and most of the source code of the class library in
May 2007. Some parts were missing because they were owned by third parties, not by Sun Mi-
crosystems. The released parts were published under the terms of the GNU GENERAL PUBLIC

LICENSE21, a free software license.

3.5 Versions

Unlike C and C++, Java’s growth is pretty recent. Here, we’d quickly go through the development
paths that Java took with age.

16 HTTP://EN.WIKIPEDIA.ORG/WIKI/NATIONAL%20CENTER%20FOR%20SUPERCOMPUTING%
20APPLICATIONS

17 HTTP://EN.WIKIPEDIA.ORG/WIKI/APPLET
18 HTTP://EN.WIKIPEDIA.ORG/WIKI/DUKE%20%28MASCOT%29
19 HISTORY OF JAVA 20. Lindsey, Clark S. . Retrieved 7 MAY ˆ{HTTP://EN.WIKIPEDIA.ORG/WIKI/7%20MAY}

2008 ˆ{HTTP://EN.WIKIPEDIA.ORG/WIKI/2008}
21 HTTP://EN.WIKIPEDIA.ORG/WIKI/GNU%20GENERAL%20PUBLIC%20LICENSE

17

http://en.wikipedia.org/wiki/National%20Center%20for%20Supercomputing%20Applications
http://en.wikipedia.org/wiki/National%20Center%20for%20Supercomputing%20Applications
http://en.wikipedia.org/wiki/Applet
http://en.wikipedia.org/wiki/Duke%20%28mascot%29
http://en.wikipedia.org/wiki/7%20May
http://en.wikipedia.org/wiki/2008
http://en.wikipedia.org/wiki/GNU%20General%20Public%20License

History

Figure 3: Development of Java over the years. From version 1.0 to version 1.7, Java has displayed
a steady growth.

3.5.1 Initial Release (versions 1.0 and 1.1)

Introduced in 1996 for the SOLARIS22, WINDOWS23, MAC OS24 Classic and LINUX25, Java was
initially released as the Java Development Kit 1.0 (JDK 1.0). This included the Java runtime (the
virtual machine and the class libraries), and the development tools (e.g., the Javac compiler).
Later, Sun also provided a runtime-only package, called the Java Runtime Environment (JRE).
The first name stuck, however, so usually people refer to a particular version of Java by its JDK
version (e.g., JDK 1.0).

3.5.2 Java 2 (version 1.2)

Introduced in 1998 as a quick fix to the former versions, version 1.2 was the start of a new be-
ginning for Java. The JDKs of version 1.2 and later versions are often called Java 2 as well. For
example, the official name of JDK 1.4 is The Java(TM) 2 Platform, Standard Edition version 1.4.

Major changes include:

• Rewrite the event handling (Add Event Listeners)
• Change Thread synchronizations
• Introduction of the JIT-Just in time compilers

3.5.3 Kestrel (Java 1.3)

3.5.4 Merlin (Java 1.4)

Java 1.4 has improved programmer productivity by expanding language features and available
APIs

• Assertion
• Regular Expression

22 HTTP://EN.WIKIPEDIA.ORG/WIKI/SOLARIS%20OPERATING%20ENVIRONMENT
23 HTTP://EN.WIKIPEDIA.ORG/WIKI/MICROSOFT%20WINDOWS
24 HTTP://EN.WIKIPEDIA.ORG/WIKI/MAC%20OS
25 HTTP://EN.WIKIPEDIA.ORG/WIKI/LINUX

18

http://en.wikipedia.org/wiki/Solaris%20Operating%20Environment
http://en.wikipedia.org/wiki/Microsoft%20Windows
http://en.wikipedia.org/wiki/Mac%20OS
http://en.wikipedia.org/wiki/Linux

Versions

• XML processing
• Cryptography and Secure Socket Layer (SSL)
• Non-blocking I/O(NIO)
• Logging

3.5.5 Tiger (version 1.5.0; Java SE 5)

Released in September 2004

Major changes include:

• GENERICS26 - Provides compile-time type safety for collections :and eliminates the drudgery
of casting.

• AUTOBOXING/UNBOXING27 - Eliminates the drudgery of manual conversion between primi-
tive types (such as int) and wrapper types (such as Integer).

• Enhanced for - Shorten the for loop with Collections use.
• Static imports - Lets you import all the static part of a class.
• ANNOTATION28/Metadata - Enabling tools to generate code and deployment descriptors from

annotations in the source code. This leads to a "declarative" programming style where the
programmer says what should be done and tools emit the code to do it. Annotations can be
inspected through source parsing or by using the additional reflection APIs added in Java 5.

• JVM Improvements - Most of the run time library is now mapped into memory as a memory
image, as opposed to being loaded from a series of class files. Large portion of the runtime
libraries will now be shared among multiple JVM instances.

(from HTTP://JAVA.SUN.COM/FEATURES/2003/05/BLOCH_QA.HTML29)

3.5.6 Mustang (version 1.6.0; Java SE 6)

Released on 11 December 2006.30

What’s New in Java SE 6:

• Web Services - First-class support for writing XML web service client applications.

• Scripting - You can now mix in JavaScript technology source code, useful for prototyping. Also
useful when you have teams with a variety of skill sets. More advanced developers can plug in
their own scripting engines and mix their favorite scripting language in with Java code as they
see fit.

26 Chapter 21 on page 117
27 HTTP://EN.WIKIBOOKS.ORG/WIKI/JAVA%20PROGRAMMING%2FPRIMITIVE%20TYPES%

23AUTOBOXING%2FUNBOXING
28 HTTP://EN.WIKIBOOKS.ORG/WIKI/JAVA%20PROGRAMMING%2FANNOTATION
29 HTTP://JAVA.SUN.COM/FEATURES/2003/05/BLOCH_QA.HTML
30 JAVA PLATFORM STANDARD EDITION 6 31. Sun Microsystems . Retrieved 9 May 2008

19

http://en.wikibooks.org/wiki/Java%20Programming%2FPrimitive%20Types%23Autoboxing%2Funboxing
http://en.wikibooks.org/wiki/Java%20Programming%2FPrimitive%20Types%23Autoboxing%2Funboxing
http://en.wikibooks.org/wiki/Java%20Programming%2FAnnotation
http://java.sun.com/features/2003/05/bloch_qa.html

History

• Database - No more need to find and configure your own JDBC database when developing
a database application! Developers will also get the updated JDBC 4.0, a well-used API with
many important improvements, such as special support for XML as an SQL datatype and bet-
ter integration of Binary Large OBjects (BLOBs) and Character Large OBjects (CLOBs) into the
APIs.

• More Desktop APIs - GUI developers get a large number of new tricks to play like the ever
popular yet newly incorporated SwingWorker utility to help you with threading in GUI apps,
JTable sorting and filtering, and a new facility for quick splash screens to quiet impatient users.

• Monitoring and Management - The really big deal here is that you don’t need do anything spe-
cial to the startup to be able to attach on demand with any of the monitoring and management
tools in the Java SE platform.

• Compiler Access - Really aimed at people who create tools for Java development and for frame-
works like JavaServer Pages (JSP) or Personal Home Page construction kit (PHP) engines that
need to generate a bunch of classes on demand, the compiler API opens up programmatic
access to javac for in-process compilation of dynamically generated Java code. The compiler
API is not directly intended for the everyday developer, but for those of you deafened by your
screaming inner geek, roll up your sleeves and give it a try. And the rest of us will happily
benefit from the tools and the improved Java frameworks that use this.

• Pluggable Annotations allows programmer to write annotation processor so that it can analyse
your code semantically before javac compiles. For example, you could write an annotation
processor that verifies whether your program obeys naming conventions.

• Desktop Deployment - At long last, Java SE 6 unifies the Java Plug-in technology and Java Web-
Start engines, which just makes sense. Installation of the Java WebStart application got a much
needed makeover.

• Security - Java SE 6 has simplified the job of its security administrators by providing various
new ways to access platform-native security services, such as native Public Key Infrastructure
(PKI) and cryptographic services on Microsoft Windows for secure authentication and com-
munication, Java Generic Security Services (Java GSS) and Kerberos services for authentica-
tion, and access to LDAP servers for authenticating users.

• The -lities: Quality, Compatibility, Stability - Bug fixes ...

3.5.7 Dolphin (version 1.7.0; Java SE 7)

Anticipated for 2010

3.6 Citations

20

4 The Java Platform

As one of the necessary prerequisites for using this book to program in the Java programming
language, we asked you download and install the Java platform. The Java platform is the name
given to the computing platform from Oracle that helps users to run and develop Java applica-
tions. The platform does not just enable a user to run and develop Java application, but also
features a wide variety of tools that can help developers work efficiently with the Java program-
ming language.

The platform consists of two essential software:

• the Java Runtime Environment (JRE), which is needed to run Java applications and applets;
and,

• the Java Development Kit (JDK), which is needed to develop those Java applications and ap-
plets. If you have installed the JDK, you should know that it comes equipped with a JRE as well.
So, for all the purposes of this book, you would only require the JDK.

In this section, we would explore in further detail what these two software components of the
Java platform do.

4.1 Java Runtime Environment (JRE)

Any piece of code written in the Java programming language can be run on any operating system,
platform or architecture − in fact, it can be run on any device that supports the Java platform.
Before Java, this amount of ubiquity was very hard to achieve. If a software was written for a
Unix-based system, it was impossible to run the same application on a Windows system − in
this case, the application was native only to Unix-based systems.

A major milestone in the development of the Java programming language was to develop a
special runtime environment that would execute any Java application independent of the com-
puter’s operating system, platform or architecture.

The Java Runtime Environment (JRE) sits on top of the machine’s operating system, platform
and architecture. If and when a Java application is run, the JRE acts as a liaison between the
underlying platform and that application. It interprets the Java application to run in accordance
with the underlying platform, such that upon running the application, it looks and behaves like
a native application. The part of the JRE that accomplishes this complex liaison agreement is
called the Java Virtual Machine (JVM). We will discuss the JVM in detail later.

Figure 1 : Java applications can be written once and run anywhere. This feature of the Java
platform
is commonly abbreviated to WORA in formal Java texts.

21

The Java Platform

Figure 4

4.1.1 Executing native Java code (or byte-code)

Native Java applications are preserved in a special format called the BYTE-CODE1. Byte-code
remains the same, no matter what hardware architecture, operating system, or software platform
it is running under. On a file-system, Java byte-code resides in files that have the .class (also
known as a class file) or the .jar (also known as a Java archive) extension. To run byte-code, the
JRE comes with a special tool (appropriately named java).

Suppose your byte-code is called SomeApplication.class. If you want to execute this Java byte-
code, you would need to use the following command in Command Prompt (on Windows) and
Terminal (on Linux or Mac OS):

java SomeApplication.class

If you want to execute a Java byte-code with a .jar extension (say, SomeApplication.jar), you
would need to use the following command in Command Prompt (on Windows) and Terminal
(on Linux or Mac OS):

java -jar SomeApplication.jar

1 HTTP://EN.WIKIPEDIA.ORG/WIKI/JAVA%20BYTECODE

22

http://en.wikipedia.org/wiki/Java%20bytecode

Java Runtime Environment (JRE)

Note:
Not all Java class files or Java archives are executable. Therefore, the java tool would only be able
to execute files that are executable. Non-executable class files and Java archives are simply called
class libraries.

4.1.2 Do you have a JRE?

Most computers come with pre-installed copy of the JRE. If your computer doesn’t have a JRE,
then the above commands would not work. You can always check what version of the JRE is in-
stalled on the computer by writing the following command in Command Prompt (on Windows)
and Terminal (on Linux or Mac OS):

java -version

4.1.3 Java Virtual Machine (JVM)

Quite possibly, the most important part of the JRE is the Java Virtual Machine (JVM). The JVM
acts like a virtual processor enabling Java applications to be run on the local system. It’s main
purpose is to interpret (read translate) the received byte-code and make it appear as native code.
The olden Java architecture used this process of interpretation to execute Java byte-code. Even
though the process of interpretation brought the WORA principle to diverse machines, it had a
drawback − it consumed a lot of time and clocked the system processor intensively to load an
application.

Figure 2 : A JVM interpreter translates the byte-code line-by-line to make it appear as if a native
application is being executed.

Figure 5

Just-in-Time Compilation

The new versions of the JRE (since version 1.2) features a more robust JVM. Instead of interpret-
ing byte-code, it down-right converts the code straight into equivalent native code for the local
system. This process of conversion is called JUST-IN-TIME COMPILATION2 or JIT-compilation.

2 HTTP://EN.WIKIPEDIA.ORG/WIKI/JUST-IN-TIME%20COMPILATION

23

http://en.wikipedia.org/wiki/just-in-time%20compilation

The Java Platform

This process only occurs when the byte-code is executed for the first time. Unless the byte-code
itself is changed, the JVM uses the compiled version of the byte-code on every successive exe-
cution. Doing so saves a lot of time and processor effort, allowing applications to execute much
faster at the cost of a small delay on first execution.

Figure 3 : A just-in-time compiler only compiles the byte-code to equivalent native code at first
execution. Upon every successive
execution, the JVM merely uses the already compiled native code to optimize performance.

Figure 6

Native optimization

The JVM is an intelligent virtual processor. It has the ability to identify areas within the Java code
itself that can be optimized for faster and better performance. Based on every successive run of
your Java applications, the JVM would optimize it to run even better.

Note:
There are portions of Java code that do not require to be JIT-compiled at runtime, e.g., the Re-
flection API; therefore, code that uses such functions are not necessarily fully compiled to native
code.

Was JVM the first virtual machine?

Java was not the first virtual-machine-based platform, though it is by far the most successful and
well-known. Previous uses for virtual machine technology primarily involved EMULATORS3 to aid
development for not-yet-developed hardware or operating systems, but the JVM was designed to
be implemented entirely in software, while making it easy to efficiently port an implementation
to hardware of all kinds.

3 HTTP://EN.WIKIPEDIA.ORG/WIKI/EMULATORS

24

http://en.wikipedia.org/wiki/emulators

Java Development Kit (JDK)

4.2 Java Development Kit (JDK)

The JRE takes care of running the Java code on multiple platforms, however as developers, we
are interested in writing pure code in Java which can then be converted into Java byte-code for
mass deployment. As developers, we do not need to write Java byte-code, rather we write the
code in the Java programming language (which is quite similar to writing C or C++ code).

Upon downloading the JDK, a developer ensures that their system has the appropriate JRE and
additional tools to help with the development of applications in the Java programming language.
Java code can be found in files with the extension .java. These files are called Java source files.
In order to convert the Java code in these source files to Java byte-code, you need to use the Java
compiler tool installed with your JDK.

4.2.1 The Java compiler

The Java compiler tool (named javac in the JDK) is the most important utility found with the
JDK. In order to compile a Java source file (say, SomeApplication.java) to its respective Java
byte-code, you would need to use the following command in Command Prompt (on Windows)
and Terminal (on Linux or Mac OS):

javac SomeApplication.java

This command would convert the SomeApplication.java source file into its equiva-
lent Java byte-code. The resultant byte-code would exist in a newly created file named
SomeApplication.class. This process of converting Java source files into their equivalent byte-
codes is known as compilation.

Figure 4 : The basic Java compilation process

Figure 7

There are a huge array of tools available with the JDK that will all be explained in due time as
you progress with the book. For the reader’s convenience, these tools are listed below in order of
their usage:

4.2.2 Applet development

• appletviewer − Java applets require a particular environment to execute. Typically, this en-
vironment is provided by a browser with a Java plug-in, and a web server serving the applet.

25

The Java Platform

However, during development and testing of an applet it might be more convenient to start
an applet without the need to fiddle with a browser and a web server. In such a case, Sun’s
appletviewer from the JDK can be used to run an applet.

4.2.3 Annotation processing

For more about annotation processing, READ THIS4

In Java 1.5 (alias Java 5.0) Sun added a mechanism called annotations. Annotations allow the
addition of meta-data to Java source code, and even provide mechanisms to carry that meta-
data forth into a compiled class files.

• apt − An annotation processing tool which digs through source code, finds annotation state-
ments in the source code and executes actions if it finds known annotations. The most com-
mon task is to generate some particular source code. The actions apt performs when finding
annotations in the source code are not hard-coded into apt. Instead, one has to code particu-
lar annotation handlers (in Java). These handlers are called annotation processors. The most
difficult thing with apt is that Sun decided to use a whole set of new terminology. apt can sim-
ply be seen as a source code preprocessor framework, and annotation processors are typically
just code generators.

4.2.4 Integration of non-Java and Java code

• javah − A Java class can call native, or non-Java, code that has been prepared to be called from
Java. The details and procedures are specified in the JNI (Java Native Interface). Commonly,
native code is written in C (or C++). The JDK tool javah helps to write the necessary C code, by
generating C header files and C stub code.

4.2.5 Class library conflicts

• extcheck − This tool appeared first with Java 1.5. It can be used prior to the installation of a
Java extension into the JDK or JRE environment. It checks if a particular Jar file conflicts with
an already installed extension.

4.2.6 Software security and cryptography tools

The JDK comes with a large number of tools related to the security features of Java. Usage of
these tools first requires study of the particular security mechanisms. The tools are:

• keytool − To manage keys and certificates
• jarsigner − To generate and verify digital signatures of JARs (Java ARchives)
• policytool − To edit policy files
• kinit − To obtain Kerberos v5 tickets

4 HTTP://JAVA.SUN.COM/J2SE/1.5.0/DOCS/GUIDE/APT/GETTINGSTARTED.HTML

26

http://java.sun.com/j2se/1.5.0/docs/guide/apt/GettingStarted.html

Java Development Kit (JDK)

• klist − To manage Kerberos credential cache and key table
• ktab − To manage entries in a key table

4.2.7 The Java archiver

• jar − (short for Java archiver) is a tool for creating Java archives or jar files - a file with .jar as
the extension. A Java archive is a collection of compiled Java classes and other resources which
those classes may require (such as text files, configuration files, images) at runtime. Internally,
a jar file is really a .ZIP FILE5.

4.2.8 The Java debugger

• jdb − (short for Java debugger) is a command-line console that provides a DEBUGGING6 envi-
ronment for Java programs. Although you can use this command line console, IDE’s normally
provide easier to use debugging environments.

4.2.9 Documenting code with Java

As programs grow large and complex, programmers need ways to track changes and to under-
stand the code better at each step of its evolution. For decades, programmer have been employ-
ing the use of special programming constructs called comments - regions that help declare user
definitions for a code snippet within the source code. But comments are prone to be verbose
and incomprehensible, let alone be difficult to read in applications having hundreds of lines of
code.

• javadoc − Java provides the user with a way to easily publish documentation about the code
using a special commenting system and the javadoc tool. The javadoc tool generates doc-
umentation about the application programming interface (API) of a set of user-created Java
classes. javadoc reads source file comments from the .java source files and generates HTML
documents that are easier to read and understand without looking at the code itself.

• javap − Where Javadoc provide a detailed view into the API and documentation of a Java class,
the javap tool prints information regarding members (constructors, methods and variables)
in a class. In other words, it lists the class’ API and/or the compiled instructions of the class.
javap is a formatting disassembler for Java bytecode.

4.2.10 The native2ascii tool

native2ascii is an important, though underappreciated, tool for writing properties files -- files
containing configuration data -- or resource bundles -- files containing language translations of
text.

5 HTTP://EN.WIKIPEDIA.ORG/WIKI/ZIP%20%28FILE%20FORMAT%29
6 HTTP://EN.WIKIPEDIA.ORG/WIKI/DEBUGGING

27

http://en.wikipedia.org/wiki/ZIP%20%28file%20format%29
http://en.wikipedia.org/wiki/Debugging

The Java Platform

Such files can contain only ASCII and Latin-1 characters, but international programmers need
a full range of character sets. Text using these characters can appear in properties files and re-
source bundles only if the non-ASCII and non-Latin-ˆ1 characters are converted into Unicode
escape sequences (\uXXXX notation).

The task of writing such escape sequences is handled by native2ascii. You can write the interna-
tional text in an editor using the appropriate character encoding, then use native2ascii to gen-
erate the necessary ASCII text with embedded Unicode escape sequences. Despite the name,
native2ascii can also convert from ASCII to native, so it is useful for converting an existing prop-
erties file or resource bundle back to some other encoding.

native2ascii makes most sense when integrated into a build system to automate the conversion.

4.2.11 Remote Method Invocation (RMI) tools

4.2.12 Java IDL and RMI-IIOP Tools

4.2.13 Deployment & Web Start Tools

4.2.14 Browser Plug-In Tools

4.2.15 Monitoring and Management Tools / Troubleshooting Tools

With Java 1.5 a set of monitoring and management tools have been added to the JDK, in addition
to a set of troubleshooting tools.

The monitoring and management tools are intended for monitoring and managing the virtual
machine and the execution environment. They allow, for example, monitoring memory usage
during the execution of a Java program.

The troubleshooting tools provide rather esoteric insight into aspects of the virtual machine.
(Interestingly, the Java debugger is not categorized as a troubleshooting tool.)

All the monitoring and management and troubleshooting tools are currently marked as "experi-
mental" (which does not affect jdb). So they might disappear in future JDKs.

4.2.16 Java class libraries (JCL)

In most modern operating systems, a large body of reusable code is provided to simplify the pro-
grammer’s job. This code is typically provided as a set of DYNAMICALLY LOADABLE LIBRARIES7

that applications can call at runtime. Because the Java platform is not dependent on any spe-
cific operating system, applications cannot rely on any of the existing libraries. Instead, the Java
platform provides a comprehensive set of standard class libraries, containing much of the same
reusable functions commonly found in modern operating systems.

7 HTTP://EN.WIKIPEDIA.ORG/WIKI/LIBRARY%20%28COMPUTER%20SCIENCE%29%23DYNAMIC%
20LINKING

28

http://en.wikipedia.org/wiki/Library%20%28computer%20science%29%23Dynamic%20linking
http://en.wikipedia.org/wiki/Library%20%28computer%20science%29%23Dynamic%20linking

Similar concepts

The Java class libraries serve three purposes within the Java platform. Like other standard code
libraries, they provide the programmer with a well-known set of functions to perform common
tasks, such as maintaining lists of items or performing complex string parsing. In addition, the
class libraries provide an abstract interface to tasks that would normally depend heavily on the
hardware and operating system. Tasks such as network access and file access are often heav-
ily dependent on the native capabilities of the platform. The Java java.net and java.io libraries
implement the required native code internally, then provide a standard interface for the Java ap-
plications to perform those tasks. Finally, some underlying platforms may not support all of the
features a Java application expects. In these cases, the class libraries can either emulate those
features using whatever is available, or provide a consistent way to check for the presence of a
specific feature.

4.3 Similar concepts

The success of the Java platform and the concepts of the WRITE ONCE, RUN ANYWHERE8 principle
has led to the development of similar frameworks and platforms. Most notable of these is the
Microsoft’s .NET FRAMEWORK9 and its open-source equivalent MONO10.

4.3.1 The .NET framework

The .NET framework borrows many of the concepts and innovations of Java − their alternative
for the JVM is called the COMMON LANGUAGE RUNTIME (CLR)11, while their alternative for the
byte-code is the COMMON INTERMEDIATE LANGUAGE (CIL)12. In fact, the .NET platform had an
implementation of a Java-like language called VISUAL J#13 (formerly known as J++14).

J# is normally not supported with the JVM because instead of compiling it in Java byte-code, the
.NET platform compiles the code into CIL, thus making J# different from the Java programming
language. Furthermore, because J# implements the .NET Base Class Libraries (BCL) instead of
the Java Class Libraries, J# is nothing more than a non-standard extension of the Java program-
ming language. Due to the lack of interest from developers, Microsoft had to withdraw their
support for J#, and focused on a similar programming language − C#.

To compare Java with C#, read COMPARISON OF C# AND JAVA15.

8 HTTP://EN.WIKIPEDIA.ORG/WIKI/WRITE%20ONCE%2C%20RUN%20ANYWHERE
9 HTTP://EN.WIKIPEDIA.ORG/WIKI/.NET%20FRAMEWORK
10 HTTP://EN.WIKIPEDIA.ORG/WIKI/MONO%20%28SOFTWARE%29
11 HTTP://EN.WIKIPEDIA.ORG/WIKI/COMMON%20LANGUAGE%20RUNTIME
12 HTTP://EN.WIKIPEDIA.ORG/WIKI/COMMON%20INTERMEDIATE%20LANGUAGE
13 HTTP://EN.WIKIPEDIA.ORG/WIKI/J%20SHARP
14 HTTP://EN.WIKIPEDIA.ORG/WIKI/J%20PLUS%20PLUS
15 HTTP://EN.WIKIPEDIA.ORG/WIKI/COMPARISON%20OF%20C%20SHARP%20AND%20JAVA

29

http://en.wikipedia.org/wiki/Write%20once%2C%20run%20anywhere
http://en.wikipedia.org/wiki/.NET%20Framework
http://en.wikipedia.org/wiki/Mono%20%28software%29
http://en.wikipedia.org/wiki/Common%20Language%20Runtime
http://en.wikipedia.org/wiki/Common%20Intermediate%20Language
http://en.wikipedia.org/wiki/J%20Sharp
http://en.wikipedia.org/wiki/J%20plus%20plus
http://en.wikipedia.org/wiki/Comparison%20of%20C%20Sharp%20and%20Java

The Java Platform

4.3.2 Third-party compilers targeting the JVM

The word Java, by itself, usually refers to the Java programming language which was designed
for use with the Java platform. Programming languages are typically outside of the scope of the
phrase "platform". However, Oracle does not encourage the use of any other languages with the
platform, and lists the Java programming language as a core part of the Java 2 platform. The
language and runtime are therefore commonly considered a single unit.

There are cases where you might want to program using a different language (say, PYTHON16) and
yet be able to generate Java byte-code (instead of the Python compiled code) to be run with the
JVM. Many third-party programming language vendors provide compilers that can compile code
written in their language to Java byte-code. For instance, Python developers can use JYTHON17

compilers to compile Python code to the Java byte-code format (as illustrated below).

Figure 5 : Third-party JVM-targeted compilation for non-Java source compilation to Java byte-
code. Illustrated example
shows Python source being compiled to both Python compiled code and Java byte-code.

Figure 8

Of late, JVM-targeted third-party programming and scripting languages have seen tremendous
growth. Some of these languages are also used to extend the functionalities of the Java language
itself. A few examples include the following:

• GROOVY18

• PIZZA19

• GJ20 (Generic Java) − later officially incorporated into Java SE 5.

16 HTTP://EN.WIKIPEDIA.ORG/WIKI/PYTHON%20%28PROGRAMMING%20LANGUAGE%29
17 HTTP://EN.WIKIPEDIA.ORG/WIKI/JYTHON
18 HTTP://EN.WIKIPEDIA.ORG/WIKI/GROOVY%20%28PROGRAMMING%20LANGUAGE%29
19 HTTP://EN.WIKIPEDIA.ORG/WIKI/PIZZA%20%28PROGRAMMING%20LANGUAGE%29
20 HTTP://EN.WIKIPEDIA.ORG/WIKI/GENERIC%20JAVA%20%28PROGRAMMING%20LANGUAGE%29

30

http://en.wikipedia.org/wiki/Python%20%28programming%20language%29
http://en.wikipedia.org/wiki/Jython
http://en.wikipedia.org/wiki/Groovy%20%28programming%20language%29
http://en.wikipedia.org/wiki/Pizza%20%28programming%20language%29
http://en.wikipedia.org/wiki/Generic%20Java%20%28programming%20language%29

Similar concepts

• NETREXX21

21 HTTP://EN.WIKIPEDIA.ORG/WIKI/NETREXX

31

http://en.wikipedia.org/wiki/NetREXX

The Java Platform

32

5 Getting Started

1. REDIRECT JAVA PROGRAMMING/GETTING STARTED1

5.1 Getting Started

With Java, it is as easy as pie to get started. However, if you encounter difficulty in getting started
with Java, you may find useful help and tips in this chapter. Our authors have tried their best to
include as much useful content as possible in this chapter for your reference. But, nevertheless,
if problems persist, please consult the authors using the DISCUSSION2 page above.

This section is a quick start to using Java: installing Java software, compiling and running pro-
grams, and some small sample programs to illustrate the basics of getting started with Java.

CATEGORY:JAVA PROGRAMMING3

1 HTTP://EN.WIKIBOOKS.ORG/WIKI/JAVA%20PROGRAMMING%2FGETTING%20STARTED
2 HTTP://EN.WIKIBOOKS.ORG/WIKI/TALK%3AJAVA%20PROGRAMMING%2FGETTING%20STARTED
3 HTTP://EN.WIKIBOOKS.ORG/WIKI/CATEGORY%3AJAVA%20PROGRAMMING

33

http://en.wikibooks.org/wiki/Java%20Programming%2FGetting%20started
http://en.wikibooks.org/wiki/Talk%3AJava%20Programming%2FGetting%20Started
http://en.wikibooks.org/wiki/Category%3AJava%20Programming

Getting Started

34

6 Compilation

We have already discussed COMPILATION BASICS 1. Here’s a recap of the concepts we’d seen earlier
and some additional details.

6.1 Compiling to bytecode

In Java, programs are not compiled into executable files; they are compiled into BYTECODE2 (as
discussed EARLIER3), which the JVM then executes at runtime. Java source code is compiled into
bytecode when we use the javac compiler. The bytecode gets saved on the disk with the file
extension .class. When the program is to be run, the bytecode is converted, using the JUST-
IN-TIME(JIT) COMPILER4. The result is machine code which is then fed to the memory and is
executed.

So Java has four step compilation:

• compiler will check the syntactical error
• create byte-code
• create a blank *.class file
• merge that byte code to that blank *.class file

The Java classes/Byte Codes are compiled to machine code and loaded into memory by the JVM
when needed the first time. This is different than other languages like C/C++ where the whole
program had to be compiled to machine code and linked to create an executable file, before the
program could start.

JIT compilers compile byte-code once and the compiled machine code are re-used again and
again, to speed up execution. Early Java compilers compiled the byte-code to machine code
each time it was used, but more modern compilers cache this machine code for reuse on the
machine. Even then, java’s JIT compiling was still faster than an "interpreter-language", where
code is compiled from high level language, instead of from byte-code each time it was used.

1 HTTP://EN.WIKIBOOKS.ORG/WIKI/JAVA%20PROGRAMMING%2FJAVA%20PROGRAMMING%
20ENVIRONMENT

2 HTTP://EN.WIKIPEDIA.ORG/WIKI/BYTECODE
3 HTTP://EN.WIKIBOOKS.ORG/WIKI/JAVA%20PROGRAMMING%2FJAVA%20PROGRAMMING%

20ENVIRONMENT%23THE%20BYTECODE
4 HTTP://EN.WIKIBOOKS.ORG/WIKI/JAVA%20PROGRAMMING%2FJAVA%20PROGRAMMING%

20ENVIRONMENT%23THE%20JIT%20COMPILER

35

http://en.wikibooks.org/wiki/Java%20Programming%2FJava%20Programming%20Environment
http://en.wikibooks.org/wiki/Java%20Programming%2FJava%20Programming%20Environment
http://en.wikipedia.org/wiki/Bytecode
http://en.wikibooks.org/wiki/Java%20Programming%2FJava%20Programming%20Environment%23The%20bytecode
http://en.wikibooks.org/wiki/Java%20Programming%2FJava%20Programming%20Environment%23The%20bytecode
http://en.wikibooks.org/wiki/Java%20Programming%2FJava%20Programming%20Environment%23The%20JIT%20compiler
http://en.wikibooks.org/wiki/Java%20Programming%2FJava%20Programming%20Environment%23The%20JIT%20compiler

Compilation

6.2 Automatic Compilation of Dependent Classes

In Java, if you have used any reference to any other java object, then the class for that object will
be automatically compiled, if that was not compiled already. These automatic compilations are
nested, and this continues until all classes are compiled that are needed to run the program. It
is usually enough to compile only the high level class, since all the dependent classes will be
automatically compiled.

javac ... MainClass.java

However, you can’t rely on this feature if your program is using reflection to create objects, or
you are compiling for servlets or a "jar" package. In these cases you should list these classes for
explicit compilation.

javac ... MainClass.java, ServletOne.java, ...

The best way is to use a build tool to build your application. The build tool would check all
the needed dependencies and compile only the needed class for the build. The ANT5 tool is
the best and the most popular build tool currently available. Using ANT6 you would build your
application from the command line by typing:

ant build.xml

The xml file contains all the information needed to build the application.

Note: In rare cases, your code may appear to compile correctly but the program behaves as if you
were using an old copy of the source code (or otherwise reports errors during runtime.) When
this occurrs, you may need to clean your compilation folder by either deleting the class files or
using the Clean command from the IDE.

The next most popular way to build applications are using an IDE. IDE stands for Integrated
Development Environment, examples of which are listed below.

6.3 Packages, Subdirectories, and Resources

Each Java top level class belongs to a package (covered in the chapter about PACKAGES7). This
may be declared in a package statement at the beginning of the file; if that is missing, the class
belongs to the unnamed package.

For compilation, the file must be in the right directory structure. A file containing a class in the
unnamed package must be in the current/root directory; if the class belongs to a package, it must
be in a directory with the same name as the package.

5 Chapter 6.13 on page 40
6 Chapter 6.13 on page 40
7 Chapter 12 on page 75

36

Filename Case

The convention is that package names and directory names corresponding to the package con-
sist of only lower case letters.

Example:
Top level package. A class with this package declaration package example; has to be in a direc-
tory named example

Example:
Subpackages. A class with this package declaration package org.wikibooks.en; has to be in
the org/wikibooks/en directory.

Java programs often contain non-code files such as images and properties files. These are re-
ferred to generally as ’resources’ and stored in directories local to the classes in which they’re
used. For example, if the class com.example.ExampleApp uses the icon.png file, this file could
be stored as /com/example/resources/icon.png. These resources present a problem when a
program is complied, because javac does not copy them to wherever the .class files are being
complied to (see above); it is up to the programmer to move the resource files and directories.
See also the section on how to automate this using ant8, below.

6.4 Filename Case

The Java source file name must be the same as the public class name, the file contains. There can
be only one public class defined per file. The Java class name is case sensitive, as is the source
file name.

The naming convention for the class name is for it to start with a capital letter.

6.5 Compiler Options

6.5.1 Debugging and Symbolic Information

6.6 Additional Tools

6.6.1 IDEs

This section contains a little about the different IDEs available and their strengths and weak-
nesses.

8 Chapter 6.13 on page 40

37

Compilation

6.7 JBuilder

JBuilder is a IDE with proprietary source code, sold by BORLAND9. One of the advantages in
integration with together, a modeling tool.

6.8 JCreator

There’s info at: http://www.apcomputerscience.com/ide/jcreator/index.htm

6.9 Eclipse

Eclipse is a free IDE, plus a developer tool framework that can be extended for a particular de-
velopment need. IBM was behind this free software development and it replaced IBM Visual Age
tool. The idea was to create a standard look and feel that can be extended. The extendibility has
distinguished Eclipse from other IDE tools. Eclipse also meant to compete with Microsoft Vi-
sual Studio tools. Microsoft tools give a standard way of developing code in the Microsoft world.
Eclipse gives a similar standard way of developing code in the Java world, with big success so
far. With the online error checking only, coding can be speed up by at least 50%(coding does not
include programming).

The goal for Eclipse are twofold:

• Give a standard IDE for developing code
• Give a starting point, and the same look and feel for all other more sophisticated tools built on

Eclipse

IBM’s WSAD, and later IBM Rational Software Development Platform are built on Eclipse.

Standard Eclipse features:

• Standard window management (perspectives, views, browsers, explorers, ...)
• As you type error checking (immediate error indications, ...)
• As you type help window (type ., or <ctrl> space, ...)
• Automatic build (changed source code automatically compiled, ...)
• Built in debugger (full featured GUI debugger)
• Source code generation (getters and setters, ...)
• Searches (for implementation, for references, ...)
• Code refactoring (global reference update, ...)
• Plug-in-based architecture (be able to build tools that integrate seamlessly with the environ-

ment and other tools)
• ...

For more information see;

• ECLIPSE 10.

9 HTTP://EN.WIKIBOOKS.ORG/WIKI/BORLAND
10 HTTP://WWW.ECLIPSE.ORG/

38

http://en.wikibooks.org/wiki/Borland
http://www.eclipse.org/

NetBeans

• PLUGINCENTRAL11

6.10 NetBeans

The NetBeans IDE is a free, open-source Integrated Development Environment for software de-
velopers. The IDE runs on many platforms including Windows, Linux, Solaris, and the MacOS.
It is easy to install and use straight out of the box. The NetBeans IDE provides developers with
all the tools they need to create professional cross-platform desktop, enterprise, web and mobile
applications.

More info can be found at http://www.netbeans.org/products/ide/

6.11 BlueJ

BlueJ is an IDE that includes templates and will compile and run the applications for you.
BlueJ is often used by classes because it is not necessary to set classpaths. BlueJ has it’s own
sets of Library’s and you can add your own under preferences. That sets the classpath for all
compilations that come out of it to include those you have added and the BlueJ libraries.

BlueJ offers an interesting GUI for the creation of packages and programs. Classes are repre-
sented as boxes with arrows running between them to represent inheritance/implementation
or if one is constructed in another. BlueJ adds all those classes (the project) into the classpath at
compile time.

BLUEJ HOMESITE12

6.12 Kawa

Kawa was developed by Tek-Tools. It is basically a Java editor which does not include wizards,
and GUI tools. It is best suited to experienced Java programmers in small and midsized develop-
ment teams.

The latest version is 4.0, you can DOWNLOAD IT.13 For more info. see KAWA FROM TEK-TOOLS14.
See a JAVAWORLD ARTICLE15

It looks that there is no new development for Kawa.

11 HTTP://WWW.ECLIPSEPLUGINCENTRAL.COM/
12 HTTP://WWW.BLUEJ.ORG
13 HTTP://WWW.OLABS.COM/KAWA/
14 HTTP://WWW.TEK-TOOLS.COM/KAWA/
15 HTTP://WWW.JAVAWORLD.COM/JAVAWORLD/JW-06-2000/JW-0602-IW-KAWA.HTML

39

http://www.eclipseplugincentral.com/
http://www.bluej.org
http://www.olabs.com/kawa/
http://www.tek-tools.com/kawa/
http://www.javaworld.com/javaworld/jw-06-2000/jw-0602-iw-kawa.html

Compilation

6.13 Ant

For comprehensive information about all aspects of Ant, please see the ANT WIKIBOOK16.

Ant is a build management tool designed to replace make as the tool for automated builds of large
Java applications. Like Java, and unlike make, Ant is designed to be platform independent.

Building a Java application requires certain tasks to be performed. Those tasks may include not
only compiling the code, but also copying files, packaging the program into a jar file, running
tests and so on. Some of these tasks may depend upon others having been done previously (not
creating a jar unless the program has been complied, for instance). It might also be a good
idea to not execute all tasks every time the program is complied -- e.g. to only compile changed
source files. Ant makes all of these things easy.

The tasks and their dependencies are defined in a build.xml file, generally kept in the root di-
rectory of the java project. Ant parses this file and executes the tasks therein. Below we give an
example build.xml file.

Ant tool is written in Java and is open source, so it can be extended if there is a task you’d like to
be done during the build that is not in the pre-defined tasks list. It is very easy to hook your ant
task code to the other tasks: your code only needs to be in the classpath, and the Ant tool will
load it at runtime. For more information about writing your own Ant tasks, please see the project
website at http://ant.apache.org/.

Example build.xml file.

xml Source

<?xml version="1.0"?>
<project name="ExampleApp" basedir="." default="main">

<property name="source.dir" value="source" />
<property name="libraries.dir" value="libraries" />
<property name="build.dir" value="build" />
<property name="classes.dir" value="${build.dir}/classes" />
<property name="dist.dir" value="${build.dir}/dist" />
<property name="main-class" value="com.example.ExampleApp"/>

<path id="classpath">
<fileset dir="${libraries.dir}" includes="**/*.jar"/>

</path>

<target name="clean">
<delete dir="${build.dir}"/>

</target>

16 HTTP://EN.WIKIBOOKS.ORG/WIKI/PROGRAMMING%3AAPACHE%20ANT

40

http://en.wikibooks.org/wiki/Programming%3AApache%20Ant

Ant

<target name="compile">
<mkdir dir="${classes.dir}"/>
<javac srcdir="${source.dir}" destdir="${classes.dir}"

classpathref="classpath" />
<!-- Copy all resources to the build directory (all non-java files); see

the
section ’Packages, Subdirectories, and Resources’ above for more

information. -->
<copy todir="${classes.dir}">

<fileset dir="${src.dir}" excludes="**/*.java" />
</copy>

</target>

<target name="build" depends="compile">
<mkdir dir="${dist.dir}"/>
<copy todir="${dist.dir}/lib" flatten="true">

<path refid="classpath" />
</copy>
<path id="dist.classpath">

<fileset dir="${dist.dir}/lib" includes="*.jar" />
</path>
<manifestclasspath property="dist.manifest.classpath"

jarfile="${dist.dir}/${ant.project.name}.jar">
<classpath refid="dist.classpath" />

</manifestclasspath>
<jar destfile="${dist.dir}/${ant.project.name}.jar" >

<zipfileset dir="${classes.dir}" />
<manifest>

<attribute name="Class-Path" value="${dist.manifest.classpath}"/>
<attribute name="Main-Class" value="${main-class}" />

</manifest>
</jar>

</target>

<target name="run-build" depends="build">
<java jar="${dist.dir}/${ant.project.name}.jar" fork="true">

<classpath>
<path refid="classpath"/>
<path location="${dist.dir}/${ant.project.name}.jar"/>

</classpath>
</java>

</target>

<target name="run" depends="compile">
<java classname="${main-class}" >

<classpath>
<path refid="classpath"/>
<pathelement location="${classes.dir}" />

</classpath>
</java>

</target>

41

Compilation

<target name="clean-build" depends="clean,build"/>

<target name="main" depends="clean,run"/>

</project>

6.14 The JIT compiler

The standard JIT compiler runs on demand. When a method is called repeatedly, the JIT compiler
analyzes the bytecode and produces highly efficient machine code, which runs very fast. The
JIT compiler is smart enough to recognize when the code has already been compiled, so as the
application runs, compilation happens only as needed. As Java applications run, they tend to
become faster and faster, because the JIT can perform runtime profiling and optimization to
the code to meet the execution environment. Methods or code blocks which do not run often
receive less optimization; those which run often (so called hotspots) receive more profiling and
optimization.

42

7 Execution

There are various ways in which Java code can be executed. A complex Java application usually
uses third party APIs or services. In this section we list the most popular ways a piece of Java
code may be packed together and/or executed.

7.1 JSE code execution

Java language first edition came out in the client-server era. Thick clients were developed with
rich GUI interfaces. Java first edition, JSE (Java Standard Edition) had/has the following in its
belt:

• GUI capabilities (AWT, Swing)
• Network computing capabilities (RMI1)
• Multi-tasking capabilities (Threads)

With JSE the following Java code executions are possible:

Figure 9: Figure 1: Stand alone execution

Stand alone Java application

1 HTTP://EN.WIKIPEDIA.ORG/WIKI/JAVA%20REMOTE%20METHOD%20INVOCATION

43

http://en.wikipedia.org/wiki/Java%20remote%20method%20invocation

Execution

(Figure 1) Stand alone application refers to a Java program where both the user interface and
business modules are running on the same computer. The application may or may not use a
database to persist data. The user interface could be either AWT or Swing.

The application would start with a main() method of a Class. The application stops when the
main() method exits, or if an exception is thrown from the application to the JVM. Classes are
loaded to memory and compiled as needed, either from the file system or from a *.jar file, by
the JVM.

Invocation of Java programs distributed in this manner requires usage of the command line.
Once the user has all the class files, he needs to launch the application by the following com-
mand line (where Main is the name of the class containing the main() method.)

java Main

Java ’jar’ class libraries

Utility classes, framework classes, and/or third party classes are usually packaged and dis-
tributed in Java ’ *.jar’ files. These ’jar’ files need to be put in the CLASSPATH of the java program
from which these classes are going to be used.

If a jar file is executable, it can be run from the command line:

java -jar Application.jar

Figure 10: Figure 2: Applet Execution

Java Applet code

(Figure 2) Java Applets are Java code referenced from HTML2 pages, by the <APPLET> tag. The
Java code is downloaded from a server and runs in the client browser JVM. Java has built-in
support to render applets in the browser window.

2 HTTP://EN.WIKIPEDIA.ORG/WIKI/HTML

44

http://en.wikipedia.org/wiki/HTML

JSE code execution

Sophisticated GUI clients were found hard to develop, mostly because of download time, in-
compatibilities between browser JVM implementations, and communication requirements
back to the server. Applets are rarely used today, and are most commonly used as small, sepa-
rate graphic-like animation applets. The popularity of Java declined when Microsoft withdrew
its Java support from INTERNET EXPLORER3 default configuration, however, the plugin is still
available as a free download from JAVA.COM4.

More information can be found about applets at the APPLET CHAPTER5, in this book. Also,
Wikipedia has an article about JAVA APPLETS6.

Client Server applications

The client server applications consist of a front-end, and a back-end part, both running on a
separate computer. The idea is that the business logic would be on the back-end part of the
program, which would be reused by all the clients. Here the challenge is to achieve a separation
between front-end user interface code, and the back-end business logic code.

The communication between the front-end and the back-end can be achieved by two ways.

• One way is to define a data communication PROTOCOL7 between the two tiers. The back-end
part would listen for an incoming request. Based on the PROTOCOL8 it interprets the request
and sends back the result in data form.

• The other way is to use JAVA REMOTE INVOCATION9 (RMI). With the use of RMI, a remote
object can be created and used by the client. In this case Java objects are transmitted across
the network.

More information can be found about client-server programming, with sample code, at the
CLIENT SERVER CHAPTER10 in this book.

Web Applications

For applications needed by lots of client installations, the client-server model did not work.
Maintaining and upgrading the hundreds or thousands of clients caused a problem. It was not
practical. The solution to this problem was to create a unified, standard client, for all applica-
tions, and that is the BROWSER11.

3 HTTP://EN.WIKIPEDIA.ORG/WIKI/INTERNET%20EXPLORER
4 HTTP://JAVA.COM/
5 HTTP://EN.WIKIBOOKS.ORG/WIKI/JAVA%20PROGRAMMING%2FAPPLETS
6 HTTP://EN.WIKIPEDIA.ORG/WIKI/JAVA%20APPLET
7 HTTP://EN.WIKIPEDIA.ORG/WIKI/PROTOCOL%20%28COMPUTING%29
8 HTTP://EN.WIKIPEDIA.ORG/WIKI/PROTOCOL%20%28COMPUTING%29
9 HTTP://EN.WIKIPEDIA.ORG/WIKI/JAVA%20REMOTE%20METHOD%20INVOCATION
10 HTTP://EN.WIKIBOOKS.ORG/WIKI/JAVA%20PROGRAMMING%2FCLIENT%20SERVER
11 HTTP://EN.WIKIPEDIA.ORG/WIKI/WEB%20BROWSER

45

http://en.wikipedia.org/wiki/Internet%20Explorer
http://java.com/
http://en.wikibooks.org/wiki/Java%20Programming%2FApplets
http://en.wikipedia.org/wiki/Java%20applet
http://en.wikipedia.org/wiki/Protocol%20%28computing%29
http://en.wikipedia.org/wiki/Protocol%20%28computing%29
http://en.wikipedia.org/wiki/Java%20remote%20method%20invocation
http://en.wikibooks.org/wiki/Java%20Programming%2FClient%20Server
http://en.wikipedia.org/wiki/Web%20browser

Execution

Having a standard client, it makes sense to create a unified, standard back-end service as well,
and that is the APPLICATION SERVER12.

Web Application is an application that is running in the APPLICATION SERVER13, and it can be
accessed and used by the BROWSER14 client.

There are three main area of interest in Web Applications, those are:

• The WEB BROWSER15. This is the container of rendering HTML text, and running client scripts
• The HTTP16 PROTOCOL17. Text data are sent back and forth between Browser and the Server
• The WEB SERVER18 to serve static content, APPLICATION SERVER19 to serve dynamic content

and host EJB20s.

Wikipedia also has an article about WEB APPLICATION21.

7.2 J2EE code execution

As the focus was shifting from reaching GUI clients to thin client applications, with Java version
2, Sun introduced J2EE (Java 2 Extended Edition). J2EE added :

• COMPONENTS BASE ARCHITECTURE22, (Servlet, JSP, EJB Containers)

With J2EE the following Java component executions are possible:

Figure 11: Figure 3: Servlet Execution

Java Servlet code

12 HTTP://EN.WIKIPEDIA.ORG/WIKI/APPLICATION%20SERVER
13 HTTP://EN.WIKIPEDIA.ORG/WIKI/APPLICATION%20SERVER
14 HTTP://EN.WIKIPEDIA.ORG/WIKI/WEB%20BROWSER
15 HTTP://EN.WIKIPEDIA.ORG/WIKI/WEB%20BROWSER
16 HTTP://EN.WIKIPEDIA.ORG/WIKI/HYPERTEXT%20TRANSFER%20PROTOCOL
17 HTTP://EN.WIKIPEDIA.ORG/WIKI/PROTOCOL%20%28COMPUTING%29
18 HTTP://EN.WIKIPEDIA.ORG/WIKI/WEB%20SERVER
19 HTTP://EN.WIKIPEDIA.ORG/WIKI/APPLICATION%20SERVER
20 HTTP://EN.WIKIPEDIA.ORG/WIKI/ENTERPRISE%20JAVABEAN
21 HTTP://EN.WIKIPEDIA.ORG/WIKI/WEB%20APPLICATION
22 HTTP://EN.WIKIPEDIA.ORG/WIKI/SOFTWARE%20COMPONENTRY

46

http://en.wikipedia.org/wiki/Application%20server
http://en.wikipedia.org/wiki/Application%20server
http://en.wikipedia.org/wiki/Web%20browser
http://en.wikipedia.org/wiki/Web%20Browser
http://en.wikipedia.org/wiki/Hypertext%20Transfer%20Protocol
http://en.wikipedia.org/wiki/Protocol%20%28computing%29
http://en.wikipedia.org/wiki/Web%20server
http://en.wikipedia.org/wiki/Application%20server
http://en.wikipedia.org/wiki/Enterprise%20JavaBean
http://en.wikipedia.org/wiki/Web%20application
http://en.wikipedia.org/wiki/Software%20componentry

J2EE code execution

(Figure 3) Java got its popularity with server side programming, more specifically with J2EE23

servlets. Servlets are running in a simple J2EE framework to handle client HTTP24 requests.
They are meant to replace CGI PROGRAMMING25 for web pages rendering dynamic content.

The servlet is running in a so called SERVLET-CONTAINER/WEB CONTAINER26. The servlet’s re-
sponsibility is to:

• Handle the request by doing the business logic computation,
• Connecting to a database if needed,
• Create HTML to present to the user through the browser

The HTML output represents both the presention logic and the results of the business compu-
tations. This represents a huge problem, and there is no real application relying only on servlets
to handle the presention part of the responsibility. There are two main solutions to this:

• Use a template tool (Store the presentation part in an HTML file, marking the areas that need
to be replaced after business logic computations).

• Use JSP (See next section)

Wikipedia also has an article about SERVLETS27.

Figure 12: Figure 4: Jsp Execution

Java Server Pages (JSP) code

(Figure 4) JSP is an HTML file with embedded Java code inside. The first time the JSP is accessed,
the JSP is converted to a Java Servlet. This servlet outputs HTML which has inside the result of
the business logic computation. There are special JSP tags that helps to add data dynamically
to the HTML. Also JSP technology allows to create custom tags.

Using the JSP technology correctly, business logic computations should not be in the embedded
Java part of the JSP. JSP should be used to render the presentation of the static and dynamic data.
Depending on the complexity of the data, 100% separation is not easy to achieve. Using custom

23 HTTP://EN.WIKIPEDIA.ORG/WIKI/JAVA%20EE
24 HTTP://EN.WIKIPEDIA.ORG/WIKI/HYPERTEXT%20TRANSFER%20PROTOCOL
25 HTTP://EN.WIKIPEDIA.ORG/WIKI/COMMON%20GATEWAY%20INTERFACE
26 HTTP://EN.WIKIPEDIA.ORG/WIKI/WEB%20CONTAINER
27 HTTP://EN.WIKIPEDIA.ORG/WIKI/JAVA%20SERVLET

47

http://en.wikipedia.org/wiki/Java%20EE
http://en.wikipedia.org/wiki/Hypertext%20Transfer%20Protocol
http://en.wikipedia.org/wiki/Common%20Gateway%20Interface
http://en.wikipedia.org/wiki/Web%20container
http://en.wikipedia.org/wiki/Java%20Servlet

Execution

tags, however may help to get closer to 100%. This is advocated also in MVC28 architecture (see
below).

Figure 13: Figure 5: EJB Execution

EJB code

(Figure 5) In the 1990s, with the client server computing, a trend started, that is to move away
from Mainfraim computing. That resulted in many small separate applications in a Compa-
ny/Enterprise. Many times the same data was used in different applications. A new philosophy,
"Enterprise Computing", was created to address these issues. The idea was to create compo-
nents that can be reused throughout the Enterprise. The Enterprise Java Beans (EJBs) were
supposed to address this.

An EJB is an application component that runs in an EJB container. The client accesses the EJB
modules through the container, never directly. The container manages the life cycle of the EJB
modules, and handles all the issues that arise from network/enterpise computing. Some of
those are SECURITY/ACCESS CONTROL29, OBJECT POOLING30, TRANSACTION MANAGEMENT31,

EJBs have the same problems as any reusable code: they need to be generic enough to be able
to be reused and the changes or maintenance of EJBs can affect existing clients. Many times
EJBs are used unnecessarily when they are not really needed. An EJB should be designed as a
separate application in the enterprise, fulfilling one function.

28 HTTP://EN.WIKIPEDIA.ORG/WIKI/MODEL-VIEW-CONTROLLER
29 HTTP://EN.WIKIPEDIA.ORG/WIKI/ACCESS%20CONTROL
30 HTTP://EN.WIKIPEDIA.ORG/WIKI/OBJECT%20POOL
31 HTTP://EN.WIKIPEDIA.ORG/WIKI/TRANSACTION%20PROCESSING

48

http://en.wikipedia.org/wiki/Model-view-controller
http://en.wikipedia.org/wiki/Access%20control
http://en.wikipedia.org/wiki/Object%20pool
http://en.wikipedia.org/wiki/Transaction%20processing

Jini

Figure 14: Figure 6: MVC Execution

Combine J2EE components to create an MVC architecture

This leads us to the three layers/tiers as shown in (Figure 6).

In modern web applications, with lots of static data and nice graphics, how the data is presented
to the user became very important and usually needs the help of a graphic artist.

To help programmers and graphic artists to work together, the separation between data, code,
and how it is presented became crucial.

• The view (User Interface Logic) contains the logic that is necessary to construct the presen-
tation. This could be handled by JSP technology.

• The servlet acts as the controller and contains the logic that is necessary to process user
events and to select an appropriate response.

• The business logic (model) actually accomplishes the goal of the interaction. This might be a
query or an update to a database. This could be handled by EJB technology.

For more information about MVC, please see MVC32.

7.3 Jini

After J2EE Sun had a vision about the next step of network computing. That is JINI33. The main
idea is that in a network environment, there would be many independent services and con-

32 HTTP://EN.WIKIPEDIA.ORG/WIKI/MODEL-VIEW-CONTROLLER
33 HTTP://EN.WIKIPEDIA.ORG/WIKI/JINI

49

http://en.wikipedia.org/wiki/Model-view-controller
http://en.wikipedia.org/wiki/Jini

Execution

sumers. Jini would allow these services/consumers to interact dynamically with each other in
a robust way. The basic features of Jini are:

• No user intervention is needed when services are brought on or offline. (In contrast to EJBs
where the client program has to know the server and port number where the EJB is deployed,
in Jini the client is supposed to find, to discover, the service in the network.)

• Self healing by adapting when services (consumers of services) come and go. (Services peri-
odically need to renew a lease to indicate that they are still available.)

• Consumers of JINI services do not need prior knowledge of the service’s implementation. The
implementation is downloaded dynamically and run on the consumer JVM, without config-
uration and user intervention. (For example, the end user may be presented with a slightly
different user interface depending upon which service is being used at the time. The imple-
mentation of the user interface code would be provided by the service being used.)

A minimal Jini network environment consists of:

• One or more services
• A lookup-service keeping a list of registered services
• One or more consumers

Jini is not widely used at the current writing (2006). There are two possible reasons for it. One is
Jini a bit complicated to understand and to set it up. The other reason is that Microsoft pulled
out from Java, which caused the industry to turn to the use of proprietary solutions.

CATEGORY:JAVA PROGRAMMING34

34 HTTP://EN.WIKIBOOKS.ORG/WIKI/CATEGORY%3AJAVA%20PROGRAMMING

50

http://en.wikibooks.org/wiki/Category%3AJava%20Programming

8 Understanding a Java Program

This article presents a small Java program which can be run from the console. It computes the
distance between two points on a plane. You need not understand the structure and meaning of
the program just yet; we will get to that soon. Also, because the program is intended as a simple
introduction, it has some room for improvement, and later in the module we will show some of
these improvements. But let’s not get too far ahead of ourselves!

8.1 The Distance Class: Intent, Source, and Use

This class is named Distance, so using your favorite editor or Java IDE, first create a file named
Distance.java, then copy the source below and paste it into the file and save the file.

public class Distance
{
private java.awt.Point point0, point1;

public Distance(int x0, int y0, int x1, int y1)
{
point0 = new java.awt.Point(x0, y0);
point1 = new java.awt.Point(x1, y1);

}

public void printDistance()
{
System.out.println("Distance between " + point0 + " and " + point1

+ " is " + point0.distance(point1));
}

public static void main(String[] args)
{
Distance dist = new Distance(

intValue(args[0]), intValue(args[1]),
intValue(args[2]), intValue(args[3]));

dist.printDistance();
}

private static int intValue(String data)
{
return Integer.parseInt(data);

}
}

At this point, you may wish to review the source to see how much you might be able to un-
derstand. While perhaps not being the most literate of programming languages, someone with
understanding of other procedural languages such as C, or other OO languages such as C++ or
C#, will be able to understand most if not all of the sample program.

51

Understanding a Java Program

Once you save the file, COMPILE1 the program:

javac Distance.java

(If the javac command fails, review the JAVA INSTALLATION INSTRUCTIONS2.)

To run the program, you supply it with the x and y coordinates of two points on a plane. (For this
version of Distance, only integer points are supported.) The command sequence is

java Distance x0 y0 x1 y1

to compute the distance between the points (x0, y0) and (x1, y1)

For example, the command

java Distance 0 3 4 0

will compute the distance between the points (0,3) and (4,0) and print the following:

Distance between java.awt.Point[x=0,y=3] and java.awt.Point[x=4,y=0] is 5.0

The command

java Distance -4 5 11 19

will compute the distance between the points (-4,5) and (11,19):

Distance between java.awt.Point[x=-4,y=5] and java.awt.Point[x=11,y=19] is
20.518284528683193

We’ll explain this strange looking output, and also show how to improve it, later.

8.2 Detailed Program Structure and Overview

As promised, we will now provide a detailed description of this Java program. We will discuss the
syntax and structure of the program and the meaning of that structure.

1 Chapter 6 on page 35
2 HTTP://EN.WIKIBOOKS.ORG/WIKI/JAVA%20PROGRAMMING%2FINSTALLATION

52

http://en.wikibooks.org/wiki/Java%20Programming%2FInstallation

Detailed Program Structure and Overview

8.2.1 Introduction to Java Syntax

The syntax of a Java class is the characters and symbols and their structure used to code the
class using Unicode characters. A fuller treatment of the syntax elements of Java may be found at
SYNTAX3. We will provide here only enough description of the syntax to grasp the above program.

Java programs consist of a sequence of tokens. There are different kinds of tokens. For example,
there are word tokens such as class and public which represent KEYWORDS4 - special words
with reserved meaning in Java. Other words (non keywords such as Distance, point0, x1, and
printDistance) are identifiers. Identifiers have many different uses in Java but primarily they
are used as names. Java also has tokens to represent numbers, such as 1 and 3; these are known
as LITERALS5. STRING LITERALS6, such as "Distance between ", consist of zero or more char-
acters embedded in double quotes, and OPERATORS7 such as + and = are used to express basic
computation such as addition or String concatenation or assignment. There are also left and
right braces ({ and }) which enclose BLOCKS8. The body of a class is one such block. Some to-
kens are punctuation, such as periods . and commas , and semicolons ;. You use WHITESPACE9

such as spaces, tabs, and newlines, to separate tokens. For example, whitespace is required be-
tween keywords and identifiers: publicstatic is a single identifier with twelve characters, not
two Java keywords.

8.2.2 Declarations and Definitions

Sequences of tokens are used to construct the next building blocks of Java classes: declarations
and definitions. A class declaration provides the name and visibility of a class. For our example,

public class Distance

is the class declaration. It consists (in this case) of two keywords, PUBLIC10 and CLASS11 fol-
lowed by the identifier Distance.

This means that we are defining a class named Distance. Other classes, or in our case, the com-
mand line, can refer to the class by this name. The public keyword is an ACCESS MODIFIER12

which declares that this class and its members may be accessed from other classes. The class
keyword, obviously, identifies this declaration as a class. Java also allows declarations of INTER-
FACES13 and (as of Java 5) ANNOTATIONS14.

3 Chapter 9 on page 61
4 HTTP://EN.WIKIBOOKS.ORG/WIKI/JAVA%20PROGRAMMING%2FKEYWORDS
5 Chapter 9.2 on page 63
6 HTTP://EN.WIKIBOOKS.ORG/WIKI/JAVA%20PROGRAMMING%2FSTRING%20LITERALS
7 HTTP://EN.WIKIBOOKS.ORG/WIKI/JAVA%20PROGRAMMING%2FOPERATORS
8 Chapter 9.3 on page 64
9 HTTP://EN.WIKIBOOKS.ORG/WIKI/JAVA%20PROGRAMMING%2FWHITESPACE
10 HTTP://EN.WIKIBOOKS.ORG/WIKI/JAVA%20PROGRAMMING%2FKEYWORDS%2FPUBLIC
11 HTTP://EN.WIKIBOOKS.ORG/WIKI/JAVA%20PROGRAMMING%2FKEYWORDS%2FCLASS
12 Chapter 14 on page 83
13 Chapter 24 on page 135
14 HTTP://EN.WIKIBOOKS.ORG/WIKI/JAVA%20PROGRAMMING%2FANNOTATIONS

53

http://en.wikibooks.org/wiki/Java%20Programming%2FKeywords
http://en.wikibooks.org/wiki/Java%20Programming%2FString%20Literals
http://en.wikibooks.org/wiki/Java%20Programming%2FOperators
http://en.wikibooks.org/wiki/Java%20Programming%2FWhitespace
http://en.wikibooks.org/wiki/Java%20Programming%2FKeywords%2Fpublic
http://en.wikibooks.org/wiki/Java%20Programming%2FKeywords%2Fclass
http://en.wikibooks.org/wiki/Java%20Programming%2FAnnotations

Understanding a Java Program

The class declaration is then followed by a block (surrounded by curly braces) which provides
the class’s definition. The definition is the implementation of the class - the declaration and
definitions of the class’s members. This class contains exactly six members, which we will explain
in turn.

1. Two field declarations, named point0 and point1
2. A constructor declaration
3. Three method declarations

Example: Instance Fields

The declaration

private java.awt.Point point0, point1;

declares two INSTANCE FIELDS15. Instance fields represent named values that are allocated when-
ever an instance of the class is constructed. When a Java program creates a Distance instance,
that instance will contain space for point0 and point1. When another Distance object is cre-
ated, it will contain space for its own point0 and point1 values. The value of point0 in the first
Distance object can vary independently of the value of point0 in the second Distance object.

This declaration consists of:

1. The PRIVATE16 access modifier,
which means these instance fields are not visible to other classes.

2. The type of the instance fields. In this case, the type is java.awt.Point.
This is the class Point in the java.awt package.

3. The names of the instance fields in a comma separated list.

These two fields could also have been declared with two separate but more verbose declarations,

private java.awt.Point point0;
private java.awt.Point point1;

Since the types of these fields is a reference type (i.e. a field that refers to or can hold a reference
to an object value), Java will implicitly initialize the values of point0 and point1 to null when a
Distance instance is created. The null value means that a reference value does not refer to an
object. The special Java literal, null is used to represent the null value in a program. While you
can explicitly assign null values in a declaration, as in

private java.awt.Point point0 = null;
private java.awt.Point point1 = null;

it is not necessary and most programmers omit such default assignments.

15 HTTP://EN.WIKIBOOKS.ORG/WIKI/JAVA%20PROGRAMMING%2FINSTANCE%20FIELDS
16 HTTP://EN.WIKIBOOKS.ORG/WIKI/JAVA%20PROGRAMMING%2FKEYWORDS%2FPRIVATE

54

http://en.wikibooks.org/wiki/Java%20Programming%2FInstance%20Fields
http://en.wikibooks.org/wiki/Java%20Programming%2FKeywords%2Fprivate

Detailed Program Structure and Overview

Example: Constructor

A CONSTRUCTOR17 is a special method in a class which is used to construct an instance of the
class. The constructor can perform initialization for the object, beyond that which the Java VM
does automatically. For example, Java will automatically initialize the fields point0 and point1
to null.

Below is the constructor for this class. It consists of five parts:

1. The optional ACCESS MODIFIER(S)18.
In this case, the constructor is declared public

2. The constructor name, which must match the class name exactly: Distance in this case.
3. The constructor PARAMETERS19.

The parameter list is required. Even if a constructor does not have any parameters, you
must specify the empty list (). The parameter list declares the type and name of each of
the method’s parameters.

4. An optional throws clause which declares the exceptions that the constructor may throw.
This constructor does not declare any exceptions.

5. The constructor body, which is a Java BLOCK20 (enclosed in {}). This constructor’s body
contains two statements.

public Distance(int x0, int y0, int x1, int y1) { point0 = new
java.awt.Point(x0, y0); point1 = new java.awt.Point(x1, y1); } This constructor
accepts four parameters, named x0, y0, x1 and y1. Each parameter requires a parameter
type declaration, which in this example is int for all four parameters. Java integer values are
signed, 32 bit twos complement integers. The parameters in the parameter list are separated by
commas.

The two assignments in this constructor use Java’s new operator to allocate two java.awt.Point
objects. The first allocates an object representing the first point, (x0, y0), and assigns it to the
point0 instance variable (replacing the null value that the instance variable was initialized to).
The second statement allocates a second java.awt.Point instance with (x1, y1) and assigns
it to the point1 instance variable.

This is the constructor for the Distance class. Distance implicitly extends from
java.lang.Object. Java inserts a call to the super constructor as the first executable statement
of the constructor if there is not one explicitly coded. The above constructor body is equivalent
to the following body with the explicit super constructor call:

{
super();
point0 = new java.awt.Point(x0, y0);
point1 = new java.awt.Point(x1, y1);

}

17 Chapter 15.7 on page 91
18 Chapter 14 on page 83
19 HTTP://EN.WIKIBOOKS.ORG/WIKI/JAVA%20PROGRAMMING%2FPARAMETERS
20 Chapter 9.3 on page 64

55

http://en.wikibooks.org/wiki/Java%20Programming%2FParameters

Understanding a Java Program

While it is true that this class could be implemented in other ways, such as simply storing the
coordinates of the two points and computing the distance as

√
(x1 −x0)2 + (y1 − y0)2, this class

instead uses the existing java.awt.Point class. This choice matches the abstract definition of
this class: to print the distance between two points on the plane. We take advantage of existing
behavior already implemented in the Java platform rather than implementing it again. We will
see later how to make the program more flexible without adding much complexity, because we
choose to use object abstractions here. However, the key point is that this class uses information
hiding. That is, how the class stores its state or how it computes the distance is hidden. We can
change this implementation without altering how clients use and invoke the class.

Example: Methods

Methods are the third and most important type of class member. This class contains three
methods in which the behavior of the Distance class is defined: printDistance(), main(), and
intValue()

The printDistance() method

The printDistance() method prints the distance between the two points to the standard
output (normally the console).

public void printDistance()
{

System.out.println("Distance between " + point0
+ " and " + point1
+ " is " + point0.distance(point1)); }

}

This INSTANCE METHOD21 executes within the context of an implicit Distance object. The
instance field references, point0 and point1, refer to instance fields of that implicit object.
You can also use the special variable this to explicitly reference the current object. Within an
instance method, Java binds the name this to the object on which the method is executing, and
the type of this is that of the current class. The body of the printDistance method could also
be coded as

System.out.println("Distance between " + this.point0
+ " and " + this.point1
+ " is " + this.point0.distance(this.point1)); }

to make the instance field references more explicit.

This method both computes the distance and prints it in one statement. The distance
is computed with point0.distance(point1); distance() is an instance method of the
java.awt.Point class (of which point0 and point1 are instances. The method operates on
point0 (binding this to the object that point0 refers to during the execution of the method)

21 HTTP://EN.WIKIBOOKS.ORG/WIKI/JAVA%20PROGRAMMING%2FINSTANCE%20METHODS

56

http://en.wikibooks.org/wiki/Java%20Programming%2FInstance%20Methods

Detailed Program Structure and Overview

and accepting another Point as a parameter. (Actually, it is slightly more complicated than that,
but we’ll explain later.) The result of the distance() method is a double precision floating point
number.

This method uses the syntax

"Distance between " + this.point0
+ " and " + this.point1
+ " is " + this.point0.distance(this.point1)

to construct a String to pass to the System.out.println(). This expression is a series of
STRING CONCATENATION22 methods which concatenates Strings or the String representation of
primitive types (such as doubles) or objects, and returns a long string. For example, the result of
this expression for the points (0,3) and (4,0) is the String

"Distance between java.awt.Point[x=0,y=3] and java.awt.Point[x=4,y=0] is 5.0"

which the method then prints to System.out.

In order to print, we invoke the println(). This is an instance method from
java.io.PrintStream, which is the type of the static field out in the class java.lang.System.
The Java VM binds System.out to the standard output stream when it starts a program.

The main() method

The main() method is the main entry point which Java invokes when you start a Java program
from the command line. The command

java Distance 0 3 4 0

instructs Java to locate the Distance class, put the four command line arguments into an array
of String values, then pass those arguments the public static main(String[]) method of
the class. (We will introduce arrays shortly.) Any Java class that you want to invoke from the
command line or desktop shortcut must have a main method with this signature.

public static void main(String[] args)
{

Distance dist = new Distance(
intValue(args[0]), intValue(args[1]),
intValue(args[2]), intValue(args[3]));

dist.printDistance();
}

The main() method invokes the final method, intValue(), four times. The intValue() takes
a single string parameter and returns the integer value represented in the string. For example,
intValue("3") will return the integer 3.

22 HTTP://EN.WIKIBOOKS.ORG/WIKI/JAVA%20PROGRAMMING%2FSTRING%20CONCATENATION

57

http://en.wikibooks.org/wiki/Java%20Programming%2FString%20Concatenation

Understanding a Java Program

The intValue() method

The intValue() method delegates its job to the Integer.parseInt() method. The main
method could have called Integer.parseInt() directly; the intValue() method simply
makes the main() method slightly more readable.

private static int intValue(String data)
{

return Integer.parseInt(data);
}

This method is PRIVATE23 since, like the fields point0 and point1, it is part of the internal im-
plementation of the class and is not part of the external programming interface of the Distance
class.

Static vs. Instance Methods

Both the main() and intValue() methods are STATIC METHODS24. The static keyword tells the
compiler to create a single memory space associated with the class. Each individual object in-
stantiated has its own private state variables and methods but use the same static methods and
members common to the single class object created by the compiler when the first class object
is instantiated or created. This means that the method executes in a static or non-object con-
text - there is no implicit separate instance available when the static methods run from various
objects, and the special variable this is not available. As such, static methods cannot access
instance methods or instance fields (such as printDistance()) or point0) directly. The main()
method can only invoke the instance method printDistance() method via an instance refer-
ence such as dist.

8.2.3 Data Types

Most declarations have a data type. Java has several categories of data types: reference types,
primitive types, array types, and a special type, void.

Reference Types

A reference type is a Java data type which is defined by a Java class or interface. Reference types
derive this name because such values refer to an object or contain a reference to an object. The
idea is similar to pointers in other languages like C.

Java represents sequences of character data, or STRING25, with the reference type
java.lang.String which is most commonly referred to as String. String literals, such as
"Distance between " are constants whose type is String.

23 HTTP://EN.WIKIBOOKS.ORG/WIKI/JAVA%20PROGRAMMING%2FKEYWORDS%2FPRIVATE
24 HTTP://EN.WIKIBOOKS.ORG/WIKI/JAVA%20PROGRAMMING%2FSTATIC%20METHODS
25 Chapter 18 on page 103

58

http://en.wikibooks.org/wiki/Java%20Programming%2FKeywords%2Fprivate
http://en.wikibooks.org/wiki/Java%20Programming%2FStatic%20Methods

Detailed Program Structure and Overview

This program uses three separate reference types:

1. java.lang.String (or simply String)
2. Distance
3. java.awt.Point

For more information see chapter : JAVA PROGRAMMING/CLASSES, OBJECTS AND TYPES26.

Primitive Types

In addition to object or reference types, Java supports PRIMITIVE TYPES27. The primitive types
are used to represent Boolean, character, and numeric values. This program uses only one
primitive type explicitly, int, which represents 32 bit signed integer values. The program also
implicitly uses double, which is the return type of the distance() method of java.awt.Point.
double values are 64 bit IEEE floating point values. The main() method uses integer values 0, 1,
2, and 3 to access elements of the command line arguments. The Distance() constructor’s four
parameters also have the type int. Also, the intValue() method has a return type of int. This
means a call to that method, such as intValue(args[0]), is an expression of type int. This
helps explain why the main method cannot call

new Distance(args[0], args[1], args[2], args[3]) // this is an error

Since the type of the args array element is String, and our constructor’s parameters must be int,
such a call would result in an error because Java cannot automatically convert values of type
String into int values.

Java’s primitive types are boolean, byte, char, short, int, long, float and double, each of which
are also Java language keywords.

Array Types

Java supports ARRAYS28, which are aggregate types which have a fixed element type (which can
be any Java type) and an integral size. This program uses only one array, String[] args. This
indicates that args has an array type and that the element type is String. The Java VM con-
structs and initializes the array that is passed to the main method. See ARRAYS29 for more details
on how to create arrays and access their size.

The elements of arrays are accessed with integer indices. The first element of an array is always
element 0. This program accesses the first four elements of the args array explicitly with the
indices 0, 1, 2, and 3. (This program does not perform any input validation, such as verifying
that the user passed at least four arguments to the program. We will fix that later.)

26 Chapter 11 on page 71
27 Chapter 16 on page 95
28 Chapter 28 on page 143
29 Chapter 28 on page 143

59

Understanding a Java Program

void

VOID30 is not a type in Java; it represents the absence of a type. Methods which do not return
values are declared as void methods.

This class defines two void methods:

public static void main(String[] args) { ... }
public void printDistance() { ... }

8.3 Comments in Java programs

See HERE31 for more information on that important topic.

30 HTTP://EN.WIKIBOOKS.ORG/WIKI/JAVA%20PROGRAMMING%2FKEYWORDS%2FVOID
31 HTTP://EN.WIKIBOOKS.ORG/WIKI/JAVA_PROGRAMMING%2FUNDERSTANDING_A_JAVA_PROGRAM%

2FJAVADOC_AND_OTHER_COMMENTS

60

http://en.wikibooks.org/wiki/Java%20Programming%2FKeywords%2Fvoid
http://en.wikibooks.org/wiki/Java_Programming%2FUnderstanding_a_Java_Program%2FJavadoc_and_other_comments
http://en.wikibooks.org/wiki/Java_Programming%2FUnderstanding_a_Java_Program%2FJavadoc_and_other_comments

9 Syntax

Java derives much of its syntax from the C1 programming language: basic assignment statement
syntax, expressions, control flow statements and blocks, etc. will be very familiar to C program-
mers.

Unicode

Java source code are built by Unicode characters.

Tokens

Java programs consist of a sequence of different kinds of tokens. For example, there are word
tokens such as class and public which are KEYWORDS2.

KEYWORDS3

Those are special words with reserved meaning in Java. Those words can not be used by the
programers to name identifiers.

Identifiers

Other words (non keywords) are identifiers. Identifiers have many different uses in Java but
primarily they are used as names, class names, method names, and variable names... .

LITERALS4

Java also has tokens to represent numbers, such as 1 and 3; these are known as LITERALS5.

String LITERALS6, such as "http://en.wikibooks.org/Java_Programming", consist of zero
or more characters embedded in double quotes.

OPERATORS7

And OPERATORS8 such as + and = are used to express basic computation such as addition or
String concatenation or assignment.

BLOCKS9

1 HTTP://EN.WIKIBOOKS.ORG/WIKI/PROGRAMMING%3AC
2 HTTP://EN.WIKIBOOKS.ORG/WIKI/JAVA%20PROGRAMMING%2FKEYWORDS
3 HTTP://EN.WIKIBOOKS.ORG/WIKI/JAVA%20PROGRAMMING%2FKEYWORDS
4 Chapter 9.2 on page 63
5 Chapter 9.2 on page 63
6 Chapter 9.2 on page 63
7 HTTP://EN.WIKIBOOKS.ORG/WIKI/JAVA%20PROGRAMMING%2FOPERATORS
8 HTTP://EN.WIKIBOOKS.ORG/WIKI/JAVA%20PROGRAMMING%2FOPERATORS
9 Chapter 9.3 on page 64

61

http://en.wikibooks.org/wiki/Programming%3AC
http://en.wikibooks.org/wiki/Java%20Programming%2FKeywords
http://en.wikibooks.org/wiki/Java%20Programming%2FKeywords
http://en.wikibooks.org/wiki/Java%20Programming%2FOperators
http://en.wikibooks.org/wiki/Java%20Programming%2FOperators

Syntax

There are also left and right braces ({ and }) which enclose BLOCKS10. The body of a class is one
such block.

STATEMENTS11

A Block contains one or more Java STATEMENT(S)12, separated by semicolons. A statement is
the smallest building block of Java.

Separators

Some tokens are punctuation, such as periods . and commas , and semicolons ;.

WHITESPACE13

You use WHITESPACE14 such as spaces, tabs, and newlines, to separate tokens. For example,
whitespace is required between keywords and identifiers: publicstatic is a single identifier
with twelve characters, not two Java keywords.

COMMENTS15

Comments are not part of the executing code. Comments are used to document the code.

9.1 Unicode

Most Java program text consists of ASCII16 characters, but any Unicode character can be used
as part of identifier names, in comments, and in character and string literals. UNICODE ESCAPE

SEQUENCES17 may also be used to express a Unicode character.

For example, π (which is the Greek Lowercase Letter pi) is a valid Java identifier.

double π = Math.PI;

and in a string literal

String pi = string;

π may also be represented in Java as the Unicode escape sequence \u03C0. Thus, the following is
a valid, but not very readable, declaration and assignment:

10 Chapter 9.3 on page 64
11 Chapter 10 on page 67
12 Chapter 10 on page 67
13 Chapter 9.4 on page 65
14 Chapter 9.4 on page 65
15 HTTP://EN.WIKIBOOKS.ORG/WIKI/JAVA%20PROGRAMMING%2FSYNTAX%2FCOMMENTS
16 HTTP://EN.WIKIPEDIA.ORG/WIKI/ASCII
17 HTTP://EN.WIKIBOOKS.ORG/WIKI/JAVA%20PROGRAMMING%2FSYNTAX%2FUNICODE%20ESCAPE%

20SEQUENCES

62

http://en.wikibooks.org/wiki/Java%20Programming%2FSyntax%2FComments
http://en.wikipedia.org/wiki/ASCII
http://en.wikibooks.org/wiki/Java%20Programming%2FSyntax%2FUnicode%20Escape%20Sequences
http://en.wikibooks.org/wiki/Java%20Programming%2FSyntax%2FUnicode%20Escape%20Sequences

Literals

double \u03C0 = Math.PI;

The following demonstrate the use of Unicode escape sequences in other Java syntax:

Declare Strings pi and quote which contain \u03C0 and \u0027
respectively:

String pi = string;
String quote = string;

Note that a Unicode escape sequence functions just like any other character in the source code.
E.g., \u0022 (double quote, ") needs to be quoted in a string just like ".

Declare Strings doubleQuote1 and doubleQuote2 which both contain "
(double quote):

String doubleQuote1 = string;
String doubleQuote2 = string;

"\u0022" doesn’t work since """ doesn’t work.

See UNICODE ESCAPE SEQUENCES18 for full details.

CATEGORY:JAVA PROGRAMMING19

9.2 Literals

Java Literals are syntactic representations of boolean, character, numeric, or string data. Literals
provide a means of expressing specific values in your program. For example, in the following
statement, an integer variable named count is declared and assigned an integer value. The
literal 0 represents, natually enough, the value zero.

int count = 0;

The following method call passes a String literal string the boolean literal true and the special
null value null to the method parse():

18 HTTP://EN.WIKIBOOKS.ORG/WIKI/JAVA%20PROGRAMMING%2FSYNTAX%2FUNICODE%20ESCAPE%
20SEQUENCES

19 HTTP://EN.WIKIBOOKS.ORG/WIKI/CATEGORY%3AJAVA%20PROGRAMMING

63

http://en.wikibooks.org/wiki/Java%20Programming%2FSyntax%2FUnicode%20Escape%20Sequences
http://en.wikibooks.org/wiki/Java%20Programming%2FSyntax%2FUnicode%20Escape%20Sequences
http://en.wikibooks.org/wiki/Category%3AJava%20Programming

Syntax

List items = parse(string, true, null);

• BOOLEAN LITERALS20

• NUMERIC LITERALS21

• CHARACTER LITERALS22

• INTEGER LITERALS23

• FLOATING POINT LITERALS24

• STRING LITERALS25

• null26

9.3 Blocks

Java has a concept called block that is enclosed between the { and } characters, called curly
braces. A block executed as a single statetement, and can be used where a single statetement
is accepted.

After a block is executed all local variables defined inside the block is discarded, go out of scope.

{
...
// -- This is a block ---

}

Blocks can be nested:

{
...
{

// -- This is a nested block ---
}

}

CATEGORY:JAVA PROGRAMMING27

20 HTTP://EN.WIKIBOOKS.ORG/WIKI/JAVA%20PROGRAMMING%2FLITERALS%2FBOOLEAN%
20LITERALS

21 HTTP://EN.WIKIBOOKS.ORG/WIKI/JAVA%20PROGRAMMING%2FLITERALS%2FNUMERIC%
20LITERALS

22 HTTP://EN.WIKIBOOKS.ORG/WIKI/JAVA%20PROGRAMMING%2FLITERALS%2FNUMERIC%
20LITERALS%2FCHARACTER%20LITERALS

23 HTTP://EN.WIKIBOOKS.ORG/WIKI/JAVA%20PROGRAMMING%2FLITERALS%2FNUMERIC%
20LITERALS%2FINTEGER%20LITERALS

24 HTTP://EN.WIKIBOOKS.ORG/WIKI/JAVA%20PROGRAMMING%2FLITERALS%2FNUMERIC%
20LITERALS%2FFLOATING%20POINT%20LITERALS

25 HTTP://EN.WIKIBOOKS.ORG/WIKI/JAVA%20PROGRAMMING%2FLITERALS%2FSTRING%
20LITERALS

26 HTTP://EN.WIKIBOOKS.ORG/WIKI/JAVA%20PROGRAMMING%2FLITERALS%2FNULL
27 HTTP://EN.WIKIBOOKS.ORG/WIKI/CATEGORY%3AJAVA%20PROGRAMMING

64

http://en.wikibooks.org/wiki/Java%20Programming%2FLiterals%2FBoolean%20literals
http://en.wikibooks.org/wiki/Java%20Programming%2FLiterals%2FBoolean%20literals
http://en.wikibooks.org/wiki/Java%20Programming%2FLiterals%2FNumeric%20Literals
http://en.wikibooks.org/wiki/Java%20Programming%2FLiterals%2FNumeric%20Literals
http://en.wikibooks.org/wiki/Java%20Programming%2FLiterals%2FNumeric%20Literals%2FCharacter%20Literals
http://en.wikibooks.org/wiki/Java%20Programming%2FLiterals%2FNumeric%20Literals%2FCharacter%20Literals
http://en.wikibooks.org/wiki/Java%20Programming%2FLiterals%2FNumeric%20Literals%2FInteger%20Literals
http://en.wikibooks.org/wiki/Java%20Programming%2FLiterals%2FNumeric%20Literals%2FInteger%20Literals
http://en.wikibooks.org/wiki/Java%20Programming%2FLiterals%2FNumeric%20Literals%2FFloating%20Point%20Literals
http://en.wikibooks.org/wiki/Java%20Programming%2FLiterals%2FNumeric%20Literals%2FFloating%20Point%20Literals
http://en.wikibooks.org/wiki/Java%20Programming%2FLiterals%2FString%20Literals
http://en.wikibooks.org/wiki/Java%20Programming%2FLiterals%2FString%20Literals
http://en.wikibooks.org/wiki/Java%20Programming%2FLiterals%2Fnull
http://en.wikibooks.org/wiki/Category%3AJava%20Programming

Whitespaces

9.4 Whitespaces

Whitespace in Java is used to separate the tokens in a Java source file. Whitespace is required in
some places, such as between ACCESS MODIFIERS28, TYPE NAMES29 and Identifiers, and is used to
improve readability elsewhere.

Wherever whitespace is required in Java, one or more whitespace characters may be used. Wher-
ever whitespace is optional in Java, zero or more whitespace characters may be used.

Java whitespace consists of the

• space character ’ ’ (0x20),
• the tab character (hex 0x09),
• the form feed character (hex 0x0c),
• the line separators characters newline (hex 0x0a) or carriage return (hex 0x0d) characters.

Line separators are special whitespace characters in that they also terminate line comments,
whereas normal whitespace does not.

Other Unicode space characters, including vertical tab, are not allowed as whitespace in Java.

9.5 Required Whitespace

Below is the declaration of an abstract method taken from a Java class

public abstract Distance distanceTo(Destination dest);

Whitespace is required between public and abstract, between abstract and Distance, between
Distance and distanceTo, and between Destination and dest.

However, the following is not legal:

publicabstractDistance distanceTo(Destination dest);

because whitespace is required between keywords and identifiers. The following is lexically valid

publicabstractDistance distanceTo(Destination dest);

but means something completely different: it declares a method which has the return type
publicabstractDistance It is unlikely that this type exists, so the above would result in a se-
mantic error.

28 Chapter 14 on page 83
29 Chapter 17 on page 97

65

Syntax

9.6 Indentation

Java ignores all whitespace in front of a statement. As this, these two code snippets are identical
for the compiler:

public static void main(String[] args) {
printMessage();

}

void printMessage() {
System.out.println("Hello World!");

}

public static void main(String[] args) {
printMessage();
}

void printMessage() {
System.out.println("Hello World!");
}

However, the first one’s style (with whitespace) is preferred, as the readability is higher. (The
method body is easier to distinguish from the head, even at a higher reading speed.)

CATEGORY:JAVA PROGRAMMING30

CATEGORY:JAVA PROGRAMMING31

30 HTTP://EN.WIKIBOOKS.ORG/WIKI/CATEGORY%3AJAVA%20PROGRAMMING
31 HTTP://EN.WIKIBOOKS.ORG/WIKI/CATEGORY%3AJAVA%20PROGRAMMING

66

http://en.wikibooks.org/wiki/Category%3AJava%20Programming
http://en.wikibooks.org/wiki/Category%3AJava%20Programming

10 Statements

Now, that we have the Java platform on our systems and have run the first program successfully,
we are geared towards understanding how programs are actually made. As we have already dis-
cussed. A program is a set of instructions – very simple tasks provided to a computer. These
instructions are called statements in Java. Statements can be anything from a single line of code
to a complex mathematical equation. This section helps you understand what statements are
and how they work.

10.1 What exactly are statements?

Statements are a single instruction in a program – a single unit of code. Consider the following
line:

Listing 1.1: A simple assignment statement.

int age = 24;

This line is a simple instruction that tells the system to initialize a variable and set its value as 24.
Within that simple definition, we talked about initialization of a variable and setting its value.
This all might sound a bit too technical, but it will make sense as you read ahead.

10.2 Where do you find statements

Java, in the same style as C and C++, places statements within functions (or methods). The func-
tion in turn is placed within a class declaration. If the above statement was the only one in the
program, it would look similar to this:

public class MyProgram
{

public static void main (String[] args)
{

int age = 24;
}

}

The class declaration and function declaration will be described in the upcoming chapters.

10.3 Variables

Christmases are usually exciting, birthdays too. And the one thing that makes
them exciting are: you get presents. Think of a present you’ve ever gotten. A

67

Statements

tiny (or big, if you’re lucky) box with your name on it. Now think of variables
as something similar. They are tiny little boxes in the computer’s memory that
save something within themselves. This something within them is called a value.

Note:
A variable is an identifier to a value in the system’s memory.

10.4 Data types

Take a look at the code in Listing 1.1. Here the variable we have just created is age. The word
int tells us what is inside the age variable. int actually stands for integer – a number. On the
right to this variable is the value of the variable which is the number 24. Just like int, we can use
byte, short, long, double, float, boolean, char or String. All these tell us what type of data
is within a variable. These are hence called data types.

We explored the statement in Listing 1.1, where the variable held an integer within in. Let’s put
another type of data within it. Let’s say, the number 10.5. The code would look something like
this:

Listing 1.2: Putting a number with decimal point inside an integer variable.

int age = 10.5;

This is actually wrong. By definition (if you have been awake throughout your mathematics
lectures) you’d know that integers are whole numbers: 0, 1, 2, all the way up to infinity. Anything
with a decimal point is not an integer, hence the statement by virtue of it is wrong.

What would make it right is when you assign a certain type to the variable that would accept
numbers with decimal points – numbers with decimal points are called floating points.

10.5 Whole numbers and floating point numbers

The data types that one can use for whole numbers are byte, short, int and long but when
it comes to floating point numbers, we use float or double. Now that we know that, we can
modify the code in Listing 1.2 as:

Listing 1.3: The correct way to assign a type to floating point variables

double age = 10.5;

Why not float, you say? Well, there are several reasons why not. 10.5 can be anything – a float
or a double but by a certain rule, it is given a certain type. This can be explained further by
looking at the table below.

Data type Values accepted Declaration
byte Any number between -128

and 127.
byte b = 123;

short Any number between
-32,768 and 32,767.

short s = 12345;

68

Assignment statements

Data type Values accepted Declaration
int Any number between

-2,147,483,648 and
2,147,483,647.

int i = 1234567;

long Any number between
-9,223,372,036,854,775,808
and
9,223,372,036,854,775,807.

long l = 1234567890L;

float Extremely large numbers
beyond the scope of dis-
cussion here.

float f = 123.4567f;

double Extremely large numbers
beyond the scope of dis-
cussion here. The only dif-
ference between double
and float is the addition
of an f as a suffix after the
float value.

double d = 1234.56789;

The above table only list the number data types. We will look at the others as we go on. So, did
you notice why we used a double in listing 1.3, and not a float? The answer is pretty simple. If
we’d used a float, we would have to append the number with a f as a suffix, so 10.5 should be
10.5f as in:

Listing 1.4: The correct way to define floating point numbers of type float.

float age = 10.5f;

10.6 Assignment statements

Up until now, we’ve assumed the creation of variables as a single statement. In essence, we assign
a value to those variables, and that’s just what it is called. When you assign a value to a variable in
a statement, that statement is called an assignment statement. Did you notice one more thing?
The semicolon (;). It’s at the end of each statement. A clear indicator that a line of code is a
statement is its termination with an ending semicolon. If one was to write multiple statements,
it is usually done on each separate line ending with a semicolon. Consider the example below:

Listing 1.5: Multiple assignment statements.

int a = 10;
int b = 20;
int c = 30;

You do not necessarily have to use a new line to write each statement. Just like English, you can
begin writing the next statement where you ended the first one as depicted below:

Listing 1.6: Multiple assignment statement on the same line.

int a = 10; int b = 20; int c = 30;

69

Statements

However, the only problem with writing such code is, it’s very difficult to read it back. It doesn’t
look that intimidating at first, but once you’ve got a significant amount of code, it’s usually better
to organize it in a way that makes sense. It would look more complex and incomprehensible
written as it is in Listing 1.6.

Now that we have looked into the anatomy of a simple assignment statement, we can look back
at what we’ve achieved. We know that...

• A statement is a unit of code in programming.
• If we are assigning a variable a value, the statement is called an assignment statement.
• An assignment statement include three parts: a data type, variable name (also called an iden-

tifier) and the value of a variable. We will look more into the nature of identifiers and values in
the section titled IDENTIFIERS, LITERALS AND EXPRESSIONS1 later.

Now, before we more on to the next topic, you need to try and understand what the code below
does.

Listing 1.7: Multiple assignment statements with expressions

int firstNumber = 10;
int secondNumber = 20;
int result = firstNumber + secondNumber;

The first two statements are pretty much similar to those in Listing 1.5 but with different variable
names. The third however is a bit interesting. We’ve already talked of variables as being similar to
gift boxes. Think of your computer’s memory as a shelf where you put all those boxes. Whenever
you need a box (or variable), you call its identifier (that’s the name of the variable). So calling
the variable identifier firstNumber gives you the number 10, calling secondNumber would give
you 20 hence when you add the two up, the answer should be 30. That’s what the value of the
last variable result would be. The part of the third statement where you add the numbers, i.e.,
firstNumber + secondNumber is called an expression and the expression is what decides what
the value is to be. If it’s just a plain value, nothing fancy, then it’s called a literal.

With the information you have just attained, you can actually write a decent Java program that
can sum up values. To learn more, continue reading.

1 HTTP://EN.WIKIBOOKS.ORG/WIKI/JAVA%20PROGRAMMING%2FIDENTIFIERS%2C%20LITERALS%
20AND%20EXPRESSIONS

70

http://en.wikibooks.org/wiki/Java%20Programming%2FIdentifiers%2C%20literals%20and%20expressions
http://en.wikibooks.org/wiki/Java%20Programming%2FIdentifiers%2C%20literals%20and%20expressions

11 Classes, Objects and Types

11.1 Objects and Classes

An object is composed of members and methods. The members, also called data members,
characteristics, attributes, or properties, describe the object. The methods generally describe
the actions associated with a particular object. Think of an object as a noun, its members as
adjectives describing that noun, and its methods as the verbs that can be performed by or on
that noun.

For example, a sports car is an object. Some of its members might be its height, weight, acceler-
ation, and speed. An object’s members just hold data about that object. Some of the methods of
the sports car could be "drive", "park", "race", etc. The methods really don’t mean much unless
associated with the sports car, and the same goes for the members.

The blueprint that lets us build our sports car object is called a class. A class doesn’t tell us how
fast our sports car goes, or what color it is, but it does tell us that our sports car will have a
member representing speed and color, and that they will be say, a number and a word (or hex
color code), respectively. The class also lays out the methods for us, telling the car how to park
and drive, but these methods can’t take any action with just the blueprint - they need an object
to have an effect.

In Java, a class is located in a file similar to its own name. If you want to have a class called
SportsCar, its source file needs to be SportsCar.java. The class is created by placing the follow-
ing in the source file:

public class SportsCar
{

/* Insert your code here */
}

The class doesn’t do anything yet, as you will need to add methods and member variables first.

11.2 Instantiation and Constructors

In order to get from class to object, we "build" our object by instantiation. Instantiation sim-
ply means to create an instance of a class. Instance and object are very similar terms and are
sometimes interchangeable, but remember that an instance refers to a specific object, which was
created from a class.

This instantiation is brought about by one of the class’s methods, called a constructor. As its
name implies, a constructor builds the object based on the blueprint. Behind the scenes, this

71

Classes, Objects and Types

means that computer memory is being allocated for the instance, and values are being assigned
to the data members.

In general there are four constructor types: default, non-default, copy, and cloning.

A default constructor will build the most basic instance. Generally, this means assigning all the
members values like null, zero, or an empty string. Nothing would stop you, however, from your
default sports car color from being red, but this is generally bad programming style. Another
programmer would be confused if your basic car came out red instead of say, colorless.

A non-default constructor is designed to create an object instance with prescribed values for
most, if not all, of the object’s members. The car is red, goes from 0-60 in 12 seconds, tops out at
190mph, etc.

A copy constructor is not included in the Java language, however one can easily create a con-
structor that do the same as a copy constructor. It’s important to understand what it is. As the
name implies, a copy constructor creates a new instance to be a duplicate of an already existing
one. In Java, this can be also accomplished by creating the instance with the default constructor,
and then using the assignment operator to equivocate them. This is not possible in all languages
though, so just keep the terminology under your belt.

Java has the concepts of cloning object, and the end results are similar to copy constructor.
Cloning an object is faster than creation with the new keyword, because all the object memory
is copied at once to destination cloned object. This is possible by implementing the Cloneable
interface, which allows the method Object.clone() to perform a field-by-field copy.

11.3 Type

When an object is created, a reference to the object is also created. The object can not be ac-
cessed directly in Java, only through this object reference. This object reference has a type as-
signed to it. We need this type when passing the object reference to a method as a parameter.
Java does strong type checking.

Type is basically a list of features/operations, that can be performed through that object refer-
ence. The object reference type basically is a contract that guarantees that those operations will
be there at run time.

When a car is created, it comes with a list of features/operations listed in the user manual that
guarantees that those will be there when the car is used.

When you create an object from a class by default its type is the same as its class. It means that
all the features/operations the class defined are there and available, and can be used. See below:

(new ClassName()).operations();

You can assign this to a variable having the same type as the class:

ClassName objRefVariable = new ClassName();
objRefVariable.operations();

72

Multiple classes in a Java file

You can assign the created object reference to the class super class, or to an interface the class
implements:

SuperClass objectRef = new ClassName(); // features/operations list are defined
by the SuperClass class
..
Interface inter = new ClassName(); // features/operations list are defined by the
interface

In the car analogy, the created car may have different Type of drivers. We create separate user
manuals for them, Average user manual, Power user manual, Child user manual, or Handi-
capped user manual. Each type of user manual describes only those features/operations ap-
propriate for the type of driver. The Power driver may have additional gears to switch to higher
speeds, that are not available to other type of users...

When the car key is passed from an adult to a child we replacing the user manuals, that is called
Type Casting.

In Java, casts can occur in three ways:

• up casting: going up in the inheritance tree, until we reach the Object
• up casting: to an interface the class implements
• down casting: until we reach the class the object was created from

Type and Type Casting will be covered in more details later at ’JAVA PROGRAMMING/TYPES1’
module.

11.4 Multiple classes in a Java file

Normally, a Java file can have one and only one public Java class. However, a given file can
contain additional non-public classes.

public class OuterClass
{

...
}
class AdditionalClass
{

...
}

Because they have the "package (default)" access specifier, the ’AdditionalClass’ can be accessed
only in the same package.

These "additional" classes compile to separate ".class" bytecode files when compiled, just as if
they were in separate source files. However, including multiple classes in one file may increase
the difficulty in examining the structure of a given application.

1 Chapter 17 on page 97

73

Classes, Objects and Types

11.5 External links

• CONSTRUCTORS, INTERACTIVE JAVA LESSON2

CATEGORY:JAVA PROGRAMMING3

DE:JAVA STANDARD: CLASS4 ES:PROGRAMACIÓN EN JAVA/CLASES5 FR:PROGRAMMATION

JAVA/LES CLASSES EN JAVA6 IT:JAVA/CLASSI E OGGETTI7 NL:PROGRAMMEREN IN JAVA/KLASSEN8

PT:JAVA/INTRODUÇÃO ÀS CLASSES9

2 HTTP://JAVALESSONS.COM/CGI-BIN/FUN/JAVA-TUTORIALS-MAIN.CGI?SES=AO789&CODE=
CTR&SUB=FUN

3 HTTP://EN.WIKIBOOKS.ORG/WIKI/CATEGORY%3AJAVA%20PROGRAMMING
4 HTTP://DE.WIKIBOOKS.ORG/WIKI/JAVA%20STANDARD%3A%20CLASS
5 HTTP://ES.WIKIBOOKS.ORG/WIKI/PROGRAMACI%F3N%20EN%20JAVA%2FCLASES
6 HTTP://FR.WIKIBOOKS.ORG/WIKI/PROGRAMMATION%20JAVA%2FLES%20CLASSES%20EN%20JAVA
7 HTTP://IT.WIKIBOOKS.ORG/WIKI/JAVA%2FCLASSI%20E%20OGGETTI
8 HTTP://NL.WIKIBOOKS.ORG/WIKI/PROGRAMMEREN%20IN%20JAVA%2FKLASSEN
9 HTTP://PT.WIKIBOOKS.ORG/WIKI/JAVA%2FINTRODU%E7%E3O%20%E0S%20CLASSES

74

http://javalessons.com/cgi-bin/fun/java-tutorials-main.cgi?ses=ao789&code=ctr&sub=fun
http://javalessons.com/cgi-bin/fun/java-tutorials-main.cgi?ses=ao789&code=ctr&sub=fun
http://en.wikibooks.org/wiki/Category%3AJava%20Programming
http://de.wikibooks.org/wiki/Java%20Standard%3A%20Class
http://es.wikibooks.org/wiki/Programaci%F3n%20en%20Java%2FClases
http://fr.wikibooks.org/wiki/Programmation%20Java%2FLes%20classes%20en%20Java
http://it.wikibooks.org/wiki/Java%2FClassi%20e%20oggetti
http://nl.wikibooks.org/wiki/Programmeren%20in%20Java%2FKlassen
http://pt.wikibooks.org/wiki/Java%2FIntrodu%E7%E3o%20%E0s%20classes

12 Packages

12.1 Java Package / Name Space

Usually a Java application is built by many developers and it is common that third party mod-
ules/classes are integrated. The end product can easily contain hundreds of classes. Class name
collision is likely to happen. To avoid this a Java class can be put in a "name space". This "name
space" in Java is called the package.

The Java package needs to be unique across Vendors to avoid name collisions. For that reason
Vendors usually use their domain name in reverse order. That is guaranteed to be unique. For
example a company called ’Your Company Inc.’, would use a package name something like this:
com.yourcompany.yourapplicationname.yourmodule.YourClass.

To put a class in a package, the package keyword is used at the top of each class file. For Example,

package com.yourcompany.yourapplication.yourmodule;

When we want to reference a Java class that is defined outside of the current package name
space, we have to specify which package name space that class is in. So we could reference that
class with something like com.yourcompany.yourapplication.yourmodule.YourClass . To avoid
having to type in the package name each time when we want to reference an outside class, we
can declare which package the class belongs to by using the import Java keyword at the top of
the file. For Example,

import com.yourcompany.yourapplication.yourmodule.YourClass;

Then we can refer to that class by just using the class name YourClass .

In rare cases it can happen that you need to reference two classes having the same name in
different packages. In those cases, you can not use the import keyword for both classes. One of
them needs to be referenced by typing in the whole package name. For Example,

package com.mycompany.myapplication.mymodule;
...
import com.yourcompany.yourapplication.youmodule.SameClassName;
...
SameClassName yourObjectRef = new SameClassName();
com.hercompany.herapplication.hermodule.SameClassName herObjectRef =

new com.hercompany.herapplication.hermodule.SameClassName();

75

Packages

The Java package has one more interesting characteristic; the package name corresponds
where the actual file is stored on the file system. And that is actually how the com-
piler and the class loader find the Java files on the file system. For example, the class
com.yourcompany.yourapplication.yourmodule.YourClass, is stored on the file system in the cor-
responding directory : com/yourcompany/yourapplication/yourmodule/YourClass. Because of
this, package names should be lowercase, since in some operating systems the directory names
are not case sensitive.

12.2 Wildcard imports

It is possible to import an entire package, using an asterisk:

import javax.swing.*;

While it may seem convenient, it may cause problems if you make a typographical error. For ex-
ample, if you use the above import to use JFrame, but then type JFraim frame=new JFraim();,
the Java compiler will report an error similar to "Cannot find symbol: JFraim". Even though it
seems as if it was imported, the compiler is giving the error report at the first mention of JFraim,
which is half-way through your code, instead of the point where you imported JFrame along with
everything else in javax.swing.

If you change this to import javax.swing.JFraim; the error will be at the import instead of
within your code.

Furthermore, if you import javax.swing.*; and import java.util.*;, and
javax.swing.Queue is later added in a future version of Java, your code that uses Queue
(java.util) will fail to compile. This particular example is fairly unlikely, but if you are working
with non-Sun libraries, it may be more likely to happen.

12.3 Importing packages from .jar files

If you are importing library packages or classes that reside in a .jar file, you must ensure that the
file is in the current classpath (both at compile- and execution-time). Apart from this require-
ment, importing these packages and classes is the same as if they were in their full, expanded,
directory structure.

76

Class Loading / Name Space

Example:
To compile and run a class from a project’s top directory (that contains the two directories
/source and /libraries) you could use the following command:

javac -classpath libraries/lib.jar source/MainClass.java

And then to run it, similarly:

java -classpath libraries/lib.jar source/MainClass

(The above is simplified, and demands that MainClass be in the default package, or a package
called ’source’, which isn’t very desirable.)

12.4 Class Loading / Name Space

A fully qualified class name consists of the package name plus the class name. For example, the
fully qualified class name of HashMap is java.util.HashMap. Sometime is can happen that two
classes have the same name, but they can not belong to the same package, otherwise it would
be the same class. It can be said that the two classes with the same name are in different name
spaces. In the above example, the HashMap class is in the java.util name space.

Let be two Customer classes with different name spaces (in different packages):

• com.bluecompany.Customer
• com.redcompany.Customer

when we need to use both classes in the same program file, we can use the import keyword only
for one of the classes. For the other we need to use the fully qualified name.

The runtime identity of a class in Java 2 is defined by the fully qualified class name and its defin-
ing class loader. This means that the same class, loaded by two different class loaders, is seen by
the Virtual Machine as two completely different types.

FR:PROGRAMMATION JAVA/EXTENSIONS1 IT:JAVA/PACKAGE2

1 HTTP://FR.WIKIBOOKS.ORG/WIKI/PROGRAMMATION%20JAVA%2FEXTENSIONS
2 HTTP://IT.WIKIBOOKS.ORG/WIKI/JAVA%2FPACKAGE

77

http://fr.wikibooks.org/wiki/Programmation%20Java%2FExtensions
http://it.wikibooks.org/wiki/Java%2FPackage

Packages

78

13 Nested Classes

In Java you can define a class inside an other class.

A class can be nested:

• inside another class,
• or inside a method

13.1 Nest a class inside a class

When a class is declared inside another class, the nested class’ access modifier can be public,
private,protected or package(default).

public class OuterClass
{

private String outerInstanceVar;

public class InnerClass
{

public void printVars()
{

System.out.println("Print Outer Class Instance Var.:" + outerInstanceVar);
}

}
}

The inner class has access to the enclosing class instance’s variables and methods, even private
ones, as seen above. This makes it very different from the nested class in C++, which are equiva-
lent to the "static" inner classes, see below.

An inner object has a reference to the outer object. The nested object can only be created with a
reference to the ’outer’ object. See below.

public void testInner()
{

...
OuterClass outer = new OuterClass();
OuterClass.InnerClass inner = outer.new InnerClass();
...

}

(When in a non-static method of the outer class, you can directly use new InnerClass(), since
the class instance is implied to be this.)

79

Nested Classes

You can directly access the reference to the outer object from within an inner class with the
syntax OuterClass.this; although this is usually unnecessary because you already have access
to its fields and methods.

Inner classes compile to separate ".class" bytecode files, usually with the name of the enclosing
class, followed by a "$", followed by the name of the inner class. So for example, the above inner
class would typically be compiled to a file named "OuterClass$InnerClass.class".

13.1.1 Static inner class

An inner class can be declared static. A static inner class has no enclosing instance, and therefore
cannot access instance variables and methods of the outer class. You do not specify an instance
when creating a static inner class. This is equivalent to the inner classes in C++.

13.2 Nest a class inside a method

These inner classes, also called local classes, cannot have access modifiers, like local variables,
since the class is ’private’ to the method. The inner class can be only abstract or final.

public class OuterClass
{

public void method()
{

class InnerClass
{

}
}

}

In addition to instance variables of the enclosing class, local classes can also access local vari-
ables of the enclosing method, but only ones that are declared final. This is because the local
class instance might outlive the invocation of the method, and so needs its own copy of the vari-
able. To avoid problems with having two different copies of a mutable variable with the same
name in the same scope, it is required to be final, so it cannot be changed.

13.3 Anonymous Classes

In Java a class definition and its instantiation can be combined into a single step. By doing that
the class does not require a name. Those classes are called anonymous classes. An anonymous
class can be defined and instantiated in contexts where a reference can be used, and it is a nested
class to an existing class. Anonymous class is a special case of the local class to a method, above;
and hence they also can use final local variables of the enclosing method.

Anonymous classes are most useful to subclass and upcast to an ’Adapter Class’ or to an
interface.

80

Anonymous Classes

public interface ActionListener
{

public void click();
}
...
ActionListener clk = new ActionListener()

{
public void click()
{

// --- implementation of the click event ---
...
return;

}
};

In the above example the class that implements the ActionListener is anonymous. The class
is defined where it is instantiated.

The above code is harder to read than if the class explicitly defined, so why use it? If many imple-
mentations are needed for an interface and those classes are used only in one particular place,
using anonymous class makes sense.

The following example uses anonymous class to implement an action listener.

import java.awt.*;
import java.awt.event.*;
import java.io.Serializable;
class MyApp implements Serializable
{

BigObjectThatShouldNotBeSerializedWithAButton bigOne;
Button aButton = new Button();
MyApp()
{

aButton.addActionListener(new ActionListener()
{

public void actionPerformed(ActionEvent e)
{

System.out.println("Hello There");
}

}
);

}
}

The following example does the same thing, but it names the class that implements the action
listener.

import java.awt.*;
import java.awt.event.*;
import java.io.Serializable;
class MyApp implements Serializable
{

BigObjectThatShouldNotBeSerializedWithAButton bigOne;
Button aButton = new Button();
// --- Nested class to implement the action listener ---
class MyActionListener implements ActionListener
{

public void actionPerformed(ActionEvent e)
{

81

Nested Classes

System.out.println("Hello There");
}

}
MyApp()
{

aButton.addActionListener(new MyActionListener());
}

}

Using anonymous classes is especially preferable when you intend to use many different classes
that each implement the same Interface.

CATEGORY:JAVA PROGRAMMING1

1 HTTP://EN.WIKIBOOKS.ORG/WIKI/CATEGORY%3AJAVA%20PROGRAMMING

82

http://en.wikibooks.org/wiki/Category%3AJava%20Programming

14 Access Modifiers

14.1 Access modifiers

You surely would have noticed by now, the words public, protected and private at the beginning
of class’s method declarations used in this book. These keywords are called the access modifiers
in the Java language syntax, and can be defined as...

Quote:
.. keywords that help set the visibility and accessibility of a class, its member variables, and
methods.

The following table shows what Access Modifiers are appropriate for classes, nested classes,
member variables, and methods:

Class Nested
class

Method,
or Mem-
ber vari-
able

Interface Interface
method
signature

public visible
from any-
where

same as its
class

same as its
class

visible
from any-
where

visible
from any-
where

protected N/A its class
and its
subclass

its class
and its
subclass,
and from
its package

N/A N/A

package
(default)

only from
its package

only from
its package

only from
its package

N/A N/A, de-
fault is
public

private N/A only from
its class

only from
its class

N/A N/A

83

Access Modifiers

Points to ponder:
Note that Interface method visibility is PUBLICa by default. You do not need to specify the
access modifier it will default to PUBLICb. For clarity it is considered a good practice to put the
PUBLICc keyword.
The same way all member variables defined in the Interface by default will become STATICd

FINALe once inherited in a class.

a HTTP://EN.WIKIBOOKS.ORG/WIKI/JAVA%20PROGRAMMING%2FKEYWORDS%2FPUBLIC
b HTTP://EN.WIKIBOOKS.ORG/WIKI/JAVA%20PROGRAMMING%2FKEYWORDS%2FPUBLIC
c HTTP://EN.WIKIBOOKS.ORG/WIKI/JAVA%20PROGRAMMING%2FKEYWORDS%2FPUBLIC
d HTTP://EN.WIKIBOOKS.ORG/WIKI/JAVA%20PROGRAMMING%2FKEYWORDS%2FSTATIC
e HTTP://EN.WIKIBOOKS.ORG/WIKI/JAVA%20PROGRAMMING%2FKEYWORDS%2FFINAL

If a class has public visibility, the class can be referenced by anywhere in the program. If a class
has package visibility, the class can be referenced only in the package where the class is defined.
If a class has private visibility, (it can happen only if the class is defined nested in an other class)
the class can be accessed only in the outer class.

If a variable is defined in a public class and it has public visibility, the variable can be reference
anywhere in the application through the class it is defined in. If a variable has package visibility,
the variable can be referenced only in the same package through the class it is defined in. If a
variable has private visibility, the variable can be accessed only in the class it is defined in.

If a method is defined in a public class and it has public visibility, the method can be called
anywhere in the application through the class it is defined in. If a method has package visibility,
the method can be called only in the same package through the class it is defined in. If a method
has private visibility, the method can be called only in the class it is defined in.

1

1 HTTP://EN.WIKIBOOKS.ORG/WIKI/CATEGORY%3A

84

http://en.wikibooks.org/wiki/Java%20Programming%2FKeywords%2Fpublic
http://en.wikibooks.org/wiki/Java%20Programming%2FKeywords%2Fpublic
http://en.wikibooks.org/wiki/Java%20Programming%2FKeywords%2Fpublic
http://en.wikibooks.org/wiki/Java%20Programming%2FKeywords%2Fstatic
http://en.wikibooks.org/wiki/Java%20Programming%2FKeywords%2Ffinal
http://en.wikibooks.org/wiki/Category%3A

15 Methods

15.1 Method Definition

A method is an operation on a particular object. An object is an instance of a class. When we
define a class we define its member variables and its methods. For each method we need to give
a name, we need to define its input parameters and we need to define its return type. We also
need to set its visibility(private, package, or public). If the method throws an Exception, that
needs to be declared as well. The syntax of method definition is:

class MyClass
{
...

public ReturnType methodName(ParamOneType param1, ParamTwoType param2) throws ExceptionName
{
ReturnType retType;
...
return retType;

}
...

}

We can declare that the method does not return anything using the void java keyword. For
example:

private void methodName(String param1, String param2)
{
...

return;
}

When the method returns nothing, the return keyword at the end of the method is optional.
The return keyword can be used anywhere in the method, when the executation flow reach the
return keyword, the method execution is stopped and the execution flow returns to the caller
method.

15.2 Method Overloading

For the same class we can define two methods with the same name. However the parameter
types and/or the number of parameters must be different for those two methods. In the java
terminology, this is called method overloading. It is useful to use method overloading when
we need to do something different based on a parameter type. For example we may have the
operation : runAroundThe. We can define two methods with the same name, but different input

85

Methods

parameter type:

public void runAroundThe(Building block)
{
...

}
public void runAroundThe(Park park)
{
...

}

Related terminology is the method signature. In java the method signature contains method
name and the input parameter types. The java compiler takes the signature for each method
and makes sure that each method signature is unique for a class. For example the following two
method definitions are valid:

public void logIt(String param, Error err)
{
...

}
public void logIt(Error err, String param)
{
...

}

Because the type order is different. If both input parameters were type String, that would be a
problem since the compiler would not be able to distinguish between the two:

public void logIt(String param, String err)
{
...

}
public void logIt(String err, String param)
{
...

}

The compiler would give an error for the following method definitions as well:

public void logIt(String param)
{
...

}
public String logIt(String param)
{

String retType;
...
return retValue;

}

Note, the return type is not part of the unique signature. Why not? The reason is that a method
can be called without assigning its return value to a variable. This feature came from C and C++.

86

Method Overriding

So for the call:

{
logIt(msg);

}

the compiler would not know which method to call.

15.3 Method Overriding

Obviously a method signature has to be unique inside a class. The same method signature can be
defined in different classes. If we define a method that exist in the super class then we override
the super class method. The terminology for this is method overriding. This is different from
method overloading. Method overloading happens with methods with the same name differ-
ent signature. Method overriding happens with same name, same signature between inherited
classes.

The return type can cause the same problem we saw above. When we override a super class
method the return type also must be the same. In fact if that is not the same, the compiler will
give you an error.

Method overriding is related dynamic linking, or runtime binding. In order for the Method Over-
riding to work, the method call that is going to be called can not be determined at compilation
time. It will be decided at runtime, and will be looked up in a table.

{
1 MyClass obj = new SubOfMyClass();
2
3 MyClass obj = new MyClass();
4
5 obj.myMethod(); // -- During compilation, it is not known what reference the
’obj’ has, MyClass or SubOfMyClass
}

In the above example ’obj’ reference has the type MyClass on both line 1 and line 3. However
the ’obj’ reference points two different objects. On line 1 it references SubOfMyClass object, on
line 3 it references MyClass object. So on line 5 which method will be called, method define in
MyClass, or the method that defined in its subclasses. Because the ’obj’ reference can point to
object and all its sub object, and that will be known only at runtime, a table needs to be kept with
all the possible method address to be called.

Also another rule is that when you do an override, the visibility of the new method that overrides
the super class method can not be reduced. The visibility can be increased, however. So if the
super class method visibility is public, the override method can not be package, or private.

In the case of the exception the override method may throw can be the same as the super class or
it can be one of that exception inherited class. So the common rule is that the override method
must throw the same exception or it is any of its subclasses.

87

Methods

NOTE: A common mistake to think that if we can override methods, we could also override
member variables. This is not the case, as member variables are not overriden.

{
1 MyClass obj = new SubOfMyClass();
2
3 MyClass obj = new MyClass();
4
5 String var = obj.myMemberVar; // -- The myMemberVar is defined in the
MyClass object
}

In the above example, it does not count what object the ’obj’ reference points to, because it
was declared MyClass type on both line 1 and line 3, the variable in the MyClass object will be
referenced. In real examples we rarely use public variables, but if you do keep in mind that Java
does not support variable overriding.

15.4 Parameter Passing

We can pass in all the primitive data types or any object references to a method. An object
cannot be passed to a method, only its references. All parameters (those are primitive types and
object references) are passed by value. In other words if you change the passed in parameter
values inside the method, that will have no effect on the original variable that was passed in.
When you pass in an object reference to a method and then you change that inside the method,
that will have no effect on the original object reference. However if you modify the object itself,
that will stay after the method returns. Think about the object reference as a pointer to an
object. If you change the object the reference points at, that will be permanent. For example:

1 {
2 int var1 = 10;
3 int var2 = 20;
4 ...
5 myMethod(var1, var2);
6 ...
7 System.out.println("var1="+var1 +"var2="+var2); // -- The variable values
did not change
8 }
9 ...
10 void myMethod(int var1, int var2)
11 {
12 ...
13 var1 = 0;
14 var2 = 0;
15 ...
16 }

On line 7 the value of var1 is 10 and the value of var2 is 20. When the variables were passed in
to the methods their values were copied. This is called passing the parameter by value. In java
we do not represent an object directly, we represent an object throught an object reference. You
can think of an object reference as a variable having the address of the object. So the object
reference passed in by value, but the object itself is not. For example:

88

Functions

1 {
2 MyObjOne obj = new MyObjOne();
3 obj.setName("Christin");
4 ...
5 myMethod(obj);
6 String name = obj.getName(); // --- The name attribute was changed to
’Susan’ inside the method
7 }
8 void myMethod(MyObjOne obj)
9 {
10 obj.setName("Susan");
11 ...
12 obj = new MyObjOne();
13 obj.setName("Sonya");
14 ...
15 }

On line 2, we created an object, on line 3 we set its name property to ’Christin’. On line 5 we
called the myMethod(obj). Inside the method, we changed the name to ’Susan’ through the
passed in object reference. So that change will stay. Note however that after we reassigned the
obj reference to a new object, that is no effect whatsoever on the passed in object.

15.5 Functions

In java, functions (methods really) are just like in C++ except that they must be declared inside a
class and objects are passed by reference automatically. You cannot create pointers to a function
but Java has events which really are function pointers under the hood for when you need that
type of functionality.

int a_function(double d)
{

return (int)d;
}

15.6 Return Parameter

So as we can see, a method may or may not return a value. If the method does not return a value
we use the void java keyword. Same as the parameter passing, the method can return a primitive
type or an object reference. So a method can return only one value. What if you want to return
more than one value from a method. You can always pass in an object reference to the method,
and let the method modify the object properties. The modified values can be considered as
an output value from the method. However better option, and cleaner if you create an Object
array inside the method, assign the return values and return the array to the caller. You could
have a problem however, if you want to mix primitive data types and object references as the
output values from the method. There is a better approach. Defines special return object with
the needed return values. Create that object inside the method, assign the values and return
the reference to this object. This special object is "bound" to this method and used only for
returning values, so do not use a public class. The best way is to use a nested class, see example

89

Methods

below:

public class MyObject
{
...

/** Nested object is for return values from ’getPersonInfoById’ method */
public static class ReturnObj
{

private int age;
private String name;

public void setAge(int val)
{

this.age = val;
}
public int getAge()
{

return age;
}

public void setName(String val)
{

name = val;
}
public String getName()
{

return name;
}

} // --- End of nested class defination ---

/** Method using the nested class to return values */
public ReturnObj getPersonInfoById(int ID)
{

int age;
String name;

...
// --- Get the name and age based on the ID from the database ---

...
ReturnObj ret = new ReturnObj();
ret.setAge(age);
ret.setName(name);

return ret;
}

}

In the above example the ’getPersonInfoById’ method returns an object reference that contains
both values the name and age. See below how you may use that object:

{
...
MyObject obj = new MyObject();
MyObject.ReturnObj person = obj.getPersonInfoById(102);

System.out.println("Person Name=" + person.getName());
System.out.println("Person Age =" + person.getAge());

...
}

90

Special method, the Constructor

15.7 Special method, the Constructor

There is a special method for each class that will be executed each time an object is created from
that class. That is the Constructor. Constructor does not have a return value and its name is
the same as the class name. The Constructor can be overloaded; you can define more than one
constructor with different parameters. For example:

public class MyClass
{
private String memberField;

/**
* MyClass Constructor, there is no input parameter
*/

public MyClass()
{

...
}

/**
* MyClass Constructor, there is one input parameter
*/

public MyClass(String param1)
{

memberField = param1;
...

}
}

In the above example we defined two constructors, one with no input parameter, and one with
one input parameter. You may ask which constructor will be called. Its depends how the object
is created with the new keyword. See below:

{
...
MyClass obj1 = new MyClass(); // The constructor with no input

parameter will be called
MyClass obj2 = new MyClass("Init Value"); // The constructor with one input

param. will be called
...

}

In the above example we created two objects from the same class, or we can also say that obj1
and obj2 both have the same type. The difference between the two is that in the first one the
memberVar field is not initialized, in the second one that is initialized to ’Init Value’. obj1, and
obj2 contains the reference to the object. Each class must have a constructor. If we do not define
one, the compiler will create a default so called empty constructor automatically.

public class MyClass
{
/**
* MyClass Empty Constructor
*/

public MyClass()
{

91

Methods

}
}

The Constructor is called automatically when an object is created with the new keyword. A
constructor may also be called from an other constructor, see below:

public class MyClass
{
private String memberField;

/**
* MyClass Constructor, there is no input parameter
*/

public MyClass()
{

MyClass("Default Value");
}

/**
* MyClass Constructor, there is one input parameter
*/

public MyClass(String param1)
{

memberField = param1;
...

}
}

In the above example, the constructor with no input parameter calls the other constructor with
the default initial value. This gives an option to the user, to create the object with the default
value or create the object with a specified value.

15.8 Static Methods

We defined methods above as operations on an object. Static methods are defined inside a class,
but they are not an operation on an object. No object needs to be created to execute a static
method, they are simply global functions, with input parameters and a return value.

public class MyObject
{

static public String myStaticMethod()
{

...
return("I am a static method");

}

}

Static methods can be referenced anywhere prefixed by the class name. See below:

{
...

92

External links

// --- Call myStaticMethod ---
System.out.println("Output from the myStaticMethod:" + MyObject.myStaticMethod());

...
}

You can write a non object oriented program by using only static methods in java. Because java
evolved from the C programming language, static methods are left over from a non object ori-
ented language.

You write static methods the same way you do normal methods, the only difference is that you
cannot reference any member variables or any object methods. Static methods can reference
only static variables and call only other static methods. However you can create an object and
use it inside a static method.

public class MyObject
{

public String memberVar;

static private String memberStaticVar;

static public String myStaticMethod()
{
memberVar = "Value"; --> ERROR Cannot reference member var.

memberStaticVar = "Value"; // --- This is okay, static vars. can be used

// --- Create an object ---
MyObject obj = new MyObject();
obj.memberVar = "Value"; // --- This is okay since an object is created --
...

return("I am a static method");
}

}

15.9 External links

• ABSTRACT METHODS, INTERACTIVE JAVA LESSON1

1 HTTP://JAVALESSONS.COM/CGI-BIN/FUN/JAVA-TUTORIALS-MAIN.CGI?SES=AO789&CODE=
ABS&SUB=FUN

93

http://javalessons.com/cgi-bin/fun/java-tutorials-main.cgi?ses=ao789&code=abs&sub=fun
http://javalessons.com/cgi-bin/fun/java-tutorials-main.cgi?ses=ao789&code=abs&sub=fun

Methods

94

16 Primitive Types

1. redirect JAVA PROGRAMMING/TYPES1

1 Chapter 17 on page 97

95

Primitive Types

96

17 Types

Data Types (or simply Types) in Java are a way of telling what certain data is. It is seen as a way
of declaring allowed values for certain data, the structure of such data and operations associated
with it. Any data, be it numeric or a sentence of words, can have a different data type. For in-
stance, just to define different types of numbers in Java, there are about six simple types available
to programmers − some define whole numbers (integers numbers) and others define numbers
with a decimal values (floating point numbers). Java also gives freedom to programmers to cre-
ate complex and customizable data types. We will deal with complex data types in later chapters.

17.1 Data Types in Java

Java is considered a strongly typed programming language in that it is obligatory for all data,
expressions and declarations within the code to have a certain type associated with it. This is
either declared or inferred and the Java language only allows programs to run if they adhere to
type constraints.

As we have discussed above, you can have types that define a number, or types that define tex-
tual content within your program. If you present a numeric type with data that is not numeric,
say textual content, then such declarations would violate Java’s type system. This gives Java the
unique ability of type safety. Java checks if an expression or data is encountered with an incor-
rect type or none at all. It then automatically flags this occurrence as an error at compile time.
Most type-related errors are caught by the Java compiler, hence making a program more secure
and safe once compiled completely and successfully.

In the Java language, there are three broad categories of data types:

• PRIMITIVES1

• OBJECT REFERENCE TYPES2

• ARRAYS3

In the following section, we will discuss these three categories in detail.

17.1.1 Primitives

Primitives are the most basic data types available within the Java language. These types serve as
the building blocks of data manipulation in Java. Such types serve only one purpose− containing
pure, simple values of a kind. Because these data types are defined into the Java type system by

1 HTTP://EN.WIKIBOOKS.ORG/WIKI/%23PRIMITIVES
2 HTTP://EN.WIKIBOOKS.ORG/WIKI/%23OBJECT%20REFERENCE%20TYPES
3 HTTP://EN.WIKIBOOKS.ORG/WIKI/%23ARRAYS

97

http://en.wikibooks.org/wiki/%23Primitives
http://en.wikibooks.org/wiki/%23Object%20Reference%20Types
http://en.wikibooks.org/wiki/%23Arrays

Types

default, they come with a number of operations predefined. You can not define a new operation
for such primitive types. In the Java type system, there are three further categories of primitives:

• NUMERIC PRIMITIVES4These primitive data types hold only numeric data. Operations asso-
ciated with such data types are those of simple arithmetic (addition, subtraction, etc.) or of
comparisons (is greater than, is equal to, etc.)

• TEXTUAL PRIMITIVES5These primitive data types hold characters (which can be alphabets or
even numbers), but unlike numbers, they do not have operations that serve arithmetic pur-
poses. Rather, operations associated with such types are those of textual manipulation (com-
paring two words, joining characters to make words, etc.)
• BOOLEAN AND NULL PRIMITIVES6

17.1.2 Object Reference Types

17.1.3 Arrays

17.2 Java as hybrid language

On the one hand, Java is a strongly typed language in that all expressions and declarations
have types (either declared or inferred) and the language only allows programs which adhere to
the type constraints. Therefore, most type errors are caught and detected by the Java compiler.
Some type errors can still occur at runtime because Java supports a cast operation which is
a way of changing the type of one expression to another. However, Java performs run time
type checking when doing such casts, so an incorrect type cast will cause a runtime exception
rather than succeeding silently and allowing data corruption.
On the other hand, Java is also known as a hybrid language. While supporting object oriented
(OO) programming, Java is not a pure OO language like SMALLTALK7 or RUBY8. Instead, Java
offers both object types and PRIMITIVE TYPES9. Primitive types are used for boolean, character,
and numeric values and operations. This allows relatively good performance when manipulat-
ing numeric data, at the expense of flexibility. For example, you cannot subclass the primitive
types and add new operations to them.

17.3 Examples of Types

Below are two examples of Java types and a brief description of the allowed values and opera-
tions for these types. Additional details on each are available in other modules.

17.3.1 Example: int

The PRIMITIVE TYPE10 int represents a signed 32 bit integer value. The allowed data values for
int are the integers between -2147483648 to 2147483647 inclusive.

4 HTTP://EN.WIKIBOOKS.ORG/WIKI/%2FNUMERIC%20PRIMITIVES
5 HTTP://EN.WIKIBOOKS.ORG/WIKI/%2FTEXTUAL%20PRIMITIVES
6 HTTP://EN.WIKIBOOKS.ORG/WIKI/%2FOTHER%20PRIMITIVES
7 HTTP://EN.WIKIBOOKS.ORG/WIKI/PROGRAMMING%3ASMALLTALK
8 HTTP://EN.WIKIBOOKS.ORG/WIKI/RUBY%20PROGRAMMING
9 Chapter 16 on page 95
10 Chapter 16 on page 95

98

http://en.wikibooks.org/wiki/%2FNumeric%20Primitives
http://en.wikibooks.org/wiki/%2FTextual%20Primitives
http://en.wikibooks.org/wiki/%2FOther%20Primitives
http://en.wikibooks.org/wiki/Programming%3ASmalltalk
http://en.wikibooks.org/wiki/Ruby%20Programming

Array Types

The set of operations that may be performed on int values includes integer arithmetic such
as +, -, *, /, %, comparison operations (==, !=, <, >, <=, >=), assignments (=, ++,
--, +=, -=), bit-wise operations such as logical and, logical or, logical xor, negation (&, |,
ˆ, ˜), bit shift operations (<<, >>, >>>), CONVERSIONS11 to other numeric types and PRO-
MOTION12 to other integer types.
For example, to declare a private integer instance field named length, one would use the
declaration private int length;

17.3.2 Example: String

You use class and interface definition in Java to define new types. Class and interface types
are associated with object references also sometime refered to as Reference types. An object
reference has two main attributes:
• Its type associated with a class or an interface
• A java object it references, that is created by instantiating a class
The String class is one such example. String values are a sequence of 0 or more Unicode char-
acters. The null reference is another valid value for a String expression.
The operations on a String reference variable are those available for all reference types, such
as comparison operations ==, != and assignment =.
The allowed operations on String object, however are the set of methods in the
java.lang.String class, which includes length(), toString(), toLowerCase(),
toUpperCase(), compareTo(String anotherString) and more... .
In addition, String objects also inherit the set of operations from the base class that String
extends from, which is java.lang.Object. These operations include methods such as
equals(), hashCode(), wait(), notifyAll(), and getClass(). private String name =
"Marry Brown"; In the above example the name object reference’s attributes are:
• Type is : String
• The referenced object is also : String
Both the java.lang.String class methods and java.lang.Object class methods are avail-
able for the object reference name. private Object name = "Marry Brown"; In the above exam-
ple the name object reference’s attributes are:
• Type is : Object
• The referenced object is : String
Only the java.lang.Object class methods are available for the object reference name.

17.4 Array Types

Arrays in Java are represented as a built-in Array object. As with object types, they behave as a
reference but have a few differences allowing them to allow easy access to sub elements.
When one declares an array, the data type is changed to include square brackets. (While you
can instead place these square brackets next to the variable name, this is not recommended.)
To create an array, you will need to use the new operator to have it create the Array with the
specified number of elements:

/* Declares an array named data1, and has it assigned to an array with 25

11 Chapter 16 on page 95
12 Chapter 16 on page 95

99

Types

elements. */
private int[] data1 = new int[25];

/* Declares an array named data2 that contains these three elements. */
private int[] data2 = new int[] { 1, 99, -2 }

Arrays are described in more detail in the Arrays section.

17.5 Primitive Data Types

The Java primitive data types contain pure values, no operations. It is basically data types
similar to what other non-object-oriented languages have.
There are arrays of primitive types in Java; but because they are not objects, primitive values
can not be put in a collection.
For this reason object wrappers are defined in JDK ’java.lang.*’ package for all the primitive
types.

Size (bits) Example Minimum
Value

Max-
imum
Value

Wrapper
Class

Integer types
byte 8 byte b =

65;
-128 127 Byte

char 16 char c =
’A’;
char c =
65;

0 216-1 Character

short 16 short s =
65;

-215 215-1 Short

int 32 int i = 65; -231 231-1 Integer
long 64 long l =

65L;
-263 263-1 Long

Floating-point types
float 32 float f =

65f;
Float

double 64 double d =
65.55;

Double

Other
boolean 1 boolean b

= true;
-- -- Boolean

void -- -- -- -- Void

The types short, int, long, float, and double are usually used in arithmetic operations; byte
and char can also be used, but less commonly.
The character type char is used for text processing. The type byte is commonly used in binary
file input output operations.
String objects representing literal character strings in Java, in the java.lang.* package.
java.lang.String is not a primitive type, but instead is a special class built into the Java lan-
guage. For further info, see String.

100

Autoboxing/unboxing

17.6 Data Conversion (Casting)

Data conversion (casting) can happen between two primitive types. There are two kinds:
• Implicit : casting operation is not required; the magnitude of the numeric value is always

preserved. However, precision may be lost when converting from integer to floating point
types

• Explicit : casting operation required; the magnitude of the numeric value may not be pre-
served

Example for implicit casting: int i = 65; long l = i; // --- int is converted to long, casting is not
needed
Example for explicit casting: long l = 656666L; int i = (int) l; // --- long is converted to int,
casting is needed
The following table shows the conversions between primitive types, it shows the casting oper-
ation for explicit conversions:

from
byte

from
char

from
short

from
int

from
long

from
float

from
double

from
boolean

to byte - (byte) (byte) (byte) (byte) (byte) (byte) N/A
to char - (char) (char) (char) (char) (char) N/A
to
short

(short) - (short) (short) (short) (short) N/A

to int - (int) (int) (int) N/A
to long - (long) (long) N/A
to float - (float) N/A
to dou-
ble

- N/A

to
boolean

N/A N/A N/A N/A N/A N/A N/A -

17.7 Autoboxing/unboxing

Autoboxing/unboxing
Autoboxing and unboxing, language features since Java 1.5, make the programmer’s life much
easier when it comes to working with the primitive wrapper types. Consider this code frag-
ment:

int age = 23; Integer ageObject = new Integer(age);
Primitive wrapper objects were Java’s way of allowing one to treat primitive data types as
though they were objects. Consequently, one was expected to ’wrap’ one’s primitive data type
with the corresponding primitive wrapper object, as shown above.

Autoboxing
Since Java 1.5, one may write as below and the compiler will automatically create the wrap
object. The extra step of wrapping the primitive is no longer required. It has been ’automati-
cally boxed up’ on your behalf.

101

Types

Points to ponder:
Keep in mind that the compiler still creates the missing wrapper code, so one doesn’t really
gain anything performance-wise. Consider this feature a programmer convenience, not a per-
formance booster.

int age = 23; Integer ageObject = age;
Unboxing

Uses the same process in reverse. Study the following code for a moment. The if statement
requires a boolean primitive value, yet it was given a Boolean wrapper object. No problem!
Java 1.5 will automatically ’unbox’ this.

Boolean canMove = new Boolean(true);
if (canMove) { System.out.println("This code is legal in Java 1.5"); }
CATEGORY:JAVA PROGRAMMING13

DE:JAVA_STANDARD: PRIMITIVE DATENTYPEN14 FR:PROGRAMMATION JAVA/TYPES DE BASE15

IT:JAVA/TIPI DI DATI16 PT:JAVA/TIPOS DE DADOS PRIMÁRIOS17

13 HTTP://EN.WIKIBOOKS.ORG/WIKI/CATEGORY%3AJAVA%20PROGRAMMING
14 HTTP://DE.WIKIBOOKS.ORG/WIKI/JAVA_STANDARD%3A%20PRIMITIVE%20DATENTYPEN
15 HTTP://FR.WIKIBOOKS.ORG/WIKI/PROGRAMMATION%20JAVA%2FTYPES%20DE%20BASE
16 HTTP://IT.WIKIBOOKS.ORG/WIKI/JAVA%2FTIPI%20DI%20DATI
17 HTTP://PT.WIKIBOOKS.ORG/WIKI/JAVA%2FTIPOS%20DE%20DADOS%20PRIM%E1RIOS

102

http://en.wikibooks.org/wiki/Category%3AJava%20Programming
http://de.wikibooks.org/wiki/Java_Standard%3A%20Primitive%20Datentypen
http://fr.wikibooks.org/wiki/Programmation%20Java%2FTypes%20de%20base
http://it.wikibooks.org/wiki/Java%2FTipi%20di%20dati
http://pt.wikibooks.org/wiki/Java%2FTipos%20de%20dados%20prim%E1rios

18 java.lang.String

UNKNOWN TEMPLATE
ifeq: Types

none TYPES1

Java Programming
String

UNKNOWN TEMPLATE
ifeq: Classes, Objects and
Types
none CLASSES, OBJECTS

AND TYPES2

18.1 java.lang.String

String is a special class built into the Java language defined in the java.lang package.

The String class represents character strings. String literals in Java programs, such as "abc", are
implemented as instances of this class.

For example:

String str = "This is string literal";

On the right hand side a String object is created represented by the string literal. Its object refer-
ence is assigned to the str variable.

Strings are immutable; that is, they cannot be modified once created. Whenever it looks as if a
String object was modified, a new String was actually created and the old one was thrown away.

The Java language provides special support for the string concatenation operator (+), and for
conversion of other objects to strings. For example:

String str = "First part" + " second part";
// --- Is the same as:
String str = "First part second part";

Integers will also be converted to String after the (+) operator:

String str = "Age=" + 25;

1 Chapter 17 on page 97
2 Chapter 11 on page 71

103

java.lang.String

Each Java object has the String toString() inherited from the Object class. This method pro-
vides a way to convert objects into Strings. Most classes override the default behavior to provide
more specific (and more useful) data in the returned String.

The String class provides a nice set of methods for string manipulation. Since String objects
are immutable, all methods return a new String object. For example:

name = name.trim();

The trim() method returns a copy of the string with leading and trailing whitespace removed.
Note that the following would do nothing useful:

name.trim(); // wrong!

This would create a new trimmed string and then throw it away. Study the String class and its
methods carefully. Strings are ubiquitous in Java; it will serve you well to know how to manipulate
them skillfully.

18.2 Using StringBuffer/StringBuilder to concatenate strings

Remember that String objects are immutable objects. Once a String is created, it can not be
modified, takes up memory until garbage collected. Be careful of writing a method like this :

public String convertToString(Collection<String> coll)
{

String str = "";
for(String oneElem : coll) // loops through every element in coll
{

str = str + oneElem + " ";
}
return str;

}

On the (+) operation a new String object is created at each iteration. Suppose coll contains
the elements ["Foo", "Bar", "Bam", "Baz"]. The method creates five Strings ("", "Foo ",
"Foo Bar ", "Foo Bar Bam ", and "Foo Bar Bam Baz") even though only last one is actually
useful.

Instead use STRINGBUFFER3, as shown below, where only one STRINGBUILDER4 object is created:

3 HTTP://EN.WIKIBOOKS.ORG/WIKI/JAVA%20PROGRAMMING%2FAPI%2FJAVA.LANG.
STRINGBUFFER

4 HTTP://EN.WIKIBOOKS.ORG/WIKI/JAVA%20PROGRAMMING%2FAPI%2FJAVA.LANG.
STRINGBUILDER

104

http://en.wikibooks.org/wiki/Java%20Programming%2FAPI%2Fjava.lang.StringBuffer
http://en.wikibooks.org/wiki/Java%20Programming%2FAPI%2Fjava.lang.StringBuffer
http://en.wikibooks.org/wiki/Java%20Programming%2FAPI%2Fjava.lang.StringBuilder
http://en.wikibooks.org/wiki/Java%20Programming%2FAPI%2Fjava.lang.StringBuilder

Comparing Strings

To avoid unnecessary memory use like this, use the STRINGBUFFER5 or STRINGBUILDER6 class.
They provide similar functionality to Strings, but store their data in a mutable way. Also be-
cause object creation is time consuming, using StringBuffer or StringBuilder produces much
faster code.

public String convertToString(Collection<String> coll)
{

StringBuilder buf = new StringBuilder();
for(String oneElem : coll) // loops through every element in coll
{

buf.append(oneElem);
buf.append(" ");

}
return buf.toString();

}

StringBuilder was introduced in Java 5. Unlike StringBuffer, StringBuilder isn’t thread
safe, so you can’t use it in more than one thread (see the chapter on CONCURRENCY7). However,
because it doesn’t have to worry about synchronization, StringBuilders are faster.

18.3 Comparing Strings

Comparing strings is not as easy as it may first seem. We cannot just use a simple equality state-
ment such as:

if(myString == "Hello World!") //Can’t Use this.
{

System.out.println("Match Found");

}

To test for equality, use the equals(Object) method inherited by every class and defined by
String to return true if and only if the object passed in is a String containing the exact same
data.

String greeting = "Hello World!";
if(greeting.equals("Hello World!")) { //true

// ...

5 HTTP://EN.WIKIBOOKS.ORG/WIKI/JAVA%20PROGRAMMING%2FAPI%2FJAVA.LANG.
STRINGBUFFER

6 HTTP://EN.WIKIBOOKS.ORG/WIKI/JAVA%20PROGRAMMING%2FAPI%2FJAVA.LANG.
STRINGBUILDER

7 HTTP://EN.WIKIBOOKS.ORG/WIKI/JAVA%20PROGRAMMING%2FCONCURRENTPROGRAMMING

105

http://en.wikibooks.org/wiki/Java%20Programming%2FAPI%2Fjava.lang.StringBuffer
http://en.wikibooks.org/wiki/Java%20Programming%2FAPI%2Fjava.lang.StringBuffer
http://en.wikibooks.org/wiki/Java%20Programming%2FAPI%2Fjava.lang.StringBuilder
http://en.wikibooks.org/wiki/Java%20Programming%2FAPI%2Fjava.lang.StringBuilder
http://en.wikibooks.org/wiki/Java%20Programming%2FConcurrentProgramming

java.lang.String

}
if(greeting.equals("hello world!")) { //false

// ...

}

To order String objects, use the compareTo() method, which can be accessed wherever we use
a String datatype. Let’s take a look at an example:

String myString = "Hello World!";
//...
if(myString.compareTo("Hello World!") == 0)
{

System.out.println("Match Found");

}

This snippet of code is comparing the String variable myString to "Hello World". The
compareTo method returns a negative, zero, or positive number if the parameter is less than,
equal to, or greater than the object on which it is called. If myString was to be different, even in
the slightest manner we will get a value above or below 0 depending on the exact difference. The
result is negative if this String object lexicographically precedes the argument string. The result
is a positive integer if this String object lexicographically follows the argument string. Take a look
at the JAVA API8 for more details.

18.4 Splitting a String

Sometimes it is useful to split a string into separate strings, based on a regular expression. (For
more information on regular expressions, see REGEX9.) The String class has a split() method,
since Java 1.4, that will return a String array.

See the following example:

String person = "Brown, John:100 Yonge Street, Toronto:(416)777-9999";
...
String[] personData = person.split(":");
...
String name = personData[0];
String address = personData[1];
String phone = personData[2];

8 HTTP://JAVA.SUN.COM/J2SE/1.4.2/DOCS/API/JAVA/LANG/STRING.HTML#COMPARETO(JAVA.
LANG.STRING)

9 HTTP://EN.WIKIBOOKS.ORG/WIKI/JAVA%2FREGEX

106

http://java.sun.com/j2se/1.4.2/docs/api/java/lang/String.html#compareTo(java.lang.String)
http://java.sun.com/j2se/1.4.2/docs/api/java/lang/String.html#compareTo(java.lang.String)
http://en.wikibooks.org/wiki/Java%2FRegex

Creating substrings

An other useful application could be to ’split’ the String text based on the ’new line’ character, so
you could process the text line by line.

18.5 Creating substrings

It may also be sometimes useful to create substrings, or strings using the order of letters from an
existing string. This can be done in two methods.

The first method involves creating a substring out of the characters of a string from a given index
to the end.

For example:

String str = "coffee";
String substr = str.substring(3);

In this example, substr would return "fee". As previously discussed, the index of the first char-
acter in a string is 0. By counting from there, it is apparent that the character in index 3 is the
second "f" in "coffee". This is known as the beginIndex. All characters from the beginIndex
until the end of the string will be copied into the new substring.

The second method involves a user-defined beginIndex and endIndex. For example:

String str = "supporting";
String substr = str.substring(3,7);

The string returned by substr would be "port". Please note that the endIndex is not inclusive.
This means that the last character will be of the index endIndex-1. Therefore, in this example,
every character from index 3 to index 6, inclusive, was copied into the substring.

Note: "Substring" is considered to be one word. This is why the method name does not seem
to follow the common syntax of Java. It is easy to mistake the method substr() for subStr()
(which does not exist and would return with a syntax error on compilation). Just remember that
this style only applies to methods or other elements that are made up of more than one word.

18.6 Modifying String cases

The String Class also allows for the modification of cases. The two methods that make this possi-
ble are toLowerCase() and toUpperCase(). These methods are useful, for example, in the typi-
cal programming classroom assignment of evaluating whether or not a string is a palindrome.

String a = "WIKIBOOKS";
String b = "wikipedia";

In this example, a call to a.toLowerCase() would return a result of "wikibooks", and
b.toUpperCase() would return "WIKIPEDIA".

107

java.lang.String

18.7 See also

• JAVA API: JAVA.LANG.STRING10

• JAVA API: JAVA.LANG.STRINGBUFFER11

• JAVA API: JAVA.LANG.STRINGBUILDER12

• JAVA PROGRAMMING/API/JAVA.LANG.STRINGBUFFER13

• JAVA PROGRAMMING/API/JAVA.LANG.STRINGBUILDER14

10 HTTP://JAVA.SUN.COM/J2SE/1.5.0/DOCS/API/JAVA/LANG/STRING.HTML
11 HTTP://JAVA.SUN.COM/JAVASE/6/DOCS/API/JAVA/LANG/STRINGBUFFER.HTML
12 HTTP://JAVA.SUN.COM/JAVASE/6/DOCS/API/JAVA/LANG/STRINGBUILDER.HTML
13 HTTP://EN.WIKIBOOKS.ORG/WIKI/JAVA%20PROGRAMMING%2FAPI%2FJAVA.LANG.

STRINGBUFFER
14 HTTP://EN.WIKIBOOKS.ORG/WIKI/JAVA%20PROGRAMMING%2FAPI%2FJAVA.LANG.

STRINGBUILDER

108

http://java.sun.com/j2se/1.5.0/docs/api/java/lang/String.html
http://java.sun.com/javase/6/docs/api/java/lang/StringBuffer.html
http://java.sun.com/javase/6/docs/api/java/lang/StringBuilder.html
http://en.wikibooks.org/wiki/Java%20Programming%2FAPI%2Fjava.lang.StringBuffer
http://en.wikibooks.org/wiki/Java%20Programming%2FAPI%2Fjava.lang.StringBuffer
http://en.wikibooks.org/wiki/Java%20Programming%2FAPI%2Fjava.lang.StringBuilder
http://en.wikibooks.org/wiki/Java%20Programming%2FAPI%2Fjava.lang.StringBuilder

19 Arrays

19.1 Intro to Arrays

An array is similar to a table of data, keyed by number. In Java an array is an object like all other
objects. Look at the following program:

import java.util.*;

public class ArrayExample {

static Scanner input = new Scanner(System.in);

public static void main(String[] args) {
int numNames = getInt("Number of names?");
String[] names = new String[numNames];
for (int i = 0; i < names.length; i++) {
names[i] = getString("Enter name #" + (i+1));

}
for (int i = 0; i < names.length; ++i) {
System.out.println(names[i]);

}
}

public static int getInt(String prompt) {
System.out.print(prompt + " ");
int integer = input.nextInt();
input.nextLine(); // Get rid of this line
// so that getString won’t read it
return integer;

}

public static String getString(String prompt) {
System.out.print(prompt + " ");
return input.nextLine();

}
}

Copy the code and compile it. The program will ask you to enter some names then reprints the
names in order. It demonstrates three major aspects of arrays: how to define an array, how to
set data, and how to access it. The code String[] names = new String[numNames]; tells Java
to create an array of size numNames that will store Strings. To set data, use names[x] = data
where x is the index to access. Note that all Java arrays start at 0 and go to (array size - 1). Thus,
if you dimension an array to size 10, the highest index is 9.

19.2 Array Fundamentals

• To create an array, use the syntax DataType[] variable = new DataType[ArraySize]. Alterna-
tively, if you know the data beforehand, you can write DataType[] variable = {item 1, item
2,...item n}

109

Arrays

• All elements of the array will be automatically initialized with the default value for that
datatype. This is false for booleans, 0 for all numeric primitive types, and null for all ref-
erence types. So for example, the previous note created an array of DataType references, all
of which are initialized to null.

• To access an item, use the syntax variable[i] where i is the index
• To set an item, use the syntax variable[i] = data
• To find the length of an array, use the syntax variable.length

19.3 Two-Dimensional Arrays

A two-dimensional array is represented by an array of arrays. Because an array is also an object,
like any other object having the Object as the super class, it can be used to create an array where
the element of the array is also an array. In this way an array with any number of dimensions can
be created. Here are examples of two dimensional arrays with initializer blocks:

String[][] twoDimArray = {{"a", "b", "c", "d", "e"},
{"f", "g", "h", "i", "j"},
{"k", "l", "m", "n", "o"}};

int[][] twoDimIntArray = {{ 0, 1, 2, 3, 4},
{10, 11, 12, 13, 14},
{20, 21, 22, 23, 24}};

Note that the above "twoDimArray" is equivalent to the following more verbose code:

String[][] twoDimArray = new String[3][];
for(int i = 0; i < twoDimArray.length; i++) {
twoDimArray[i] = new String[5];
for(int j = 0; j < twoDimArray[i].length; j++)

twoDimArray[i][j] = "" + i + j;
}

In the above example we defined an array which has three elements, each element contains an
array having 5 elements. We could create the array having the 5 elements first and use that one
in the initialize block.

String[] oneDimArray = { "00", "01", "02", "03", "04" };
String[][] twoDimArray = { oneDimArray ,

{"10", "11", "12", "13", "14"},
{"20", "21", "22", "23", "24"} };

Since they are arrays of array references, these multi-dimensional arrays can be "jagged" (i.e.
subarrays can have different lengths), or the subarray reference can even be null. Consider:

String[][] weirdTwoDimArray = {{"10", "11", "12"},
null,
{"20", "21", "22", "23", "24"}};

Note that the length of a two-dimensional array is the number of one-dimensional arrays
it contains. In the above example, weirdTwoDimArray.length is 3, whereas weirdTwoDimAr-
ray[2].length is 5.

110

Multidimensional Array

19.4 Multidimensional Array

Going further any number of dimensional array can be defined.

<elementType>[][]...[] <arrayName>
or
<elementType><arrayName>[][]...[]

DE:JAVA_STANDARD: DATENSTRUKTUREN1 ES:PROGRAMACIÓN EN JAVA/ARRAYS2

FR:PROGRAMMATION JAVA/TABLEAUX3 NL:PROGRAMMEREN IN JAVA/ARRAYS4 PT:JAVA/VETORES5

1 HTTP://DE.WIKIBOOKS.ORG/WIKI/JAVA_STANDARD%3A%20DATENSTRUKTUREN
2 HTTP://ES.WIKIBOOKS.ORG/WIKI/PROGRAMACI%F3N%20EN%20JAVA%2FARRAYS
3 HTTP://FR.WIKIBOOKS.ORG/WIKI/PROGRAMMATION%20JAVA%2FTABLEAUX
4 HTTP://NL.WIKIBOOKS.ORG/WIKI/PROGRAMMEREN%20IN%20JAVA%2FARRAYS
5 HTTP://PT.WIKIBOOKS.ORG/WIKI/JAVA%2FVETORES

111

http://de.wikibooks.org/wiki/Java_Standard%3A%20Datenstrukturen
http://es.wikibooks.org/wiki/Programaci%F3n%20en%20Java%2FArrays
http://fr.wikibooks.org/wiki/Programmation%20Java%2FTableaux
http://nl.wikibooks.org/wiki/Programmeren%20in%20Java%2FArrays
http://pt.wikibooks.org/wiki/Java%2FVetores

Arrays

112

20 Data and Variables

A variable in Java can store two kinds of variables:

• JAVA PRIMITIVE TYPE VALUES1

• a reference to a JAVA OBJECT2

Java’s primitive types are

• integers (whole numbers, declared as byte, short, int, or long; only int need be of interest to a
beginner)

• floating-point numbers (decimal numbers, declared as float or double; only float need be of
interest at first)

• characters (declared as char, representing one character like ’A’ or ’,’)
• boolean (holding only true or false as values)

In addition, the Java language has special features for its String class, and strings can be treated
very much like primitives for many purposes.

As in most languages, a variable is declared to be a particular type of data; the syntax for a
declaration is:

variabletype variablename;

To store a value in a variable, a program statement like

variablename = data;

And can reference the variable (and use the data stored in it) by its name.

For example, to create an int primitive type value, named year that stores 2007;

year = 2007;

To access the data in year, use the variable in place of the number.

System.out.println(year);

Produces

1 Chapter 16 on page 95
2 Chapter 23 on page 129

113

Data and Variables

2007

20.1 Strong Typing

Variables in Java are strongly typed, which means that the compiler checks the type of a variable
matches the type of data stored in that variable. If you declare a variable to hold a String, for
instance, you cannot assign an integer value to that variable. Some languages (such as C) define
an interpretation of such a statement and use that interpretation without any warning; others
(such as PL/I) define a conversion for almost all such statements and perform the conversion
to complete the assignment. Strong typing is intended to prevent mistakes made by unwittingly
assigning the wrong kind of value to a variable, and catching those mistakes when the program
is compiled rather than waiting to find it when the program is running.

20.2 Case Conventions

Java is case-sensitive. A method called mymethod is completely separate from a method called
myMethod. Be careful!

By convention, most identifiers that includes more than one word uses CAMEL CASE3. Classes
begin with a capital letter; methods and variables do not. (Constructors have to start with a
capital, because they must have the same name as the class.) Package names use lowercase, and
do not use camel case. Thus:

package org.wikibooks.samplecode;

class CaseConventions {
int variable;
int multipleWordVariable;

CaseConventions(String id) {
}

void method() {
}

void longMethodName() {
}

}

20.3 Scope

Java uses block scope, which means that a variable is "un-defined" (and becomes useless) at
the end of the block in which it is defined. A block is any section of code within curly braces.
Common blocks include class definitions, methods and constructors, if/else blocks, and for,

3 HTTP://EN.WIKIPEDIA.ORG/WIKI/CAMELCASE

114

http://en.wikipedia.org/wiki/CamelCase

Scope

while, and do-while loops.

class BlockScope {
int classScope; // valid in all of class BlockScope

BlockScope(int param) { // param is valid only in this constructor
int localVariable = 0; // valid only in this constructor

}

void someMethod() {
int local = 42; // valid only in this method

if(local > 0) {
boolean positive = true; // valid only within the if block

} else {
// positive is not defined here!

}
}

}

There are three basic kinds of scope for variables in Java:

• local variable, declared within a method in a class, valid for (and occupying storage only for)
the time that method is executing. Every time the method is called, a new copy of the variable
is used.

• instance variable, declared within a class but outside any method. It is valid for and occupies
storage for as long as the corresponding object is in memory; a program can instantiate mul-
tiple objects of the class, and each one gets its own copy of all instance variables. This is the
basic data structure rule of Object-Oriented programming; classes are defined to hold data
specific to a "class of objects" in a given system, and each instance holds its own data.

• static variable, declared within a class as static, outside any method. There is only one copy of
such a variable no matter how many objects are instantiated from that class.

CATEGORY:JAVA PROGRAMMING4

4 HTTP://EN.WIKIBOOKS.ORG/WIKI/CATEGORY%3AJAVA%20PROGRAMMING

115

http://en.wikibooks.org/wiki/Category%3AJava%20Programming

Data and Variables

116

21 Generics

Generics were added to the Java language syntax in version 1.5. This means that code using
Generics will not compile with Java 1.4 and less.

Java was long criticized for the need to explicitly type-cast an element when it was taken out of a
"container/collection" class. There was no way to enforce that a "collection" class contains only
one type of object (e.g., to forbid at compile time that an Integerobject is added to a Collection
that should only contain Strings). This is now possible since Java 1.5.

In the first couple of years of Java evolution, Java did not have a real competitor. This has changed
by the appearance of Microsoft C#. With Generics Java is better suited to compete against C#.
Similar constructs to Java Generics exist in other languages, see W:GENERIC PROGRAMMING1 for
more information.

21.1 What are Generics?

Generics are so called because this language feature allows methods to be written generically,
with no foreknowledge of the type on which they will eventually be called upon to carry out their
behaviors. A better name might have been type parameter argument. Because, it is basically
that, to pass a Type as a parameter to a class at creation time.

When an object is created, parameters can be passed to the created object, through the con-
structor. Now with Generics, we can also pass in Types. The type-place-holders will be replaced
with the specified type, before the object is created.

Type parameter arguments can be set:

for a class

When an object is created from that class the type-parameter-argument will be replaced with
the actual Type.

public class Person<T>
{

private Person<T> person;
...
}
...
// --- Create an Employee person ---
Person<Employee> emplPerson = new Person<Employee>();
...
// --- Create a Customer person ---
Person<Customer> custPerson = new Person<Customer>();

1 HTTP://EN.WIKIPEDIA.ORG/WIKI/GENERIC%20PROGRAMMING

117

http://en.wikipedia.org/wiki/Generic%20programming

Generics

for a method

Just like class declarations, method declarations can be generic--that is, parameterized by one
or more type parameters.

public static <T> void assign(Person<T> person, T obj)
{

person.setPerson(obj);
}

use of generics is optional

For backwards compatibility with pre-Generics code, it is okay to use generic classes without
the generics type specification thing (<T>). In such a case, when you retrieve an object reference
from a generic object, you will have to manually typecast it from type Object to the correct type.
The compiler should also warn about unsafe operations.

21.2 Introduction

Java is a strongly typed language. That’s one of the reasons why it is so easy to use. Many
potential problems are caught by the compiler. One area where Java was criticized was regarding
the container objects. Container objects are objects that contain other objects. Before Generics
were introduced there was no way to ensure that a container object contains only one type of
objects. When an object was added to a container, it was automatically cast to Java Object. When
it was taken out an explicit cast was needed. Normally an explicit cast is checked by the compiler.

String st = "This is a String";
...
Integer integer = (Integer) st; // --- Compilation Error --

But in the case of container classes, the compiler was not able to catch an invalid type casting.

1 Collection collString = new ArrayList();
2 collString.add("This is a String");
...
3 Integer integer = (Integer) collString.get(0); // --- No Compilation Error; RunTime CastException

Just looking at line 3, we do not know what type of objects collString contains. If that contains
Integers then the code is fine.

The below code using Generic:

Collection<String> collString = new ArrayList<String>();
collString.add("This is a String");
...
Integer integer = (Integer) collString.get(0); // --- Compilation Error

collString is a container object, that can contain only String objects, nothing else, so when we get
out an element it can be casted only to class that normally a String can be casted.

118

Note for C++ programmers

With Generics, Java strict type checking can be extended to container objects. Using Generics
with container classes, gives an impression that a new container type is created, with each
different type parameter. Before Generics:

Collection collCustomer = new ArrayList();
collCustomer.add(new Customer());
...
Collection collObject = collCustomer; // --- No problem, both collObject and collCustomer have the same type

With generics:

Collection<Customer> collCustomer = new ArrayList<Customer>();
collCustomer.add(new Customer());
...
Collection<Object> collObject = collCustomer; // --- Compilation Error

Both collObject and collCustomer have the same type, BUT it is against the Generic rule, that is
collCustomer can contain only Customer objects, and collObject can contain only Object object.
So there is an additional check to the normal type checking, the type of the parameter type has
to be matched too.

21.3 Note for C++ programmers

Java Generics are similar to C++ Templates in that both were added for the same reason. The
syntax of Java Generic and C++ Template are also similar.

There are some differences however. The C++ template can be seen as a kind of macro, that
generates code before compilation. The generated code depends on how the Template class is
referenced. The amount of code generated depends on how many different types of classes are
created from the Template. C++ Templates do not have any run-time mechanisms. The compiler
creates normal code to substitute the template, similar to any ’hand-written’ code.

In contrast, Java Generics are built into the language. The same Class object handles all the
Generic type variations. No additional code is generated, no matter how many Generic objects
are created with different type parameters. For example.

Collection<String> collString = new ArrayList<String>();

Collection<Integer> collInteger = new ArrayList<Integer>();

There is only one Class object created. In fact, at runtime, both these objects appear as the same
type (both ArrayList’s). The generics type information is erased during compilation (type era-
sure). This means, for example, that if you had function that takes Collection<T> as an argu-
ment, and that collection happened to be empty, your function would have no way of instanti-
ating another T object, because it doesn’t know what T was.

The Class class itself is generic since Java 1.5.

119

Generics

public final class Class<T> extends Object
implements Serializable, GenericDeclaration, Type, AnnotatedElement

{
...
}

The T type here represents the type that is handed to the Class object. The T type will be substi-
tuted with the class being loaded.

21.4 Class<T>

Since Java 1.5, the class java.lang.Class is generic. It is an interesting example of using generic-
ness for something other than a container class.

For example, the type of String.class is Class<String>, and the type of Serializable.class is
Class<Serializable>. This can be used to improve the type safety of your reflection code.

In particular, since the newInstance() method in Class now returns a T, you can get more pre-
cise types when creating objects reflectively.

Now we can use the newInstance()method to return a new object with exact type, without
casting.

Customer cust = Utility.createAnyObject(Customer.class); // - No casting
...
public static <T> T createAnyObject(Class<T> cls)
{

T ret = null;
try
{

ret = cls.newInstance();
}
catch (Exception e)
{

// --- Exception Handling
}
return ret;

}

And the above code without Generics:

Customer cust = (Customer) Utility.createAnyObject(Customer.class); // - Casting is needed
...
public static Object createAnyObject(Class cls)
{

Object ret = null;
try
{

ret = cls.newInstance();
}
catch (Exception e)
{

// --- Exception Handling
}

120

Variable Argument

return ret;
}

Get exact type when getting JavaBean property, using reflection

See the following code where the method will return the exact type of the Java Bean property,
based on how it will be called.

// --- Using reflection, get a Java Bean property by its name ---
public static <T> T getProperty(Object bean, String propertyName)
{

if (bean == null ||
propertyName == null ||
propertyName.length() == 0)

{
return null;

}
// --- Based on the property name build the getter method name ---
String methodName = "get" +

propertyName.substring(0,1).toUpperCase() +
propertyName.substring(1);

T property = null;
try
{

java.lang.Class c = bean.getClass();
java.lang.reflect.Method m = c.getMethod(methodName, null);
property = (T) m.invoke(bean, null);

}
catch (Exception e)
{

// --- Handle exception --
}
return property;

}

21.5 Variable Argument

Using Generics, it is very easy to define a method with a variable number of arguments. Before
generics, this was not possible in Java—if a likewise feature was needed, this was mostly done by
passing an array. The only requirement for using a variable number of arguments using Generics
is that the arguments in the list must have the same type.

The following code illustrates a method that can be called with a variable number arguments:

/**
* Method using variable-length argument list
* @param <T>
* @param args
*/

public static <T> List<T> makeAList(T... args)
{

List<T> argList = new ArrayList<T>();
for (int i = 0; i < args.length; i++)
{

argList.add(args[i]);
}
// List<T> argList = Arrays.asList(args);

121

Generics

return argList;
}

The above method can be called with a variable number of arguments, for example:

List<String> list1 = makeAList("One", "Two", "Three");
List<String> list2 = makeAList("One", "Two", "Three", "Four");

In the above example calls, the arguments must be of type String. If we write <? extends
Object> instead of T, then we can pass any kind of objects, regardles of their type:

List<? extends Object> list3 = makeAList("One", 10, new StringBuffer(), new
LinkedList());

Note: the number 10 in the above code will be converted (autoboxed) to Integer.

See also:

java.util.Arrays.asList(T... a)

21.6 Wildcard Types

As we have seen above, generics give the impression that a new container type is created with
each different type parameter. We have also seen that in addition to the normal type checking,
the type parameter has to match as well when we assign generics variables.

In some cases this is too restrictive. What if we would like to relax this additional checking? What
if we would like to define a collection variable that can hold any generic collection, regardless of
the parameter type it holds?

Wildcard

The wildcard type is represented by the character <?>, and pronounced Unknown, or Any-
Type. This Unknown type matches anything, if it is used only by itself. Any-Type can be express
also by <? extends Object>. Any-Type includes Interfaces, not only Classes.

So now we can define a collection whose element type matches anything. See below:

Collection<?> collUnknown;

Note that we can not add anything to this collection. We can only take out elements of type
Object from it. So what is the use of this variable if we can not add anything to the collection
it represents? The use of this new construct will be clear when you want to create a generic
method that takes any collection.

122

Wildcard Types

public static void printElements(Collection<?> anycoll)
{

Iterator<?> iter = anycoll.iterator();
while (iter.hasNext())
{

System.out.print(iter.next());
}

}

Wildcard for a specific type of classes

"<? extends ClassName>" specifies a restriction on the types of classes that may used.

For example, to create a collection that may only contain "Serializable" objects, specify:

Collection<? extends Serializable> serColl = new ArrayList<String>();

The above code is valid because, the String class is serializable. Use of a class that is not serializ-
able would cause a compilation error.

The following collection can only contain objects that extend the class Animal.

class Dog extends Animal
{
...

}
...
// --- Create "Animal Collection" variable ---
Collection<? extends Animal> animalColl = new ArrayList<Dog>();

"<? super ClassName>" specifies a restriction on the types of classes that may be used.

For example, to declare a Comparator that can compare Dogs, you use

Comparator<? super Dog> myComparator;

Now suppose you define a comparator that can compare Animals:

class AnimalComparator implements Comparator<Animal>
{
int compare(Animal a, Animal b) { //...
}

}

Since Dogs are Animals, you can use this comparator to compare Dogs also. Comparators for
any superclass of Dog can also compare Dog; but comparators for any strict subclass cannot.

123

Generics

Comparator<Animal> myAnimalComparator = new AnimalComparator();

static int compareTwoDogs(Comparator<? super Dog> comp, Dog dog1, Dog dog2) {
return comp.compare(dog1, dog2);

}

The above code is valid because, the Animal class is a supertype of the Dog class. Use of a class
that is not a supertype would cause a compilation error.

CATEGORY:JAVA PROGRAMMING2

FR:PROGRAMMATION JAVA/TYPES GÉNÉRIQUES3

2 HTTP://EN.WIKIBOOKS.ORG/WIKI/CATEGORY%3AJAVA%20PROGRAMMING
3 HTTP://FR.WIKIBOOKS.ORG/WIKI/PROGRAMMATION%20JAVA%2FTYPES%20G%E9N%E9RIQUES

124

http://en.wikibooks.org/wiki/Category%3AJava%20Programming
http://fr.wikibooks.org/wiki/Programmation%20Java%2FTypes%20g%E9n%E9riques

22 Defining Classes

22.1 Fundamentals

Every class in Java can be composed of the following elements

• fields - Fields are variables that hold data specific to each object. For example, an employee
might have an ID number. (They are also called member variables.) There is one field for each
object of a class.

• member methods - Member methods perform operations on an object. For example, an em-
ployee might have a method to issue his paycheck or to access his name.

• static fields - Static fields are common to any object of the same class. For example, a static
field within the Employee class could keep track of the last ID number issued. Only one static
field exists for one class.

• static methods - Static methods are methods that do not affect a specific object.
• other classes - Sometimes it is useful to contain a class within another one if it is useless out-

side of the class or should not be accessed outside the class.
• Constructors - A special method that generates a new object.
• Parameterized types - Since 1.5, ’parameterized types’ can be assigned to a class during def-

inition. The ’parameterized types’ will be substituted with the types specified at the class’s
instantiation. It is done by the compiler. It is similar to the C language macro ’#define’ state-
ment, where a preprocessor evaluates the macros.

public class Employee // This defines the Employee class.
{ // The public modifier indicates
that

// it can be accessed by any other class

private static int nextID; // Define a static field. Only one copy of
this will exist,

// no matter how many Employees are created.

125

Defining Classes

private int myID; // Define fields that will be stored
private String myName; // for each Employee. The private modifier

indicates that
// only code inside the Employee class can

access it.

public Employee(String name) // This is a constructor. You can pass a
name to the constructor

{ // and it will give you a newly created
Employee object.

myName = name;
myID = nextID; // Automatically assign an ID to the object
nextID++; // Increment the ID counter

}

public String getName() // This is a member method that returns the
{ // Employee object’s name.

return myName; // Note how it can access the private field
myName.

}

public int getID() // This is another member method.
{

return myID;
}

public static int getNextID() // This is a static method that returns the
next ID

{ // that will be assigned if another Employee
is created.

return nextID;
}

}

The following Java code

public class EmployeeList {

public static void main(String[] args) {

System.out.println(Employee.getNextID());

Employee a = new Employee("John Doe");
Employee b = new Employee("Jane Smith");
Employee c = new Employee("Sally Brown");

System.out.println(Employee.getNextID());

System.out.println(a.getID() + " : " + a.getName());
System.out.println(b.getID() + " : " + b.getName());
System.out.println(c.getID() + " : " + c.getName());

}

}

126

Fundamentals

would produce this output:

0
3
0 : John Doe
1 : Jane Smith
2 : Sally Brown

CATEGORY:JAVA PROGRAMMING1

1 HTTP://EN.WIKIBOOKS.ORG/WIKI/CATEGORY%3AJAVA%20PROGRAMMING

127

http://en.wikibooks.org/wiki/Category%3AJava%20Programming

Defining Classes

128

23 Creating Objects

23.1 Introduction

Before a Java object can be created the class byte code must be loaded from the file system (with
.class extension) to memory. This process of locating the byte code for a given class name and
converting that code into a Java CLASS1 class instance is known as class loading. There is one
CLASS2 created for each type of Java class.

All objects in java programs are created on heap memory. An object is created based on its class.
You can consider a class as a blueprint, template, or a description how to create an object. When
an object is created, memory is allocated to hold the object properties. An object reference point-
ing to that memory location is also created. To use the object in the future, that object reference
has to be stored as a local variable or as an object member variable.

The Java Virtual Machine (JVM), keeps track of the usage of object references. If there are no
more reference to the object, the object can not be used any more and becomes garbage. After
a while the heap memory will be full of unused objects. The JVM collects those garbage objects
and frees the memory they allocated, so the memory can be reused again when a new object is
created. See below a simple example:

{
// --- Create an object ---
MyObject obj = new MyObject();

// --- Use the object ---
obj.printMyValues();

}

The obj contains the object reference pointing to an object created from the MyObject class.
The obj object reference is in scope inside the { }. After the } the object becomes garbage. Object
references can be passed in to methods, object references can be returned from methods.

23.2 Creating object with the new keyword

99% of new objects are created using the new keyword.

1 HTTP://EN.WIKIBOOKS.ORG/WIKI/JAVA%20PROGRAMMING%2FAPI%2FJAVA.LANG.CLASS
2 HTTP://EN.WIKIBOOKS.ORG/WIKI/JAVA%20PROGRAMMING%2FAPI%2FJAVA.LANG.CLASS

129

http://en.wikibooks.org/wiki/Java%20Programming%2FAPI%2Fjava.lang.Class
http://en.wikibooks.org/wiki/Java%20Programming%2FAPI%2Fjava.lang.Class

Creating Objects

{
// --- Create an ’MyObject’ for the first time the application started --
MyObject obj = new MyObject();

}

When an object from the MyObject class is created for the first time. The JVM searches the file
system for the definition of the class, that is the Java byte code. The file has the extention of
’*.class’. The CLASSPATH environment variable contains locations where Java classes are stored.
The JVM is looking for the ’MyObject.class’ file. Depending on which package the class belongs
to, the package name will be translated to a directory path.

When the ’MyObject.class’ file is found, the JVM’s class loader loads the class in memory, and
creates a Class object. The JVM stores the code in memory, allocates memory for the static vari-
ables, and executes any static initialize block. Memory is not allocated for the object member
variables at this point, memory will be allocated for them when an instance of the class, an ob-
ject, is created.

There is no limit on how many objects from the same class can be created. Code and static
variables are stored only once, no matter how many objects are created. Memory is allocated for
the object member variables when the object is created. Thus, the size of an object is determined
not by its code’s size but by the memory it needs for its member variables to be stored.

23.3 Creating object by cloning an object

Cloning is not automatically available to classes. There is some help though, as all Java objects
inherit the protected Object clone() method. This base method would allocate the memory
and do the bit by bit copying of the object’s states.

You may ask why we need this clone method. Couldn’t I create a constructor and just passing in
the same object, and do the copying variable by variable? Lets see:

public class MyObject
{

private int memberVar;
...

MyObject(MyObject obj)
{

this.memberVar = obj.memberVar;
...
}

...
}

You might think that accessing the private memberVar variable of obj would fail but as this is
in the same class this code is legal. The clone() method copies the whole object’s memory in
one operation. This is much faster than using the new keyword. Object creation with the new
keyword is expensive, so if you need to create lots of objects with the same type, performance
will be better if you create one object and clone new ones from it. See below a factory method
that will return a new object using cloning.

130

Creating object by cloning an object

HashTable _cacheTemplate = new HashTable;
...
/** Clone Customer object for performance reason */
public Customer createCustomerObject()
{

// --- See if a template object exists in our cache ---
Customer template = _cacheTemplate.get("Customer");
if (template == null)
{

// --- Create template ---
template = new Customer();
_cacheTemplate.put("Customer", template);

}
return template.clone();

}

Now, lets see how to make the Customer object cloneable.

• First the Customer class needs to implement the Cloneable Interface.
• Override and make the clone() method public, as that is protected in the Object class.
• Call the super.clone()method at the beginning of your clone method.
• Override the clone() method in all the subclasses of Customer.

public class Customer implements Cloneable
{
...

public Object clone() throws CloneNotSupportedException
{

Object obj = super.clone();

return obj;
}

}

In the above example we used cloning for speed up object creation.

An other use of cloning could be to take a snapshot of an object that can change in time. Lets
say we want to store Customer objects in a collection, but we want to disassociate them from the
’live’ objects . So before adding the object, we clone them, so if the original object changes from
that point forward, the added object won’t. Also lets say that the Customer object has a reference
to an Activity object that contains the customer activities. Now we are facing a problem, it is not
enough to clone the Customer object, we also need to clone the referenced objects. The solution:

• Make the Activity class also cloneable
• Make sure that if the Activity class has other ’changeable’ object references, those has to be

cloned as well, as seen below
• Change the Customer class clone() method as follows:

public class Customer implements Cloneable
{
Activity _activity;
...

public Customer clone() throws CloneNotSupportedException
{

Customer clonedCustomer = (Customer) super.clone();

// -- Clone the object referenced objects ---
if (_activity != null)

131

Creating Objects

{
clonedCustomer.setActivity((Activity) _activity.clone());

}
return clonedCustomer;

}
}

Note that only mutable objects needs to be cloned. References to unchangeable objects such as
String be used in the cloned object without worry.

23.4 Creating object receiving from a remote source

When an object is sent through a network, the object needs to be recreated at the receiving host.

Object Serialization

The term Object Serialization refers to the act of converting the object to a byte stream. The
byte stream can be stored on the file system, or can be sent through a network.

At the later time the object can be re-created from that stream of bytes. The only requirement
is that the same class has to be available at both times, when the object is serialized and also
when the object is re-created. If that happens in different servers, then the same class must be
available on both servers. Same class means that exactly the same version of the class must be
available, otherwise the object won’t be able to be re-created. This is a maintenance problem to
those applications where java serialization is used to persist object or sent the object through
the network.

When a class is modified, there could be a problem re-creating those objects that were serialized
using an earlier version of the class.

Java has built in support for serialization, using the Serializable interface; however, a class must
first implement the Serializable interface.

By default, a class will have all of its fields serialized when converted into a data stream (with
TRANSIENT3 fields being skipped.) If additional handling is required beyond the default of writing
all fields, you need to provide an implementation for two methods:

private void writeObject(java.io.ObjectOutputStream out) throws IOException;
private void readObject(java.io.ObjectInputStream in) throws IOException,
ClassNotFoundException;
private void readObjectNoData() throws ObjectStreamException;

If the object needs to write or provide a replacement object during serialization, it needs to im-
plement the following two methods, with any access specifier:

Object writeReplace() throws ObjectStreamException;
Object readResolve() throws ObjectStreamException;

3 HTTP://EN.WIKIBOOKS.ORG/WIKI/JAVA%20PROGRAMMING%2FKEYWORDS%2FTRANSIENT

132

http://en.wikibooks.org/wiki/Java%20Programming%2FKeywords%2Ftransient

Creating object receiving from a remote source

Normally, a minor change to the class can cause the serialization to fail. You can still allow the
class to be loaded by defining the serialization version id:

private static final long serialVersionUID = 42L;

CATEGORY:JAVA PROGRAMMING4

4 HTTP://EN.WIKIBOOKS.ORG/WIKI/CATEGORY%3AJAVA%20PROGRAMMING

133

http://en.wikibooks.org/wiki/Category%3AJava%20Programming

Creating Objects

134

24 Interfaces

24.1 Interfaces

Java does not allow you to create a subclass from two classes. There is no multiple inheritance.
The major benefit of that is that all java objects can have a common ancestor. That class is called
Object. All java classes can be up-casted to Object. Example:

class MyObject
{
...

}

When you type the above code, it actually means the following:

class MyObject extends Object // -- The compiler adds ’extends Object’. if not specified
{
...

}

So it can be guaranteed that certain methods are available in all java classes. This makes the
language simpler.

To mimic multiple inheritance, java offers interfaces, which are similar to abstract classes. In
interfaces all methods are abstract by default, without the abstract key word. Interfaces have no
implementation and no variables, but constant values can be defined in interfaces - however, a
single class can implement as many interfaces as required.

public interface MyInterface
{

public static final String CONSTANT = "This value can not be changed";

public String methodOne(); // This method must be implemented by the class that implements this interface
...

}

...

public class MyObject implements MyInterface
{
// Implement MyInterface interface
public String methodOne()
{
...
}

}

135

Interfaces

24.2 External links

• INTERFACES, INTERACTIVE JAVA LESSON1

• INTERFACES 2, INTERACTIVE JAVA LESSON2

CATEGORY:JAVA PROGRAMMING3

FR:PROGRAMMATION JAVA/INTERFACES4

1 HTTP://JAVALESSONS.COM/CGI-BIN/FUN/JAVA-TUTORIALS-MAIN.CGI?SES=AO789&CODE=
IF1&SUB=FUN

2 HTTP://JAVALESSONS.COM/CGI-BIN/FUN/JAVA-TUTORIALS-MAIN.CGI?SES=AO789&CODE=
IF2&SUB=FUN

3 HTTP://EN.WIKIBOOKS.ORG/WIKI/CATEGORY%3AJAVA%20PROGRAMMING
4 HTTP://FR.WIKIBOOKS.ORG/WIKI/PROGRAMMATION%20JAVA%2FINTERFACES

136

http://javalessons.com/cgi-bin/fun/java-tutorials-main.cgi?ses=ao789&code=if1&sub=fun
http://javalessons.com/cgi-bin/fun/java-tutorials-main.cgi?ses=ao789&code=if1&sub=fun
http://javalessons.com/cgi-bin/fun/java-tutorials-main.cgi?ses=ao789&code=if2&sub=fun
http://javalessons.com/cgi-bin/fun/java-tutorials-main.cgi?ses=ao789&code=if2&sub=fun
http://en.wikibooks.org/wiki/Category%3AJava%20Programming
http://fr.wikibooks.org/wiki/Programmation%20Java%2FInterfaces

25 Using Static Members

25.1 What does static mean?

When you declare a

• method, or
• member variable

static, it is independent of any particular, but rather it is shared among all instances of a class. To
access a static method or member variable, no instance needs to be created.

The static keyword is used to declare a method, or member variable static.

25.2 What can it be used for?

• Static variables can be used as data sharing amongst objects of the same class. For example to
implement a counter that stores the number of objects created at a given time can be defined
as so:

public AClass
{

static private int counter;
...

public AClass()
{
...
counter += 1;

}
...

public int getNumberOfObjectsCreated()
{

return counter;
}

}

The counter variable is incremented each time an object is created.

Public static variable should not be used, as these become GLOBAL variables that can be
accessed from everywhere in the program. Global constants can be used, however. See below:

static public final String CONSTANT_VAR = "Const";

• Static methods can be used for utility functions or for functions that do not belong to any
particular object. For example:

137

Using Static Members

public Match
{
...

public static int addTwoNumbers(int par1, int par2)
{

return par1 + par2;
}

}

25.3 Danger of static variables

Use static variables only for:

• data sharing (be careful)
• defining global constants

Use static methods for:

• utility functions

Using static variables and/or method for other purposes goes against object orientation, and will
make your code either harder to read or maintain.

25.4 External links

• STATIC, INTERACTIVE JAVA LESSON1

CATEGORY:JAVA PROGRAMMING2

1 HTTP://JAVALESSONS.COM/CGI-BIN/FUN/JAVA-TUTORIALS-MAIN.CGI?SES=AO789&CODE=
STC&SUB=FUN

2 HTTP://EN.WIKIBOOKS.ORG/WIKI/CATEGORY%3AJAVA%20PROGRAMMING

138

http://javalessons.com/cgi-bin/fun/java-tutorials-main.cgi?ses=ao789&code=stc&sub=fun
http://javalessons.com/cgi-bin/fun/java-tutorials-main.cgi?ses=ao789&code=stc&sub=fun
http://en.wikibooks.org/wiki/Category%3AJava%20Programming

26 Destroying Objects

Unlike in many other object-oriented programming languages, Java performs automatic garbage
collection - any unreferenced objects are automatically erased from memory - and prohibits the
user from manually destroying objects.

26.1 finalize()

When an object is garbage-collected, the programmer may want to manually perform cleanup,
such as closing any open input/output streams. To accomplish this, the finalize() method is
used. Note that finalize() should never be manually called, except to call a super class’ finalize
method from a derived class’ finalize method. Also, we can not rely on when the finalize()
method will be called. If the java application exits before the object is garbage-collected, the
finalize() method may never be called.

protected void finalize() throws Throwable
{

try {
doCleanup(); // Perform some cleanup. If it fails for some

reason, it is ignored.
} finally {

super.finalize(); //Call finalize on the parent object
}

}

The garbage-collector thread runs in a lower priority than the other threads. If the application
creates objects faster than the garbage-collector can claim back memory, the program can run
out of memory.

The finalize method is required only if there are resources beyond the direct control of the Java
Virtual Machine that need to be cleaned up. In particular, there is no need to explicitly close
an OutputStream, since the OutputStream will close itself when it gets finalized. Instead, the
finalize method is used to release either native or remote resources controlled by the class.

CATEGORY:JAVA PROGRAMMING1

1 HTTP://EN.WIKIBOOKS.ORG/WIKI/CATEGORY%3AJAVA%20PROGRAMMING

139

http://en.wikibooks.org/wiki/Category%3AJava%20Programming

Destroying Objects

140

27 Overloading Methods and Constructors

If two methods of a class (whether both declared in the same class, or both inherited by a class, or
one declared and one inherited) have the same name but different signatures, then the method
name is said to be overloaded. This fact causes no difficulty and never of itself results in a
compile-time error. There is no required relationship between the return types or between the
throws clauses of two methods with the same name but different signatures.

Methods are overridden on a signature-by-signature basis.

If, for example, a class declares two public methods with the same name, and a subclass overrides
one of them, the subclass still inherits the other method. In this respect, the Java programming
language differs from C++.

When a method is invoked, the number of actual arguments and the compile-time types of the
arguments are used, at compile time, to determine the signature of the method that will be in-
voked . If the method that is to be invoked is an instance method, the actual method to be
invoked will be determined at run time, using dynamic method lookup.

CATEGORY:JAVA PROGRAMMING1

1 HTTP://EN.WIKIBOOKS.ORG/WIKI/CATEGORY%3AJAVA%20PROGRAMMING

141

http://en.wikibooks.org/wiki/Category%3AJava%20Programming

Overloading Methods and Constructors

142

28 Arrays

28.1 Intro to Arrays

An array is similar to a table of data, keyed by number. In Java an array is an object like all other
objects. Look at the following program:

import java.util.*;

public class ArrayExample {

static Scanner input = new Scanner(System.in);

public static void main(String[] args) {
int numNames = getInt("Number of names?");
String[] names = new String[numNames];
for (int i = 0; i < names.length; i++) {
names[i] = getString("Enter name #" + (i+1));

}
for (int i = 0; i < names.length; ++i) {
System.out.println(names[i]);

}
}

public static int getInt(String prompt) {
System.out.print(prompt + " ");
int integer = input.nextInt();
input.nextLine(); // Get rid of this line
// so that getString won’t read it
return integer;

}

public static String getString(String prompt) {
System.out.print(prompt + " ");
return input.nextLine();

}
}

Copy the code and compile it. The program will ask you to enter some names then reprints the
names in order. It demonstrates three major aspects of arrays: how to define an array, how to
set data, and how to access it. The code String[] names = new String[numNames]; tells Java
to create an array of size numNames that will store Strings. To set data, use names[x] = data
where x is the index to access. Note that all Java arrays start at 0 and go to (array size - 1). Thus,
if you dimension an array to size 10, the highest index is 9.

28.2 Array Fundamentals

• To create an array, use the syntax DataType[] variable = new DataType[ArraySize]. Alterna-
tively, if you know the data beforehand, you can write DataType[] variable = {item 1, item
2,...item n}

143

Arrays

• All elements of the array will be automatically initialized with the default value for that
datatype. This is false for booleans, 0 for all numeric primitive types, and null for all ref-
erence types. So for example, the previous note created an array of DataType references, all
of which are initialized to null.

• To access an item, use the syntax variable[i] where i is the index
• To set an item, use the syntax variable[i] = data
• To find the length of an array, use the syntax variable.length

28.3 Two-Dimensional Arrays

A two-dimensional array is represented by an array of arrays. Because an array is also an object,
like any other object having the Object as the super class, it can be used to create an array where
the element of the array is also an array. In this way an array with any number of dimensions can
be created. Here are examples of two dimensional arrays with initializer blocks:

String[][] twoDimArray = {{"a", "b", "c", "d", "e"},
{"f", "g", "h", "i", "j"},
{"k", "l", "m", "n", "o"}};

int[][] twoDimIntArray = {{ 0, 1, 2, 3, 4},
{10, 11, 12, 13, 14},
{20, 21, 22, 23, 24}};

Note that the above "twoDimArray" is equivalent to the following more verbose code:

String[][] twoDimArray = new String[3][];
for(int i = 0; i < twoDimArray.length; i++) {
twoDimArray[i] = new String[5];
for(int j = 0; j < twoDimArray[i].length; j++)

twoDimArray[i][j] = "" + i + j;
}

In the above example we defined an array which has three elements, each element contains an
array having 5 elements. We could create the array having the 5 elements first and use that one
in the initialize block.

String[] oneDimArray = { "00", "01", "02", "03", "04" };
String[][] twoDimArray = { oneDimArray ,

{"10", "11", "12", "13", "14"},
{"20", "21", "22", "23", "24"} };

Since they are arrays of array references, these multi-dimensional arrays can be "jagged" (i.e.
subarrays can have different lengths), or the subarray reference can even be null. Consider:

String[][] weirdTwoDimArray = {{"10", "11", "12"},
null,
{"20", "21", "22", "23", "24"}};

Note that the length of a two-dimensional array is the number of one-dimensional arrays
it contains. In the above example, weirdTwoDimArray.length is 3, whereas weirdTwoDimAr-
ray[2].length is 5.

144

Multidimensional Array

28.4 Multidimensional Array

Going further any number of dimensional array can be defined.

<elementType>[][]...[] <arrayName>
or
<elementType><arrayName>[][]...[]

DE:JAVA_STANDARD: DATENSTRUKTUREN1 ES:PROGRAMACIÓN EN JAVA/ARRAYS2

FR:PROGRAMMATION JAVA/TABLEAUX3 NL:PROGRAMMEREN IN JAVA/ARRAYS4 PT:JAVA/VETORES5

1 HTTP://DE.WIKIBOOKS.ORG/WIKI/JAVA_STANDARD%3A%20DATENSTRUKTUREN
2 HTTP://ES.WIKIBOOKS.ORG/WIKI/PROGRAMACI%F3N%20EN%20JAVA%2FARRAYS
3 HTTP://FR.WIKIBOOKS.ORG/WIKI/PROGRAMMATION%20JAVA%2FTABLEAUX
4 HTTP://NL.WIKIBOOKS.ORG/WIKI/PROGRAMMEREN%20IN%20JAVA%2FARRAYS
5 HTTP://PT.WIKIBOOKS.ORG/WIKI/JAVA%2FVETORES

145

http://de.wikibooks.org/wiki/Java_Standard%3A%20Datenstrukturen
http://es.wikibooks.org/wiki/Programaci%F3n%20en%20Java%2FArrays
http://fr.wikibooks.org/wiki/Programmation%20Java%2FTableaux
http://nl.wikibooks.org/wiki/Programmeren%20in%20Java%2FArrays
http://pt.wikibooks.org/wiki/Java%2FVetores

Arrays

146

29 Collection Classes

Collections are a group of objects bound together by a common characteristic. Java has various
built-in classes to support the collection of objects, either of the same type or general. The most
basic construct to work with is the array of which you will come to know of in a SECTION1 later in
this chapter.

29.1 Introduction to Collections

The most basic collection interface is called Collection. This interface gives the user a generic
usage of a collection.

import java.util.Collection; // Interface
import java.util.ArrayList; // Implementation
import java.util.HashSet; // Implementation
...
Collection coll1 = new ArrayList();
Collection coll2 = new HashSet();
...
< Use coll1 & coll2 >

In the above there are two collections. The usage of the collections are the same, the implemen-
tations are different. If the existing collection implementations do not meet your needs, you
can write your version of the implementation. Your version of the implementation just needs
to implement the same java.util.Collection interface, then you can switch to using your
implementation and the code that is using the collection does not need to be changed.

import java.util.Collection;
import com.yourcomp.util.YourCollectionImpl;
...
Collection coll1 = new YourCollectionImpl();
Collection coll2 = new YourCollectionImpl();
...
< Use coll1 & coll2 >

The Java JDK collection implementations are quite powerful and good, so it is unlikely that you
will need to write your own.

All collections contain object references. Because of that, if the object is changed after it was
put in the collection, the object that is ’in’ the collection also ’changes’. The object is not really
in the collection, only the object reference is. It is not guaranteed that the objects ’inside’ the
collections won’t change. This is an issue only if you put an actively used object in the collection.

1 Chapter 28 on page 143

147

Collection Classes

In that case when you are adding an object that could change any time you need to make a copy
or clone of the object. A new object will be created and its reference will be put in the collection.
In that case there will be no object references outside of the collection, so the objects ’inside’ the
collection can only be changed if we take out an object reference from the collection.

Aside from the java.util.Collection interface, the Java JDK has the java.util.Map interface
as well. This defines key value mappings. Implementations of the Map interface do not contain
collections of objects. Instead they contain collections of key->value mappings.

import java.util.Map;
import java.util.Hashtable;
...
Map map = new Hashtable();
...
map.put(key, value);

All collections need to have the same basic operations. Those are:

• Adding element(s) to the collection
• Removing element(s) from the collection
• Obtaining the number of elements in the collection
• Listing the contents of the collection, (Iterating through the collection)

Before selecting a particular collection implementation, ask the following question:

• Can my collection contain the same elements, i.e. are duplicates allowed?
• Can my collection contain the null element?
• Should the collection maintain the order of the elements? Is the order important in any way?
• How do you want to access an element? By index, key or just with an iterator?
• Does the collection need to be synchronized?
• From a performance perspective, which one needs to be faster, updates or reads?
• From a usage perspective, which operation will be more frequent, updates or reads?

Once you know your needs, you can select an exsisting implementation. But first decide if you
need a ’Collection’, or a ’Map’.

29.2 Generics

Since JDK version 1.5 an enhancement to the type system of the Java language has been added.
It is called Generics. Most often Generics will be used with the collection classes.

parameterized type <E>

All collection implementations since 1.5 now have one ’parameterized type <E>’ added. The ’E’
refers to an Element type. When a collection is created the actual ’Element type’ will replace the
E.

Objects put into a collection are upcasted to Object class. It means that you need to cast the
object reference back when you get an element out from the collection. It also means that you
need to know the type of the object when you taking it out. For this reason we usually add objects

148

Collection or Map

of the same type to a collection. If a collection contains different types of objects, we will have
difficulty finding out the type of the objects obtained from a collection at run time.

With the use of the ’parameterized type <E>’, the ’Element-type’ that can be put into the
collection can be specified when the collection object is created.

Collection<Integer> ageList = new ArrayList<Integer>();
ageList.add(new Integer(46)); // --- Integer can be added
ageList.add("50"); // --- Compilation error, ageList can have only Integers
inside

ageList is a collection that can contain only Integer objects as elements. No casting is required
when we take out an element.

Integer age = ageList.get(0);

For more information about Generics, please go to JAVA PROGRAMMING/GENERICS2.

29.3 Collection or Map

The Java JDK contains two high level Interfaces:

• java.util.Collection
• java.util.Map

Implementations for those interfaces are not interchangeable. Collections are used for collecting
Java objects. Maps are used for mapping key/value pairs.

29.3.1 Collection

Use the Collection interface if you need to keep related (usually the same type of) objects to-
gether in a collection where you can:

• Search for a particular element
• List the elements
• Maintain and/or change the order of the elements by using the collection basic operations

(Add, Remove, Update,..)
• Access the elements by an index number

The advantages of using the Collection interface are:

• Gives a generic usage, as we talked about above, it is easy to switch implementation
• It makes it easy to convert one type of collection to an other.

The Collection interface defines the following basic operations:

• boolean add(E o); -- (using Element type E)

2 Chapter 21 on page 117

149

Collection Classes

• boolean addAll(Collection c);
• boolean remove(Object o);
• boolean removeAll(Collection c);
• boolean retainAll(Collection c);

The methods above return true if the collection has changed due to the operation. Note that in
addAll() we can add any type of collection. This is the beauty of using the Collection interface.
You can have a LinkedList and just call the addAll(list) method, passing in a list. You can
pass in a Vector, an ArrayList, a HashSet, a TreeSet, a YourImpOfCollection, ... All those
different type of collections will be magically converted to a LinkList.

Lets have a closer look at this magic. The conversion is easy because the Collection interface
defines a standard way of looping through the elements. The following code is a possible
implementation of addAll() method of the LinkList.

import java.util.Collection
import java.util.Iterator
...
public String addAll(Collection coll)
{

int sizeBefore = _linkList.size();
Iterator iter = coll.iterator();
while(iter.hasNext())
{

_linkList.add(iter.next());
}
if (sizeBefore > _linkList.size())
{

return true;
}
else
{

return false;
}

}

The above code just iterates through the passed in collection and adds the elements to the link
list. You do not have to do that, since that is already defined. What you might need to code for is
to loop through a ’Customer’ collection:

import java.util.Collection
import java.util.Iterator
import java.yourcompany.Customer
...
public String printCustomerNames(Collection customerColl)
{

StringBuffer buf = new StringBuffer();

Iterator iter = customerColl.iterator();
while(iter.hasNext())
{

Customer cust = (Customer) iter.next();
buf.append(cust.getName());
buf.append("\n");

}
return buf.toString();

}

150

Set or List or Queue

Notice two things:

• The above code will work for all type of collections.
• We have to know the type of objects inside the collection, because we call a method on it.

29.3.2 Map

Figure 17: Figure 1:Map
Interfaces

A map, sometimes also called an Associated Array or a Dictionary, can be thought of as an array
where the index need not be an integer.

Use the Map interface if you need to keep related objects together in a Map where you can:

• Access an element by a key object
• Map one object to other

java.util.Map<K,V>

maps keys to values. A map cannot contain duplicate keys; each key can map to at most one
value. The Map interface provides three collection views, which allow a map’s contents to be
viewed as a set of keys, collection of values, or set of key-value mappings. The key is usually a
non-mutable object. The value object however can be a mutable object.

java.util.SortedMap<K,V> : same as the Map interface, plus the keys in the Map are sorted.

29.4 Set or List or Queue

Figure 18: Figure 2:

151

Collection Classes

There is no direct implementation for the java.util.Collection interface. The Collection in-
terface has five sub interfaces. Those are:

java.util.Set<E>

contains unique elements, so duplicates not allowed. It is similar to a mathematical Set.

java.util.List<E> : elements are put in the list in a certain order, and can be accessed by an index.
Duplicates are allowed, the same element can be added to a list.

java.util.SortedSet<E> : same as the Set interface; plus the elements in the SortedSet are sorted

java.util.Queue<E> : queues provide additional insertion, extraction, and inspection opera-
tions. There are FIFO (first in, first out) and LIFO (last in, first out) queues.

java.util.BlockingQueue<E> : waits for the queue to become non-empty when retrieving an
element, and waits for space to become available in the queue when storing an element. Best
used for producer-consumer queues.

29.4.1 Set

The basic implementation of the Set interface is the HashSet.

Figure 19

java.util.TreeSet<E>

Elements are sorted, not synchronized. null not allowed

java.util.HashSet<E> : Not synchronized. Allows the null elements

java.util.CopyOnWriteArraySet<E> : Thread safe, a fresh copy is created during modification
operation. Add, update, delete are expensive.

152

Set or List or Queue

java.util.EnumSet<E extends Enum<E>> : All of the elements in an enum set must come from
a single enum type that is specified, explicitly or implicitly, when the set is created. Enum sets
are represented internally as bit vectors.

java.util.LinkedHashSet<E> : Same as HashSet, plus defines the iteration ordering, which is the
order in which elements were inserted into the set.

Detecting duplicate objects in Sets

Set cannot have duplicates in it. You may wonder how duplicates are detected when we are
adding an object to the Set. We have to see if that object exists in the Set or not. It is not enough
to check the object references, the objects’ values have to be checked as well.

To do that, fortunately, each java object has the boolean equal(Object obj);3, method avail-
able inherited from Object. You need to override it. That method will be called by the Set imple-
mentation to compare the two objects to see if they are equal or not.

There is a problem, though. What if I put two different type of objects to the Set. I put an Ap-
ple and an Orange. They can not be compared. Calling the equal()4 method would cause a
ClassCastException. There are two solutions to this:

• Solution one : Override the int hashCode()5 method and return the same values for the
same type of objects and return different values for different type of objects. The equal()6

method is used to compare objects only with the same value of hashCode. So before an object
is added, the Set implementation needs to:
• find all the objects in the Set that has the same hashCode as the candidate object hashCode
• and for those, call the equal()7 methods passing in the candidate object
• if any of them returns true, the object is not added to the Set.

• Solution two : Create a super class for the Apple and Orange, let’s call it Fruit class. Put Fruits
in the Set. You need to do the following:
• Do not override the equals() and hashCode() methods in the Apple and Orange classes
• Create appleEquals() method in the Apple class, and create orangeEquals() method in

the Orange class
• Override the hashCode() method in the Fruit class and return the same value, so the
equals() is called by the Set implementation

• Override the equals() method in the Fruit class for something like this.

public boolean equals(Object obj)
{

3 HTTP://EN.WIKIBOOKS.ORG/WIKI/JAVA%20PROGRAMMING%2FAPI%2FJAVA.LANG.OBJECT%
23EQUALS%28%29%20METHOD

4 HTTP://EN.WIKIBOOKS.ORG/WIKI/JAVA%20PROGRAMMING%2FAPI%2FJAVA.LANG.OBJECT%23
5 HTTP://EN.WIKIBOOKS.ORG/WIKI/JAVA%20PROGRAMMING%2FAPI%2FJAVA.LANG.OBJECT%

23HASHCODE%28%29%20METHOD
6 HTTP://EN.WIKIBOOKS.ORG/WIKI/JAVA%20PROGRAMMING%2FAPI%2FJAVA.LANG.OBJECT%23
7 HTTP://EN.WIKIBOOKS.ORG/WIKI/JAVA%20PROGRAMMING%2FAPI%2FJAVA.LANG.OBJECT%23

153

http://en.wikibooks.org/wiki/Java%20Programming%2FAPI%2Fjava.lang.Object%23equals%28%29%20Method
http://en.wikibooks.org/wiki/Java%20Programming%2FAPI%2Fjava.lang.Object%23equals%28%29%20Method
http://en.wikibooks.org/wiki/Java%20Programming%2FAPI%2Fjava.lang.Object%23
http://en.wikibooks.org/wiki/Java%20Programming%2FAPI%2Fjava.lang.Object%23hashCode%28%29%20Method
http://en.wikibooks.org/wiki/Java%20Programming%2FAPI%2Fjava.lang.Object%23hashCode%28%29%20Method
http://en.wikibooks.org/wiki/Java%20Programming%2FAPI%2Fjava.lang.Object%23
http://en.wikibooks.org/wiki/Java%20Programming%2FAPI%2Fjava.lang.Object%23

Collection Classes

boolean ret = false;
if (this instanceof Apple &&

obj instanceof Apple)
{

ret = this.appleEquals(obj);
}
else if (this instanceof Orange &&

obj instanceof Orange)
{

ret = this.orangeEquals(obj);
}
else
{

// --- Can not compare Orange to Apple ---
ret = false;

}
return ret;

}

Note:

• only the objects that have the same hashCode will be compared.
• you are responsible to override the equal() and hashCode() methods. The default imple-

mentations in Object won’t work.
• Only override the hashCode()8 method if you want to eliminate value duplicates.
• Do not override the hashCode()9 method if you know that the values of your objects are dif-

ferent, or if you only want to prevent adding the exactly same object.
• Beware that the hashCode()10 may be used in other collection implementaions, like in a

Hashtable to find an object fast. Overriding the default hashCode() method may affect per-
formance there.

• the default hashCodes are unique for each object created, so if you decide not to override the
hashCode() method, there is no point overriding the equal() method, as it won’t be called.

SortedSet

The SortedSet interface extends the Set Interface. All elements in the SortedSet must implement
the Comparable Interface, furthermore all elements must be mutually comparable.

Note that the ordering maintained by a sorted set must be consistent with equals if the sorted set
is to correctly implement the Set interface. This is so because the Set interface is defined in terms
of the equals operation, but a sorted set performs all element comparisons using its compare
method, so two elements that are deemed equal by this method are, from the standpoint of the
sorted set, equal.

8 HTTP://EN.WIKIBOOKS.ORG/WIKI/JAVA%20PROGRAMMING%2FAPI%2FJAVA.LANG.OBJECT%
23HASHCODE%28%29%20METHOD

9 HTTP://EN.WIKIBOOKS.ORG/WIKI/JAVA%20PROGRAMMING%2FAPI%2FJAVA.LANG.OBJECT%
23HASHCODE%28%29%20METHOD

10 HTTP://EN.WIKIBOOKS.ORG/WIKI/JAVA%20PROGRAMMING%2FAPI%2FJAVA.LANG.OBJECT%
23HASHCODE%28%29%20METHOD

154

http://en.wikibooks.org/wiki/Java%20Programming%2FAPI%2Fjava.lang.Object%23hashCode%28%29%20Method
http://en.wikibooks.org/wiki/Java%20Programming%2FAPI%2Fjava.lang.Object%23hashCode%28%29%20Method
http://en.wikibooks.org/wiki/Java%20Programming%2FAPI%2Fjava.lang.Object%23hashCode%28%29%20Method
http://en.wikibooks.org/wiki/Java%20Programming%2FAPI%2Fjava.lang.Object%23hashCode%28%29%20Method
http://en.wikibooks.org/wiki/Java%20Programming%2FAPI%2Fjava.lang.Object%23hashCode%28%29%20Method
http://en.wikibooks.org/wiki/Java%20Programming%2FAPI%2Fjava.lang.Object%23hashCode%28%29%20Method

Set or List or Queue

The SortedSet interface has additional methods due to the sorted nature of the ’Set’. Those are:

• E first(); -- returns the first element
• E last(); -- returns the last element
• SortedSet headSet(E toElement); -- returns from the first, to the exclusive toElement
• SortedSet tailSet(E fromElement); -- returns from the inclusive fromElement to the end
• SortedSet subSet(E fromElement, E toElement); -- returns elements range from

fromElement, inclusive, to toElement, exclusive. (If fromElement and toElement are equal,
the returned sorted set is empty.)

29.4.2 List

The List has the following implemenations:

Figure 20

java.util.Vector<E>

Synchronized, use in multiple thread access, otherwise use ArrayList

java.util.Stack<E> : It extends class Vector with five operations that allow a vector to be treated
as a stack. It represents a last-in-first-out (LIFO) stack of objects.

java.util.ArrayList<E> : Non-synchronized, use in single thread environment, otherwise use
Vector

155

Collection Classes

java.util.LinkedList<E> : Non-synchronized, update operation is faster than other lists, easy to
use for stacks, queues, double-ended queues.

javax.management.AtributeList<E> : Represents a list of values for attributes of an MBean. The
methods used for the insertion of Attribute objects in the AttributeList overrides the corre-
sponding methods in the superclass ArrayList. This is needed in order to insure that the objects
contained in the AttributeList are only Attribute objects.

javax.management.relation.RoleList<E> : A RoleList represents a list of roles (Role objects). It
is used as parameter when creating a relation, and when trying to set several roles in a relation
(via ’setRoles()’ method). It is returned as part of a RoleResult, to provide roles successfully
retrieved.

javax.management.relation.RoleUnresolvedList<E> : A RoleUnresolvedList represents a list of
RoleUnresolved objects, representing roles not retrieved from a relation due to a problem en-
countered when trying to access (read or write to roles).

The basic implementation of the List interface is the ArrayList. The ArrayList is not synchro-
nized, not thread safe. Vector is synchronized, and thread safe. Vector is slower, because of
the extra overhead to make it thread safe. When only one thread is accessing the list, use the
ArrayList. Whenever you insert or remove an element from the list, there are extra overhead to
reindex the list. When you have a large list, and you have lots of insert and remove, consider
using the LinkedList.

The name LinkList implies a special data structure where the elements/nodes are connected
by pointers. To remove an element from the link list the pointers need to be rearranged.

Head Node 1 Node 2 Node n

| Size | _________________ _______________

|______| | | point | | | point | | |
|

| First|-------->| Data | to next |------>| Data | to next|-- ... -->| Data |
null |
| elem | |______|_________| |______|________|

|______|______|
|______| |
| Last |---
|_elem_|

After removing Node 2:

Head Node 1 Node 2 Node n
______ ___________________...________

| Size | _________________ | _______________
_|____________
|_- 1__| | | point | | | | point | | |
|

| First|-------->| Data | to next |---- | Data | to next| | Data |
null |
| elem | |______|_________| |______|________|

|______|______|
|______| |

156

Set or List or Queue

| Last |---
|_elem_|

29.4.3 Queue

The Queue interface adds the following operations to the Collection interface:

E element() Retrieves, but does not remove, the head
of this queue. This method differs from
the peek method only in that it throws an
exception if this queue is empty

boolean offer(E o) Inserts the specified element into this
queue, if possible.

E peek() Retrieves, but does not remove, the head
of this queue, returning null if this queue is
empty

E poll() Retrieves and removes the head of this
queue, or null if this queue is empty

E remove() Retrieves and removes the head of this
queue. This method differs from the poll
method in that it throws an exception if
this queue is empty.

• java.util.PriorityQueue<E>
orders elements according to an
order/priority specified at construc-
tion time, null element is not allowed.
java.util.concurrent.ArrayBlockingQueue<E>
: orders elements FIFO;
syncronized, thread safe.
java.util.concurrent.SynchronousQueue<E>
: each put must wait for a take, and vice
versa, does not have any internal
capacity, not even a capacity of one, an
element is only present when you try
to take it; you cannot add an element
(using any method) unless another
thread is trying to remove it

••
Figure 21

157

Collection Classes

29.5 Map Classes

The Map interface has the following implementations:

Figure 22

java.util.TreeMap<E>

guarantees that the map will be in ascending key order, sorted according to the natural order
for the key’s class, not-synchronized.

java.util.HashMap<E> : is roughly equivalent to Hashtable, except that it is unsynchronized and
permits nulls

java.util.concurrent.ConcurrentHashMap : same Hashtable, plus retrieval operations (includ-
ing get) generally do not block, so may overlap with update operations (including put and re-
move).

java.util.Hashtable<E> : Synchronized, null can not be used as key

java.util.WeakHashMap<E> : entry in a WeakHashMap will automatically be removed when its
key is no longer in ordinary use. Non-synchronized.

java.util.LinkedHashMap<E> : This linked list defines the iteration ordering, which is normally
the order in which keys were inserted into the map (insertion-order). Note that insertion order
is not affected if a key is re-inserted into the map.

java.util.IdentityHashMap : This class implements the Map interface with a hash table, us-
ing reference-equality in place of object-equality when comparing keys (and values). In other
words, in an IdentityHashMap, two keys k1 and k2 are considered equal if and only if (k1==k2).
(In normal Map implementations (like HashMap) two keys k1 and k2 are considered equal if
and only if (k1==null ? k2==null : k1.equals(k2)).) Not-synchronized.

158

Classes Diagram (UML)

java.util.EnumMap : All of the keys in an enum map must come from a single enum type that is
specified, explicitly or implicitly, when the map is created. Enum maps are represented inter-
nally as arrays. This representation is extremely compact and efficient. Not-synchronized.

29.6 Thread Safe Collections

It is also called Concurrent Collections. Most of the popular collection classes have implemen-
tations for both single thread and multiple thread environments. The non-synchronized imple-
mentations are always faster. You can use the non-synchronized implementations in multiple
thread environments, when you make sure that only one thread updating the collection at any
given time.

A new Java JDK package was introduced at Java 1.5, that is java.util.concurrent. This package
supplies a few Collection implementations designed for use in multi-threaded environments.

The following table list all the synchronized collection classes:

synchronized non-synchronized

List

java.util.Vector java.util.ArrayList
java.util.Stack

java.util.LinkList
java.util.concurrent.CopyOnWriteArrayList

Set

java.util.TreeSet
java.util.HashSet
java.util.LinkHashSet

java.util.concurrent.CopyOnWriteArraySet

Map

java.util.TreeMap
java.util.Hashtable
java.util.concurrent.ConcurrentHashMap

java.util.HashMap

java.util.LinkedHashMap
java.util.IdentityHashMap
java.util.EnumMap

29.7 Classes Diagram (UML)

The following UML class diagram shows the Collection interfaces and their implementations.

159

Collection Classes

Figure 23

The following UML class diagram shows the Map interfaces and their implementations.

Figure 24

160

External links

29.8 External links

• JAVA TUTORIAL ON COLLECTIONS11

CATEGORY:JAVA PROGRAMMING12

11 HTTP://JAVA.SUN.COM/DOCS/BOOKS/TUTORIAL/COLLECTIONS/INTERFACES/COLLECTION.
HTML

12 HTTP://EN.WIKIBOOKS.ORG/WIKI/CATEGORY%3AJAVA%20PROGRAMMING

161

http://java.sun.com/docs/books/tutorial/collections/interfaces/collection.html
http://java.sun.com/docs/books/tutorial/collections/interfaces/collection.html
http://en.wikibooks.org/wiki/Category%3AJava%20Programming

Collection Classes

162

30 Throwing and Catching Exceptions

Language compilers are adept at pointing out most of the erroneous code in a program, however
there are some errors that only become apparent when the program is executed. Consider the
code in Listing 1.1; here, the program defines a method divide that does a simple division opera-
tion taking two integers as parameter arguments and returning the result of their division. It can
safely be assumed that when the divide(4, 2) statement is called, it would return the number 2.
However, consider the next statement, where the program relies upon the provided command
line arguments to generate a division operation. What if the user provides the number zero (0) as
the second argument. We all know that division by zero is impossible, but the compiler couldn’t
possibly have anticipated the user providing zero as an argument.

Listing 1.1: A simple division operation.

///: exceptions/ExceptionTutorial01.java
public class ExceptionTutorial01
{
public static int divide(int a, int b)
{
return a / b;

}
public static void main(String[] args)
{
System.out.println(divide(4, 2));
if(args.length > 1)
{
int arg0 = Integer.parseInt(args[0]);
int arg1 = Integer.parseInt(args[1]);
System.out.println(divide(arg0, arg1));

}
}

} /* Output for: java ExceptionTutorial01 1 0
2
Exception in thread "main" java.lang.ArithmeticException: / by zero

at ExceptionTutorial01.divide(ExceptionTutorial01.java:6)
at ExceptionTutorial01.main(ExceptionTutorial01.java:15)

*///:~

Such exceptional code that results in erroneous interpretations at program runtime usually re-
sults in errors that are called exceptions in Java. When the Java interpreter encounters an ex-
ceptional code, it halts execution and displays information about the error that occurs. This
information is known as a stack trace. The stack trace in the above example tells us more about
the error, such as the thread - "main" - where the exception occurred, the type of exception -
java.lang.ArithmeticException, a comprehensible display message - / by zero, and the
exact methods and the line numbers where the exception may have occurred.

163

Throwing and Catching Exceptions

30.1 Exception arguments

In the code above, the exception object for java.lang.ArithmeticException was generated
by the Java interpreter itself. However, there are times when you would need to explicitly create
your own exceptions. As with any object in Java, you always create exceptions on the heap using
new, which allocates storage and calls a constructor. There are two constructors in all standard
exceptions:

1. The default constructor; and,
2. A constructor taking a string argument so that you can place pertinent information in the

exception.

Listing 1.2: Instance of an exception object with the default constructor.

new Exception();

Listing 1.3: Instance of an Exception object by passing string in constructor.

new Exception("Something unexpected happened");

This string can later be extracted using various methods, as you’ll see.

The keyword throw produces a number of interesting results. After creating an exception object
with new, you give the resulting reference to throw. The object is, in effect, "returned" from
the method, even though that object type isn’t normally what the method is designed to return.
A simplistic way to think about exception handling is as a different kind of return mechanism,
although you get into trouble if you take that analogy too far. You can also exit from ordinary
scopes by throwing an exception. In either case, an exception object is returned, and the method
or scope exits.

Listing 1.4: Throwing an exception results in an unexpected return from the method.

throw new Exception();

Anything after the throw statement would not be executed, unless the thrown exception is HAN-
DLED1 properly. Any similarity to an ordinary return from a method ends here, because where
you return is some place completely different from where you return for a normal method call,
i.e., you end up in an appropriate exception handler that might be far away - many levels on the
call stack - from where the exception was thrown.

In addition, you can throw any type of Throwable, which is the exception root class. Typically,
you’ll throw a different class of exception for each different type of error. The information about
the error is represented both inside the exception object and implicitly in the name of the ex-
ception class, so someone in the bigger context can figure out what to do with your exception.
Often, the only information is the type of exception, and nothing meaningful is stored within the
exception object.

1 HTTP://EN.WIKIBOOKS.ORG/WIKI/%23EXCEPTION%20HANDLERS

164

http://en.wikibooks.org/wiki/%23Exception%20handlers

Catching an exception

30.2 Catching an exception

To see how an exception is caught, you must first understand the concept of a guarded region.
This is a section of code that might produce exceptions and is followed by the code to handle
those exceptions.

30.2.1 The try block

If you are inside a method and you throw an exception (or another method that you call within
this method throws an exception), that method will exit in the process of throwing. If you don’t
want a throw to exit the method, you can set up a special block within that method to capture
the exception. This is called the try block because you "try" your various method calls there. The
try block is an ordinary scope preceded by the keyword try.

Listing 1.5: A basic try block.

try
{
// Code that might generate exceptions

}

If you were checking for errors carefully in a programming language that didn’t support excep-
tion handling, you’d have to surround every method call with setup and error-testing code, even
if you call the same method several times. With exception handling, you put everything in a try
block and capture all the exceptions in one place. This means your code is much easier to write
and read because the goal of the code is not confused with the error checking.

30.3 Exception handlers

Of course, the thrown exception must end up some place. This "place" is the exception handler,
and there’s one for every exception type you want to catch. Exception handlers immediately
follow the try block and are denoted by the keyword catch:

Listing 1.6: Exception handling with catch blocks.

try
{
// Suppose the code here throws two exceptions:
// NullPointerException and NumberFormatException,
// then each is handled in a separate catch block.

}
catch(NullPointerException ex)
{
// Exception handling code for the NullPointerException

}
catch(NumberFormatException ex)
{
// Exception handling code for the NumberFormatException

}
// etc...

Using the syntax in Listing 1.6, we can write the potentially problematic division code in Listing
1.1 as under.

165

Throwing and Catching Exceptions

Listing 1.7: Catching ’division by zero’ errors.

int result = 0;
try
{
result = a / b;

}
catch(ArithmeticException ex)
{
result = 0;

}
return result;

Using the code in Listing 1.7, the program would now not abruptly terminate but continue its ex-
ecution whilst returning zero for a division by zero operation. I know it’s not the correct answer,
but hey, it saved your program from terminating abnormally.

30.4 Exception classes in the JCL

The box 1.1 below talks about the various exception classes within the java.lang package of the
JCL.

166

Exception classes in the JCL

Box 1.1: The Java exception classes
• Throwable

The Throwable class is the superclass of
all errors and exceptions in the Java lan-
guage. Only objects that are instances
of this class (or one of its subclasses) are
thrown by the Java Virtual Machine or
can be thrown by the Java throw state-
ment.

• A throwable contains a snapshot of the
execution stack of its thread at the time
it was created. It can also contain a mes-
sage string that gives more information
about the error. Finally, it can contain
a cause: another throwable that caused
this throwable to get thrown. The cause
facility is new in release 1.4. It is also
known as the chained exception facility,
as the cause can, itself, have a cause, and
so on, leading to a "chain" of exceptions,
each caused by another

• Error
An Error indicates serious problems that
a reasonable application should not try
to catch. Most such errors are abnor-
mal conditions. Exception : The class
Exception and its subclasses are a form
of Throwable that indicates conditions
that a reasonable application might
want to catch. Also this is the class that a
programmer may want to extend when
adding business logic exceptions. Run-
timeException : RuntimeException is the
superclass of those exceptions that can
be thrown during the normal operation
of the Java Virtual Machine. A method
is not required to declare in its throws
clause any subclasses of RuntimeExcep-
tion that might be thrown during the
execution of the method but not caught.

••
Figure 25
Figure 1.1: The exception classes and
their inheritance model in the JCL.

167

Throwing and Catching Exceptions

30.5 Catch clauses

There are three distinct types of catch clauses used by Java programmers. We have already ex-
plored the first rule in the code listings above. Given below are all three clauses; we will explain
all three in greater detail in the next sections.

1. The catch-list clause
2. The catch-any clause
3. The multi-catch clause

30.5.1 The catch-list clause

Using the catch-list clause, you provide one handle for every one type of exception. So, for in-
stance if a guarded block generates a NullPointerException and an ArithmeticException, you
have two provide two exception handling catch blocks - one for each exception. Refer to code
listing 1.6 for an example.

30.5.2 The catch-any clause

There are times when too many blocks are just verbose, especially when all exceptions are
handled in a similar manner. What you need here is a catch-any clause, where all excep-
tions are handled in a single catch block. Because all exceptions in Java are the sub-class of
java.lang.Exception class, you can have a single catch block that catches an exception of
type Exception only. Hence the compiler is fooled into thinking that this block can handle any
exception. Using this, the code in Listing 1.6 can be rewritten as follows:

Listing 1.8: The catch-any clause.

try
{
// ...

}
catch(Exception ex)
{
// Exception handling code for ANY exception

}

Note:
You can also use the java.lang.Throwable class here, since Throwable is the parent class for
the application-specific Exception classes. However, this is discouraged in Java programming
circles. This is because Throwable happens to also be the parent class for the non-application
specific Error classes which are not meant to be handled explicitly as they are catered for by the
JVM itself.

30.5.3 The multi-catch clause

As of JDK 7, Java added another convenient feature in their exception handling routines - the
multi-catch clause. This is a combination of the previous two catch clauses and let’s you handle

168

Example of handling exceptions

exceptions in a single handler while also maintaining their types. So, instead of being boxed into
a parent Exception super-class, they retain their individual types.

Listing 1.9: The multi-catch clause.

try
{
// ...

}
catch(NullPointerException | NumberFormatException ex)
{
// Exception handling code specifically for the NullPointerException
// and the NumberFormatException

}

30.6 Example of handling exceptions

Let’s examine the following code:

public void methodA() throws SomeException
{

//methodbody
}
public void methodB() throws CustomException, AnotherException
{

//Methodbody
}
public void methodC()
{

methodB();
methodA();

}

In the code sample, methodC is invalid. Because methodA and methodB pass (or throw) excep-
tions, methodC must be prepared to handle them. This can be handled in two ways: a try - catch
block, which will handle the exception within the method and a throws clause which would in
turn throw the exception to the caller to handle. The above example will cause a compilation
error, as Java is very strict about exception handling. So the programmer forced to handle any
possible error condition at some point.

A method can do two things with an exception. Ask the calling method to handle it by the throws
declaration. Or handle the exception inside the method by the try-catch block.

To construct a throws declaration, add throws ExceptionName (additional exceptions can be
added with commas). To construct a try - catch block, use the following syntax

try
{
// Guarded region that will catch any exception that
// occurs within this code.

}
catch(Exception ex)
{
// Caught exceptions are handled here

}
finally
{
// This class is optional. Code here is executed

169

Throwing and Catching Exceptions

// regardless of exceptions being thrown
}

The original code can be modified to work correctly in multiple ways. For example, the following:

public void methodC() throws CustomException, SomeException
{
try
{
methodB();

}
catch(AnotherException e)
{
// Handle caught exceptions.

}
methodA();

}

The AnotherException from methodB will be handled locally, while CustomException and
SomeException will be thrown to the caller to handle it.

30.7 Application Exceptions

Application Exception classes should extend the java.lang.Exception class. Some of the
JDK classes also throw exception objects inherited from java.lang.Exception. If any of
those Exception object is thrown, it must be caught by the application some point, by
a catch-block. The compiler will enforce that there is a catch-block associated with an
exception thrown, if the thrown exception object is inherited from java.lang.Exception
and it is not the java.lang.RuntimeException or its inherited objects. However,
java.lang.RuntimeException or its inherited objects, can be caught by the application, but
that is not enforced by the compiler.

Lets see what is the catching criteria for a catch block to catch the "thrown" exception.

A catch-block will "catch" a thrown exception if and only if:

• the thrown exception object is the same as the exception object specified by the catch-block
• the thrown exception object is the subtype of the exception object specified by the catch-block

try
{
throw new Exception("This will be caught below");

}
catch(Exception ex)
{
// The "thrown" object is the same what is specified at the catch-block

}
try
{
throw new NullPointerException("This will be caught below");

}
catch(Exception e)
{
// NullPointerException is subclass of the Exception class.

}

There can be more than one catch-block for a try-block. The catching blocks evaluated sequen-
tially one by one. If a catch-block catch the exception, the others will not be evaluated.

170

Runtime Exceptions

Example:

try
{
throw new NullPointerException("This will be caught below");

}
catch(Exception e)
{
// The NullPointerException thrown in the code above is caught here...

}
catch(NullPointerException e)
{
// ..while this code is never executed and the compiler returns an error

}

Because NullPointerException is subclass of the Exception class. All NullPointerExceptions will
be caught by the first catch-block.

Instead the above code should be rewritten as follows:

try
{
throw new NullPointerException("This will be caught below");

}
catch(NullPointerException e)
{
// The above NullPointerException will be caught here...

}
catch(Exception e)
{
// ..while other exception are caught here.

}

30.8 Runtime Exceptions

The java.lang.RuntimeException exception class is inherited from java.lang.Exception. It
is a special exception class, because catching this exception class or its subclasses are not en-
forced by the Java compiler.

runtime exception

Runtime exceptions are usually caused by data errors, like arithmetic overflow, divide by zero,
... . Runtime exceptions are not business related exceptions. In a well debugged code, runtime
exceptions should not occur. Runtime exceptions should only be used in the case that the ex-
ception could be thrown by and only by something hard-coded into the program. These should
not be able to be triggered by the software’s user(s).

30.8.1 NullPointerException

NullPointerException is a RuntimeException. In Java, a special null can be assigned to an ob-
ject reference. NullPointerException is thrown when an application attempts to use an object
reference, having the null value. These include:

• Calling an instance method on the object referred by a null reference.
• Accessing or modifying an instance field of the object referred by a null reference.

171

Throwing and Catching Exceptions

• If the reference type is an array type, taking the length of a null reference.
• If the reference type is an array type, accessing or modifying the slots of a null reference.
• If the reference type is a subtype of Throwable, throwing a null reference.

Applications should throw instances of this class to indicate other illegal uses of the null object.

Object obj = null;
obj.toString(); // This statement will throw a NullPointerException

The above code shows one of the pitfall of Java, and the most common source of bugs. No object
is created and the compiler does not detect it. NullPointerException is one of the most common
exceptions thrown in Java.

30.8.2 Why do we need null?

The reason we need it is because many times we need to create an object reference, before the
object itself is created. Object references cannot exist without a value, so we assign the null value
to it.

public Customer getCustomer()
{
Customer customer = null;
try
{
...
customer = createCustomer();
...

}
catch(Exception ex)
{
...

}
return customer;

}

In the above code we want to create the Customer inside the try-block, but we also want to return
the object reference to the caller, so we need to create the object reference outside of the try-
block, because of the scoping rule in Java. This is one of the pitfall of Java.

30.9 Keyword references

• TRY2

• CATCH3

• THROWS4

• THROW5

CATEGORY:JAVA PROGRAMMING6

2 HTTP://EN.WIKIBOOKS.ORG/WIKI/JAVA%20PROGRAMMING%2FKEYWORDS%2FTRY
3 HTTP://EN.WIKIBOOKS.ORG/WIKI/JAVA%20PROGRAMMING%2FKEYWORDS%2FCATCH
4 HTTP://EN.WIKIBOOKS.ORG/WIKI/JAVA%20PROGRAMMING%2FKEYWORDS%2FTHROWS
5 HTTP://EN.WIKIBOOKS.ORG/WIKI/JAVA%20PROGRAMMING%2FKEYWORDS%2FTHROW
6 HTTP://EN.WIKIBOOKS.ORG/WIKI/CATEGORY%3AJAVA%20PROGRAMMING

172

http://en.wikibooks.org/wiki/Java%20Programming%2FKeywords%2Ftry
http://en.wikibooks.org/wiki/Java%20Programming%2FKeywords%2Fcatch
http://en.wikibooks.org/wiki/Java%20Programming%2FKeywords%2Fthrows
http://en.wikibooks.org/wiki/Java%20Programming%2FKeywords%2Fthrow
http://en.wikibooks.org/wiki/Category%3AJava%20Programming

Minimize the use of the keyword ’null’ in assignment statements

This page describes some techniques for preventing NullPointerException.

It does not describe general techniques for how you should program Java. It is of some use, to
make you more aware of null values, and to be more careful about generating them yourself.

Note that this list is not complete - there are no rules for preventing NullPointerException en-
tirely in Java, because the standard libraries have to be used, and they can cause NullPointerEx-
ceptions. Also, it is possible to observe an uninitialised final field in Java, so you can’t even treat
a final field as being completely trusted during the object’s creation.

A good approach is to learn how to deal with NullPointerExceptions first, and become competent
with that. These suggestions will help you to cause less NullPointerExceptions, but they don’t
replace the need to know about NullPointerExceptions.

30.10 Minimize the use of the keyword ’null’ in assignment statements

This means not doing things like:

String s=null;
while (something)

if (something2)
s="yep";

if (s!=null)
something3(s);

You can replace this with:

boolean done=false;

while (!done && something)
if (something2)
{

done=true;
something3("yep");

}

You might also consider replacing null with "" in the first example, but default values bring about
bugs caused by default values being left in place. A NullPointerException is actually better, as it
allows the runtime to tell you about the bug, rather than just continue with a default value.

30.11 Minimize the use of the new Type[int] syntax for creating arrays
of objects

An array created using new Object[10] has 10 null pointers. That’s 10 more than we want, so use
collections instead, or explicitly fill the array at initialisation with:

173

Throwing and Catching Exceptions

Object[] objects={"blah",5,new File("/usr/bin")};

or:

Object[] objects;
objects=new Object[]{"blah",5,new File("/usr/bin")};

30.12 Check all references obtained from ’untrusted’ methods

Many methods that can return a reference can return a null reference. Make sure you check
these. For example:

File file=new File("/etc");
File[] files=file.listFiles();
if (files!=null)
{
stuff
}

File.listFiles() can return null if "/etc" is not a directory.

You can decide to trust some methods not to return null, if you like, but that’s an assumption
you’re making. Some methods that don’t specify that they might return null, actually do, instead
of throwing an exception.

30.13 Comparing string variable with a string literal

When you compare a variable with a string literal, always put the string literal first. For example
do:

if ("OK".equals(state))
{
...

}

and do not do:

<strike>

if (state.equals("OK"))
{
...

}

</strike>

If the ’state’ variable is null, you get a NullPointerException in the second example, but not in the
first one.

174

See also

CATEGORY:JAVA PROGRAMMING7

30.14 See also

• W:JAVA PLATFORM8

• W:JAVA API9

• W:JAVA VIRTUAL MACHINE10

• GCC11 (includes a Java to machine language compiler)
• COMPARISON OF JAVA TO C++12.
• W:JINI13

• ECLIPSE14 IDE15 http://eclipse.org/
• W:NETBEANS16 (Another open source IDE)
• W:OPTIMIZATION OF JAVA17

7 HTTP://EN.WIKIBOOKS.ORG/WIKI/CATEGORY%3AJAVA%20PROGRAMMING
8 HTTP://EN.WIKIPEDIA.ORG/WIKI/JAVA%20PLATFORM
9 HTTP://EN.WIKIPEDIA.ORG/WIKI/JAVA%20API
10 HTTP://EN.WIKIPEDIA.ORG/WIKI/JAVA%20VIRTUAL%20MACHINE
11 HTTP://EN.WIKIPEDIA.ORG/WIKI/GNU%20COMPILER%20COLLECTION
12 HTTP://EN.WIKIPEDIA.ORG/WIKI/COMPARISON%20OF%20JAVA%20TO%20CPLUSPLUS
13 HTTP://EN.WIKIPEDIA.ORG/WIKI/JINI
14 HTTP://EN.WIKIPEDIA.ORG/WIKI/ECLIPSE%20%28COMPUTING%29
15 HTTP://EN.WIKIPEDIA.ORG/WIKI/OPEN%20SOURCE%20INTEGRATED%20DEVELOPMENT%

20ENVIRONMENT
16 HTTP://EN.WIKIPEDIA.ORG/WIKI/NETBEANS
17 HTTP://EN.WIKIPEDIA.ORG/WIKI/OPTIMIZATION%20OF%20JAVA

175

http://en.wikibooks.org/wiki/Category%3AJava%20Programming
http://en.wikipedia.org/wiki/Java%20platform
http://en.wikipedia.org/wiki/Java%20API
http://en.wikipedia.org/wiki/Java%20virtual%20machine
http://en.wikipedia.org/wiki/GNU%20Compiler%20Collection
http://en.wikipedia.org/wiki/Comparison%20of%20Java%20to%20Cplusplus
http://en.wikipedia.org/wiki/JINI
http://en.wikipedia.org/wiki/Eclipse%20%28computing%29
http://en.wikipedia.org/wiki/Open%20source%20Integrated%20Development%20Environment
http://en.wikipedia.org/wiki/Open%20source%20Integrated%20Development%20Environment
http://en.wikipedia.org/wiki/NetBeans
http://en.wikipedia.org/wiki/Optimization%20of%20Java

Throwing and Catching Exceptions

176

31 Links

31.1 External References

• JAVA CERTIFICATION PREPARATION GUIDES1

• JAVA CERTIFICATION MOCK EXAMS2 500+ questions with exam simulator (this is the older 1.4
version of the exam)

• JAVA LANGUAGE SPECIFICATION, 3RD EDITION3.
• THINKING IN JAVA4

• JAVA 5 SDK DOCUMENTATION5

• JAVA 5 SDK DOCUMENTATION IN CHM FORMAT6

• JAVA 5 API DOCUMENTATION7

• THE JAVA TUTORIAL8

• Sun Developer Network NEW TO JAVA CENTER9

• A SIMPLE JAVA TUTORIAL 10

• TWO SEMESTERS OF COLLEGE-LEVEL JAVA LECTURES--FREE11

• JAVA LESSONS - INTERACTIVE JAVA PROGRAMMING TUTORIALS BASED ON EXAMPLES12

• JAVA TUTORIALS FOR KIDS AND ADULTS13

31.2 External links

• JAVA CERTIFICATION MOCK EXAMS14 500+ questions with exam simulator
• SWINGWIKI15 - Open documentation project containing tips, tricks and best practices for Java

Swing development
• JAVATIPS16 - Blog project containing best JAVA tips and tricks

1 HTTP://WWW.EPRACTIZELABS.COM/
2 HTTP://WWW.CERTIFICATION4CAREER.COM
3 HTTP://JAVA.SUN.COM/DOCS/BOOKS/JLS/THIRD_EDITION/HTML/J3TOC.HTML
4 HTTP://WWW.MINDVIEW.NET/BOOKS/TIJ/
5 HTTP://JAVA.SUN.COM/J2SE/1.5.0/DOCS/INDEX.HTML
6 HTTP://WWW.ZEUSEDIT.COM/FORUM/VIEWTOPIC.PHP?T=10
7 HTTP://JAVA.SUN.COM/J2SE/1.5.0/DOCS/API/INDEX.HTML
8 HTTP://JAVA.SUN.COM/DOCS/BOOKS/TUTORIAL/INDEX.HTML
9 HTTP://JAVA.SUN.COM/DEVELOPER/ONLINETRAINING/NEW2JAVA/INDEX.HTML
10 HTTP://WWW.ALNAJA7.NET/PROGRAMMER/393/ITCS-393.HTM
11 HTTP://CURMUDGEON99.GOOGLEPAGES.COM/
12 HTTP://JAVALESSONS.COM
13 HTTP://WWW.KIDWARESOFTWARE.COM
14 HTTP://WWW.CERTIFICATION4CAREER.COM
15 HTTP://WWW.SWINGWIKI.ORG
16 HTTP://WWW.AKKIDI.COM

177

http://www.epractizelabs.com/
http://www.certification4career.com
http://java.sun.com/docs/books/jls/third_edition/html/j3TOC.html
http://www.mindview.net/Books/TIJ/
http://java.sun.com/j2se/1.5.0/docs/index.html
http://www.zeusedit.com/forum/viewtopic.php?t=10
http://java.sun.com/j2se/1.5.0/docs/api/index.html
http://java.sun.com/docs/books/tutorial/index.html
http://java.sun.com/developer/onlineTraining/new2java/index.html
http://www.alnaja7.net/Programmer/393/ITCS-393.htm
http://curmudgeon99.googlepages.com/
http://javalessons.com
http://www.kidwaresoftware.com
http://www.certification4career.com
http://www.swingwiki.org
http://www.akkidi.com

Links

• FREE JAVA/ ADVANCED JAVA BOOKS17

• FREE JAVA AND J2EE EBOOKS18

• JAVA BOOKS AVAILABLE FOR FREE DOWNLOADS19

• ROEDY GREEN’S JAVA & INTERNET GLOSSARY20 A comprehensive reference that’s also an excel-
lent starting point for beginners

• C2: JAVA LANGUAGE21

• NETBEANS IDE22

• ECLIPSE IDE23

• ZEUS FOR WINDOWS IDE24

• OFFICIAL JAVA HOME SITE25

• ORIGINAL JAVA WHITEPAPER26

• COMPLETE JAVA PROGRAMMING TUTORIALS27

• JAVAPASSION, JAVA COURSE28 - The Javapassion Site, Java Course, driven by Sang Shin from Sun
• BEANSHELL29 Interpreted version
• THE JAVA LANGUAGE SPECIFICATION, THIRD EDITION30 "This book attempts a complete spec-

ification of the syntax and semantics of the language."
• THE JAVA VIRTUAL MACHINE SPECIFICATION, SECOND EDITION31 and AMENDMENTS32

• A PURE JAVA DESKTOP33

• JAVAPEDIA PROJECT34

• Bruce Eckel Thinking in Java Third edition -- HTTP://WWW.MINDVIEW.NET/BOOKS/TIJ/35

(Bruce has an C/C++ free book available on-line too)
• JAVAGAMEDEVELOPMENT36 Daily news and articles on Java Game Development
• JAVA CERTIFICATIONS SITE(SCJP,SCWCD,SCBCD,JAVA 5.0,SCEA37

• JAVA PROGRAMMING FAQS AND TUTORIALS38

• MORE RESOURCES39

• JAVA LESSONS40

17 HTTP://WWW.FREEBOOKCENTRE.NET/JAVATECH/JAVACATEGORY.HTML
18 HTTP://WWW.BESTEBOOKSWORLD.COM/DEFAULT.ASP?CAT=55
19 HTTP://WWW.TECHBOOKSFORFREE.COM/JAVA.SHTML
20 HTTP://WWW.MINDPROD.COM/JGLOSS/JGLOSS.HTML
21 HTTP://C2.COM/CGI/WIKI?JAVALANGUAGE
22 HTTP://WWW.NETBEANS.ORG
23 HTTP://WWW.ECLIPSE.ORG
24 HTTP://WWW.ZEUSEDIT.COM/JAVA.HTML
25 HTTP://JAVA.SUN.COM
26 HTTP://JAVA.SUN.COM/DOCS/WHITE/LANGENV/
27 HTTP://WWW.ROSEINDIA.NET/JAVA/
28 HTTP://WWW.JAVAPASSION.COM/JAVAINTRO/
29 HTTP://WWW.BEANSHELL.ORG
30 HTTP://JAVA.SUN.COM/DOCS/BOOKS/JLS/THIRD_EDITION/HTML/J3TOC.HTML
31 HTTP://JAVA.SUN.COM/DOCS/BOOKS/VMSPEC/2ND-EDITION/HTML/VMSPECTOC.DOC.HTML
32 HTTP://JAVA.SUN.COM/DOCS/BOOKS/VMSPEC/2ND-EDITION/JVMS-CLARIFY.HTML
33 HTTP://WWW.JDISTRO.COM/
34 HTTP://WIKI.JAVA.NET/BIN/VIEW/JAVAPEDIA/
35 HTTP://WWW.MINDVIEW.NET/BOOKS/TIJ/
36 HTTP://JAVAGAMEDEVELOPMENT.NET
37 HTTP://WWW.JAVABEAT.NET
38 HTTP://WWW.APL.JHU.EDU/~{}HALL/JAVA/FAQS-AND-TUTORIALS.HTML
39 HTTP://FINDSHELL.COM
40 HTTP://WWW.LANDOFCODE.COM/JAVA/

178

http://www.freebookcentre.net/JavaTech/javaCategory.html
http://www.bestebooksworld.com/default.asp?cat=55
http://www.techbooksforfree.com/java.shtml
http://www.mindprod.com/jgloss/jgloss.html
http://c2.com/cgi/wiki?JavaLanguage
http://www.netbeans.org
http://www.eclipse.org
http://www.zeusedit.com/java.html
http://java.sun.com
http://java.sun.com/docs/white/langenv/
http://www.roseindia.net/java/
http://www.javapassion.com/javaintro/
http://www.beanshell.org
http://java.sun.com/docs/books/jls/third_edition/html/j3TOC.html
http://java.sun.com/docs/books/vmspec/2nd-edition/html/VMSpecTOC.doc.html
http://java.sun.com/docs/books/vmspec/2nd-edition/jvms-clarify.html
http://www.jdistro.com/
http://wiki.java.net/bin/view/Javapedia/
http://www.mindview.net/Books/TIJ/
http://javagamedevelopment.net
http://www.javabeat.net
http://www.apl.jhu.edu/~{}hall/java/FAQs-and-Tutorials.html
http://findshell.com
http://www.landofcode.com/java/

External links

• ONLINE JAVA TUTORIAL41

• FULL JAVA TUTORIAL42 - A collection of free premium programming tutorials
• JAVA CERTIFICATION PRACTICE TESTS AND ARTICLES43

• KODE JAVA - LEARN JAVA PROGRAMMING BY EXAMPLES44

• GAMES PROGRAMMING WIKI45 - Java tutorials and lessons based on game programming
• WIKIJAVA46 - Examples and tutorials in Java
• DOWNLOAD FREE JAVA EBOOKS FROM 83 EBOOKS COLLECTION47 - Free Java Ebooks to down-

load from ebookslab.info
• DOWNLOAD FREE SUN CERTIFIED DEVELOPER FOR JAVA WEB SERVICES48 - Free Java Ebooks to

download from ebooks.mzwriter.net
• CODE CONVENTIONS FOR THE JAVA PROGRAMMING LANGUAGE49 - At SUN
• JAVA LESSONS AT LEOLOL50 - A collection of introductory lessons to Java
• JAVA EXERCISES AT LEOLOL51 - A collection of Java exercises with sample solutions

Newsgroups:

• [news:comp.lang.java comp.lang.java] (GOOGLE’S WEB INTERFACE52)

41 HTTP://COMPUTER.FREEONLINEBOOKSTORE.ORG/SHOWBOOK.PHP?SUBCATEGORYID=17
42 HTTP://WWW.MESHPLEX.ORG/WIKI/JAVA/INTRODUCTION_TO_JAVA
43 HTTP://WWW.UCERTIFY.COM/VENDORS/SUN.HTML
44 HTTP://WWW.KODEJAVA.ORG/
45 HTTP://GPWIKI.ORG/
46 HTTP://WWW.WIKIJAVA.ORG/
47 HTTP://WWW.EBOOKSLAB.INFO/DOWNLOAD-FREE-JAVA-EBOOKS
48 HTTP://EBOOKS.MZWRITER.NET/E-BOOKS/SHARE_EBOOK-310-220-SUN-CERTIFIED-DEVELOPER-FOR-JAVA-WEB-SERVICES
49 HTTP://JAVA.SUN.COM/DOCS/CODECONV/HTML/CODECONVTOC.DOC.HTML
50 HTTP://WWW.LEOLOL.COM/DRUPAL/TUTORIALS/JAVA/LESSONS
51 HTTP://WWW.LEOLOL.COM/DRUPAL/TUTORIALS/JAVA/EXERCISES
52 HTTP://GROUPS.GOOGLE.COM/GROUPS?GROUP=COMP.LANG.JAVA

179

http://computer.freeonlinebookstore.org/ShowBook.php?subcategoryid=17
http://www.meshplex.org/wiki/Java/Introduction_to_Java
http://www.ucertify.com/vendors/Sun.html
http://www.kodejava.org/
http://gpwiki.org/
http://www.wikijava.org/
http://www.ebookslab.info/download-free-java-ebooks
http://ebooks.mzwriter.net/e-books/share_ebook-310-220-sun-certified-developer-for-java-web-services
http://java.sun.com/docs/codeconv/html/CodeConvTOC.doc.html
http://www.leolol.com/drupal/tutorials/java/lessons
http://www.leolol.com/drupal/tutorials/java/exercises
http://groups.google.com/groups?group=comp.lang.java

Links

180

32 License

181

License

182

33 GNU Free Documentation License

1. REDIRECT WIKIBOOKS:GNU FREE DOCUMENTATION LICENSE1

DE:JAVA2 DEUTSCH J.SE3

1 HTTP://EN.WIKIBOOKS.ORG/WIKI/GNU%20FREE%20DOCUMENTATION%20LICENSE
2 HTTP://DE.WIKIBOOKS.ORG/WIKI/JAVA
3 HTTP://DE.WIKIBOOKS.ORG/WIKI/JAVA%20STANDARD

183

http://en.wikibooks.org/wiki/GNU%20Free%20Documentation%20License
http://de.wikibooks.org/wiki/Java
http://de.wikibooks.org/wiki/Java%20Standard

GNU Free Documentation License

184

34 Authors

Edits User
2 1WHEEL1

1 A. B. 102

3 AVERMA3

1 ADRILEY4

1 ADDPS4CAT5

35 ADRIGNOLA6

3 ALAINR3457

1 ALEXANDER.ORLOV8

4 ANONYMOUS DISSIDENT9

2 ANTIDRUGUE10

1 APHONIK11

6 ARLEN2212

1 ARSENALFAN13

225 ARUNREGINALD14

7 ASHMAILIT15

2 AZ156816

1 B3T17

1 BRUTE18

2 BASTIE19

1 BENO100020

2 BENPAGE2621

1 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:1WHEEL
2 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:A._B._10
3 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:AVERMA
4 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:ADRILEY
5 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:ADDPS4CAT
6 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:ADRIGNOLA
7 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:ALAINR345
8 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:ALEXANDER.ORLOV
9 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:ANONYMOUS_DISSIDENT
10 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:ANTIDRUGUE
11 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:APHONIK
12 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:ARLEN22
13 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:ARSENALFAN
14 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:ARUNREGINALD
15 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:ASHMAILIT
16 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:AZ1568
17 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:B3T
18 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:BRUTE
19 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:BASTIE
20 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:BENO1000
21 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:BENPAGE26

185

http://en.wikibooks.org/w/index.php?title=User:1wheel
http://en.wikibooks.org/w/index.php?title=User:A._B._10
http://en.wikibooks.org/w/index.php?title=User:AVerma
http://en.wikibooks.org/w/index.php?title=User:AdRiley
http://en.wikibooks.org/w/index.php?title=User:Addps4cat
http://en.wikibooks.org/w/index.php?title=User:Adrignola
http://en.wikibooks.org/w/index.php?title=User:Alainr345
http://en.wikibooks.org/w/index.php?title=User:Alexander.orlov
http://en.wikibooks.org/w/index.php?title=User:Anonymous_Dissident
http://en.wikibooks.org/w/index.php?title=User:Antidrugue
http://en.wikibooks.org/w/index.php?title=User:Aphonik
http://en.wikibooks.org/w/index.php?title=User:Arlen22
http://en.wikibooks.org/w/index.php?title=User:Arsenalfan
http://en.wikibooks.org/w/index.php?title=User:Arunreginald
http://en.wikibooks.org/w/index.php?title=User:Ashmailit
http://en.wikibooks.org/w/index.php?title=User:Az1568
http://en.wikibooks.org/w/index.php?title=User:B3t
http://en.wikibooks.org/w/index.php?title=User:BRUTE
http://en.wikibooks.org/w/index.php?title=User:Bastie
http://en.wikibooks.org/w/index.php?title=User:Beno1000
http://en.wikibooks.org/w/index.php?title=User:Benpage26

Authors

1 BIGDUNC22

1 BRENTP23

1 CARSRACBOT24

1 CECLAUSON25

4 COLFULUS26

1 COLINDAVEN27

1 COOLBOY123428

1 CSPURRIER29

2 DALLAS127830

8 DAN POLANSKY31

5 DARKLAMA32

5 DARKXXXXILLUSION33

8 DAVIDBOURGUIGNON34

6 DAVIDCARY35

2 DERBETH36

1 DEVOURER0937

1 DICKDICKDICK38

6 DIRK HÜNNIGER39

3 DIRK GENTLY40

95 DJB41

2 DMONEGO42

1 DRAWDE8343

1 ELI VERBUYST44

4 ELLMIST45

720 ERVINN46

22 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:BIGDUNC
23 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:BRENTP
24 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:CARSRACBOT
25 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:CECLAUSON
26 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:COLFULUS
27 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:COLINDAVEN
28 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:COOLBOY1234
29 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:CSPURRIER
30 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:DALLAS1278
31 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:DAN_POLANSKY
32 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:DARKLAMA
33 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:DARKXXXXILLUSION
34 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:DAVIDBOURGUIGNON
35 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:DAVIDCARY
36 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:DERBETH
37 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:DEVOURER09
38 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:DICKDICKDICK
39 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:DIRK_H%C3%BCNNIGER
40 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:DIRK_GENTLY
41 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:DJB
42 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:DMONEGO
43 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:DRAWDE83
44 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:ELI_VERBUYST
45 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:ELLMIST
46 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:ERVINN

186

http://en.wikibooks.org/w/index.php?title=User:BigDunc
http://en.wikibooks.org/w/index.php?title=User:Brentp
http://en.wikibooks.org/w/index.php?title=User:CarsracBot
http://en.wikibooks.org/w/index.php?title=User:Ceclauson
http://en.wikibooks.org/w/index.php?title=User:Colfulus
http://en.wikibooks.org/w/index.php?title=User:Colindaven
http://en.wikibooks.org/w/index.php?title=User:Coolboy1234
http://en.wikibooks.org/w/index.php?title=User:Cspurrier
http://en.wikibooks.org/w/index.php?title=User:Dallas1278
http://en.wikibooks.org/w/index.php?title=User:Dan_Polansky
http://en.wikibooks.org/w/index.php?title=User:Darklama
http://en.wikibooks.org/w/index.php?title=User:Darkxxxxillusion
http://en.wikibooks.org/w/index.php?title=User:DavidBourguignon
http://en.wikibooks.org/w/index.php?title=User:DavidCary
http://en.wikibooks.org/w/index.php?title=User:Derbeth
http://en.wikibooks.org/w/index.php?title=User:Devourer09
http://en.wikibooks.org/w/index.php?title=User:Dickdickdick
http://en.wikibooks.org/w/index.php?title=User:Dirk_H%C3%BCnniger
http://en.wikibooks.org/w/index.php?title=User:Dirk_gently
http://en.wikibooks.org/w/index.php?title=User:Djb
http://en.wikibooks.org/w/index.php?title=User:Dmonego
http://en.wikibooks.org/w/index.php?title=User:Drawde83
http://en.wikibooks.org/w/index.php?title=User:Eli_Verbuyst
http://en.wikibooks.org/w/index.php?title=User:Ellmist
http://en.wikibooks.org/w/index.php?title=User:Ervinn

External links

14 EXABYTE47

6 EXPLANATOR48

3 FELIPEOCHOA091849

3 FISHPI50

1 FKEREKI51

1 FLATIPAC52

12 FORAGE53

2 FRATERM54

2 FREDMARANHAO55

1 FRIGOTONI56

11 FTIERCEL57

1 FUNNYMAN359558

2 GOLLOXP59

2 GROKUS60

1 GRUNNY61

1 GUANACO62

5 GUANGPU.HUANG63

1 HMPERSON164

2 HAGINDAZ65

1 HERMIONE198066

1 HETHRIR67

1 HETHRIRBOT68

6 HIGHLAND69

1 HROÐULF70

2 IMACWIN9571

47 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:EXABYTE
48 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:EXPLANATOR
49 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:FELIPEOCHOA0918
50 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:FISHPI
51 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:FKEREKI
52 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:FLATIPAC
53 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:FORAGE
54 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:FRATERM
55 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:FREDMARANHAO
56 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:FRIGOTONI
57 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:FTIERCEL
58 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:FUNNYMAN3595
59 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:GOLLOXP
60 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:GROKUS
61 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:GRUNNY
62 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:GUANACO
63 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:GUANGPU.HUANG
64 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:HMPERSON1
65 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:HAGINDAZ
66 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:HERMIONE1980
67 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:HETHRIR
68 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:HETHRIRBOT
69 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:HIGHLAND
70 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:HRO%C3%B0ULF
71 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:IMACWIN95

187

http://en.wikibooks.org/w/index.php?title=User:Exabyte
http://en.wikibooks.org/w/index.php?title=User:Explanator
http://en.wikibooks.org/w/index.php?title=User:Felipeochoa0918
http://en.wikibooks.org/w/index.php?title=User:Fishpi
http://en.wikibooks.org/w/index.php?title=User:Fkereki
http://en.wikibooks.org/w/index.php?title=User:Flatipac
http://en.wikibooks.org/w/index.php?title=User:Forage
http://en.wikibooks.org/w/index.php?title=User:Fraterm
http://en.wikibooks.org/w/index.php?title=User:Fredmaranhao
http://en.wikibooks.org/w/index.php?title=User:Frigotoni
http://en.wikibooks.org/w/index.php?title=User:Ftiercel
http://en.wikibooks.org/w/index.php?title=User:FunnyMan3595
http://en.wikibooks.org/w/index.php?title=User:GoLLoXp
http://en.wikibooks.org/w/index.php?title=User:Grokus
http://en.wikibooks.org/w/index.php?title=User:Grunny
http://en.wikibooks.org/w/index.php?title=User:Guanaco
http://en.wikibooks.org/w/index.php?title=User:Guangpu.huang
http://en.wikibooks.org/w/index.php?title=User:HMPerson1
http://en.wikibooks.org/w/index.php?title=User:Hagindaz
http://en.wikibooks.org/w/index.php?title=User:Hermione1980
http://en.wikibooks.org/w/index.php?title=User:Hethrir
http://en.wikibooks.org/w/index.php?title=User:HethrirBot
http://en.wikibooks.org/w/index.php?title=User:Highland
http://en.wikibooks.org/w/index.php?title=User:Hro%C3%B0ulf
http://en.wikibooks.org/w/index.php?title=User:IMacWin95

Authors

2 IMAGINATIONAC72

1 ITSBORIN73

1 J36MILES74

7 JACKPOTTE75

1 JAMES.SUTHERLAND76

33 JGUK77

1 JIMMYATIC78

1 JK3379

7 JOMEGAT80

2 JONATHAN WEBLEY81

1 JPKOTTA82

8 JSONSTEIN83

2 KAATIEP84

1 KEJIA85

1 KENJ041886

1 KRIAK87

4 KRISCHIK88

1 LCAWTE89

1 LESATH90

1 LMDELGADO91

1 LUKE10192

1 LUÍS VITÓRIO CARGNINI93

6 MALFIST94

2 MATRIXFROG95

14 MATTYLAWS96

72 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:IMAGINATIONAC
73 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:ITSBORIN
74 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:J36MILES
75 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:JACKPOTTE
76 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:JAMES.SUTHERLAND
77 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:JGUK
78 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:JIMMYATIC
79 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:JK33
80 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:JOMEGAT
81 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:JONATHAN_WEBLEY
82 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:JPKOTTA
83 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:JSONSTEIN
84 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:KAATIEP
85 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:KEJIA
86 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:KENJ0418
87 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:KRIAK
88 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:KRISCHIK
89 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:LCAWTE
90 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:LESATH
91 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:LMDELGADO
92 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:LUKE101
93 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:LU%C3%ADS_VIT%C3%B3RIO_

CARGNINI
94 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:MALFIST
95 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:MATRIXFROG
96 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:MATTYLAWS

188

http://en.wikibooks.org/w/index.php?title=User:Imaginationac
http://en.wikibooks.org/w/index.php?title=User:Itsborin
http://en.wikibooks.org/w/index.php?title=User:J36miles
http://en.wikibooks.org/w/index.php?title=User:JackPotte
http://en.wikibooks.org/w/index.php?title=User:James.sutherland
http://en.wikibooks.org/w/index.php?title=User:Jguk
http://en.wikibooks.org/w/index.php?title=User:Jimmyatic
http://en.wikibooks.org/w/index.php?title=User:Jk33
http://en.wikibooks.org/w/index.php?title=User:Jomegat
http://en.wikibooks.org/w/index.php?title=User:Jonathan_Webley
http://en.wikibooks.org/w/index.php?title=User:Jpkotta
http://en.wikibooks.org/w/index.php?title=User:Jsonstein
http://en.wikibooks.org/w/index.php?title=User:KaatieP
http://en.wikibooks.org/w/index.php?title=User:Kejia
http://en.wikibooks.org/w/index.php?title=User:Kenj0418
http://en.wikibooks.org/w/index.php?title=User:Kriak
http://en.wikibooks.org/w/index.php?title=User:Krischik
http://en.wikibooks.org/w/index.php?title=User:Lcawte
http://en.wikibooks.org/w/index.php?title=User:Lesath
http://en.wikibooks.org/w/index.php?title=User:Lmdelgado
http://en.wikibooks.org/w/index.php?title=User:Luke101
http://en.wikibooks.org/w/index.php?title=User:Lu%C3%ADs_Vit%C3%B3rio_Cargnini
http://en.wikibooks.org/w/index.php?title=User:Lu%C3%ADs_Vit%C3%B3rio_Cargnini
http://en.wikibooks.org/w/index.php?title=User:Malfist
http://en.wikibooks.org/w/index.php?title=User:MatrixFrog
http://en.wikibooks.org/w/index.php?title=User:Mattylaws

External links

1 MAXBOWSHER97

1 MESSI98

3 METABOHEMIAN99

1 MHAYES100

1 MIKE.LIFEGUARD101

63 MIKM102

2 MKN103

1 MS2GER104

3 MSHONLE105

1 MSTENTA106

2 N313T3107

1 OLDGEEK108

1 PADDU109

22 PANIC2K4110

1 PENGO111

3 PHILIP112

2 PITEL113

2 POWEROID114

15 QUITEUNUSUAL115

1 RDEV116

1 RAKESH KPN117

1 RALPHCOOK118

10 RAPPO119

1 RAVICHANDAR84120

1 RAYKIDDY121

97 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:MAXBOWSHER
98 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:MESSI
99 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:METABOHEMIAN
100 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:MHAYES
101 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:MIKE.LIFEGUARD
102 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:MIKM
103 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:MKN
104 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:MS2GER
105 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:MSHONLE
106 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:MSTENTA
107 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:N313T3
108 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:OLDGEEK
109 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:PADDU
110 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:PANIC2K4
111 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:PENGO
112 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:PHILIP
113 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:PITEL
114 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:POWEROID
115 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:QUITEUNUSUAL
116 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:RDEV
117 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:RAKESH_KPN
118 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:RALPHCOOK
119 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:RAPPO
120 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:RAVICHANDAR84
121 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:RAYKIDDY

189

http://en.wikibooks.org/w/index.php?title=User:MaxBowsher
http://en.wikibooks.org/w/index.php?title=User:Messi
http://en.wikibooks.org/w/index.php?title=User:MetaBohemian
http://en.wikibooks.org/w/index.php?title=User:Mhayes
http://en.wikibooks.org/w/index.php?title=User:Mike.lifeguard
http://en.wikibooks.org/w/index.php?title=User:Mikm
http://en.wikibooks.org/w/index.php?title=User:Mkn
http://en.wikibooks.org/w/index.php?title=User:Ms2ger
http://en.wikibooks.org/w/index.php?title=User:Mshonle
http://en.wikibooks.org/w/index.php?title=User:Mstenta
http://en.wikibooks.org/w/index.php?title=User:N313t3
http://en.wikibooks.org/w/index.php?title=User:Oldgeek
http://en.wikibooks.org/w/index.php?title=User:Paddu
http://en.wikibooks.org/w/index.php?title=User:Panic2k4
http://en.wikibooks.org/w/index.php?title=User:Pengo
http://en.wikibooks.org/w/index.php?title=User:Philip
http://en.wikibooks.org/w/index.php?title=User:Pitel
http://en.wikibooks.org/w/index.php?title=User:Poweroid
http://en.wikibooks.org/w/index.php?title=User:QuiteUnusual
http://en.wikibooks.org/w/index.php?title=User:RDev
http://en.wikibooks.org/w/index.php?title=User:Rakesh_kpn
http://en.wikibooks.org/w/index.php?title=User:Ralphcook
http://en.wikibooks.org/w/index.php?title=User:Rappo
http://en.wikibooks.org/w/index.php?title=User:Ravichandar84
http://en.wikibooks.org/w/index.php?title=User:RayKiddy

Authors

7 RECENT RUNES122

2 REMI123

11 RICKY CLARKSON124

1 ROBERT HORNING125

3 SBJOHNNY126

1 SAILWINHEIN127

6 SAMWILSON128

1 SAVH129

1 SEANJA130

4 SHAHIDSIDD131

2 SHAUNW132

1 SHENME133

68 SIGMA 7134

1 SNARIUS135

1 SPOCK431136

8 SPONGEBOB88137

16 SPOON!138

1 STEPHANVANINGEN139

4 SUNDAR22IN140

3 SUNNYCHAN141

7 SUPERFLY JON142

1 SWIFT143

1 TALKTOATISH144

2 TANMINIVAN145

1 TAROSE.TREVOR146

122 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:RECENT_RUNES
123 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:REMI
124 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:RICKY_CLARKSON
125 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:ROBERT_HORNING
126 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:SBJOHNNY
127 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:SAILWINHEIN
128 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:SAMWILSON
129 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:SAVH
130 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:SEANJA
131 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:SHAHIDSIDD
132 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:SHAUNW
133 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:SHENME
134 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:SIGMA_7
135 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:SNARIUS
136 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:SPOCK431
137 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:SPONGEBOB88
138 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:SPOON%21
139 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:STEPHANVANINGEN
140 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:SUNDAR22IN
141 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:SUNNYCHAN
142 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:SUPERFLY_JON
143 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:SWIFT
144 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:TALKTOATISH
145 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:TANMINIVAN
146 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:TAROSE.TREVOR

190

http://en.wikibooks.org/w/index.php?title=User:Recent_Runes
http://en.wikibooks.org/w/index.php?title=User:Remi
http://en.wikibooks.org/w/index.php?title=User:Ricky_clarkson
http://en.wikibooks.org/w/index.php?title=User:Robert_Horning
http://en.wikibooks.org/w/index.php?title=User:SBJohnny
http://en.wikibooks.org/w/index.php?title=User:Sailwinhein
http://en.wikibooks.org/w/index.php?title=User:Samwilson
http://en.wikibooks.org/w/index.php?title=User:Savh
http://en.wikibooks.org/w/index.php?title=User:Seanja
http://en.wikibooks.org/w/index.php?title=User:Shahidsidd
http://en.wikibooks.org/w/index.php?title=User:Shaunw
http://en.wikibooks.org/w/index.php?title=User:Shenme
http://en.wikibooks.org/w/index.php?title=User:Sigma_7
http://en.wikibooks.org/w/index.php?title=User:Snarius
http://en.wikibooks.org/w/index.php?title=User:Spock431
http://en.wikibooks.org/w/index.php?title=User:Spongebob88
http://en.wikibooks.org/w/index.php?title=User:Spoon%21
http://en.wikibooks.org/w/index.php?title=User:Stephanvaningen
http://en.wikibooks.org/w/index.php?title=User:Sundar22in
http://en.wikibooks.org/w/index.php?title=User:Sunnychan
http://en.wikibooks.org/w/index.php?title=User:Superfly_Jon
http://en.wikibooks.org/w/index.php?title=User:Swift
http://en.wikibooks.org/w/index.php?title=User:Talktoatish
http://en.wikibooks.org/w/index.php?title=User:Tanminivan
http://en.wikibooks.org/w/index.php?title=User:Tarose.trevor

External links

1 THARENTHEL147

1 THEDAVEROSS148

3 THEPHILWELLS149

2 UNV150

1 UCERTIFY151

1 VINAY H152

2 WEBAWARE153

1 WHITEKNIGHT154

6 WIKIWIZARD155

2 WIKIALT156

1 WIKIMI-DHIANN157

1 WILLEM SOUWER158

1 WISEEYES159

1 WUR-DENE160

2 WUTZOFANT161

2 YMS162

6 YUUKI MAYUKI163

9 ZEROONE164

1 Володимир Груша165

1 砲火万物の霊長166

147 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:THARENTHEL
148 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:THEDAVEROSS
149 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:THEPHILWELLS
150 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:UNV
151 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:UCERTIFY
152 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:VINAY_H
153 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:WEBAWARE
154 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:WHITEKNIGHT
155 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:WIKIWIZARD
156 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:WIKIALT
157 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:WIKIMI-DHIANN
158 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:WILLEM_SOUWER
159 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:WISEEYES
160 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:WUR-DENE
161 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:WUTZOFANT
162 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:YMS
163 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:YUUKI_MAYUKI
164 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:ZEROONE
165 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:%D0%92%D0%BE%D0%BB%D0%BE%D0%

B4%D0%B8%D0%BC%D0%B8%D1%80_%D0%93%D1%80%D1%83%D1%88%D0%B0
166 HTTP://EN.WIKIBOOKS.ORG/W/INDEX.PHP?TITLE=USER:%E7%A0%B2%E7%81%AB_%E4%B8%87%

E7%89%A9%E3%81%AE%E9%9C%8A%E9%95%B7

191

http://en.wikibooks.org/w/index.php?title=User:Tharenthel
http://en.wikibooks.org/w/index.php?title=User:TheDaveRoss
http://en.wikibooks.org/w/index.php?title=User:Thephilwells
http://en.wikibooks.org/w/index.php?title=User:UNV
http://en.wikibooks.org/w/index.php?title=User:Ucertify
http://en.wikibooks.org/w/index.php?title=User:Vinay_h
http://en.wikibooks.org/w/index.php?title=User:Webaware
http://en.wikibooks.org/w/index.php?title=User:Whiteknight
http://en.wikibooks.org/w/index.php?title=User:WikiWizard
http://en.wikibooks.org/w/index.php?title=User:Wikialt
http://en.wikibooks.org/w/index.php?title=User:Wikimi-dhiann
http://en.wikibooks.org/w/index.php?title=User:Willem_Souwer
http://en.wikibooks.org/w/index.php?title=User:WiseEyes
http://en.wikibooks.org/w/index.php?title=User:Wur-dene
http://en.wikibooks.org/w/index.php?title=User:Wutzofant
http://en.wikibooks.org/w/index.php?title=User:YMS
http://en.wikibooks.org/w/index.php?title=User:Yuuki_Mayuki
http://en.wikibooks.org/w/index.php?title=User:ZeroOne
http://en.wikibooks.org/w/index.php?title=User:%D0%92%D0%BE%D0%BB%D0%BE%D0%B4%D0%B8%D0%BC%D0%B8%D1%80_%D0%93%D1%80%D1%83%D1%88%D0%B0
http://en.wikibooks.org/w/index.php?title=User:%D0%92%D0%BE%D0%BB%D0%BE%D0%B4%D0%B8%D0%BC%D0%B8%D1%80_%D0%93%D1%80%D1%83%D1%88%D0%B0
http://en.wikibooks.org/w/index.php?title=User:%E7%A0%B2%E7%81%AB_%E4%B8%87%E7%89%A9%E3%81%AE%E9%9C%8A%E9%95%B7
http://en.wikibooks.org/w/index.php?title=User:%E7%A0%B2%E7%81%AB_%E4%B8%87%E7%89%A9%E3%81%AE%E9%9C%8A%E9%95%B7

Authors

192

List of Figures

• GFDL: Gnu Free Documentation License. http://www.gnu.org/licenses/fdl.html

• cc-by-sa-3.0: Creative Commons Attribution ShareAlike 3.0 License.
http://creativecommons.org/licenses/by-sa/3.0/

• cc-by-sa-2.5: Creative Commons Attribution ShareAlike 2.5 License.
http://creativecommons.org/licenses/by-sa/2.5/

• cc-by-sa-2.0: Creative Commons Attribution ShareAlike 2.0 License.
http://creativecommons.org/licenses/by-sa/2.0/

• cc-by-sa-1.0: Creative Commons Attribution ShareAlike 1.0 License.
http://creativecommons.org/licenses/by-sa/1.0/

• cc-by-2.0: Creative Commons Attribution 2.0 License. http://creativecommons.org/licenses/by/2.0/

• cc-by-2.0: Creative Commons Attribution 2.0 License. http://creativecommons.org/licenses/by/2.0/deed.en

• cc-by-2.5: Creative Commons Attribution 2.5 License. http://creativecommons.org/licenses/by/2.5/deed.en

• cc-by-3.0: Creative Commons Attribution 3.0 License. http://creativecommons.org/licenses/by/3.0/deed.en

• GPL: GNU General Public License. http://www.gnu.org/licenses/gpl-2.0.txt

• PD: This image is in the public domain.

• ATTR: The copyright holder of this file allows anyone to use it for any purpose, provided
that the copyright holder is properly attributed. Redistribution, derivative work, commer-
cial use, and all other use is permitted.

• EURO: This is the common (reverse) face of a euro coin. The copyright on the design of
the common face of the euro coins belongs to the European Commission. Authorised is
reproduction in a format without relief (drawings, paintings, films) provided they are not
detrimental to the image of the euro.

• LFK: Lizenz Freie Kunst. http://artlibre.org/licence/lal/de

• CFR: Copyright free use.

• EPL: Eclipse Public License. http://www.eclipse.org/org/documents/epl-v10.php

193

List of Figures

1 NASA PD
2 PETER CAMPBELL167 GFDL
3 USER:ARUNREGINALD168 GFDL
4 ARUN REGINALD169 cc-by-sa-3.0
5 ARUN REGINALD170 cc-by-sa-3.0
6 ARUN REGINALD171 cc-by-sa-3.0
7 ARUN REGINALD172 cc-by-sa-3.0
8 ARUN REGINALD173 cc-by-sa-3.0
9
10
11
12
13
14
15 ARUN REGINALD174 GFDL
16 ARUN REGINALD175 GFDL
17 Original version created by B:USER:ERVINN176, SVG version

created by MYSELF177
cc-by-sa-2.5

18 Original version created by B:USER:ERVINN178, SVG version
created by MYSELF179

cc-by-sa-2.5

19
20
21
22
23
24
25 ARUNREGINALD180 GFDL

167 HTTP://EN.WIKIBOOKS.ORG/WIKI/USER%3APETER%20CAMPBELL
168 HTTP://EN.WIKIBOOKS.ORG/WIKI/USER%3AARUNREGINALD
169 HTTP://EN.WIKIBOOKS.ORG/WIKI/USER%3AARUNREGINALD
170 HTTP://EN.WIKIBOOKS.ORG/WIKI/USER%3AARUNREGINALD
171 HTTP://EN.WIKIBOOKS.ORG/WIKI/USER%3AARUNREGINALD
172 HTTP://EN.WIKIBOOKS.ORG/WIKI/USER%3AARUNREGINALD
173 HTTP://EN.WIKIBOOKS.ORG/WIKI/USER%3AARUNREGINALD
174 HTTP://EN.WIKIBOOKS.ORG/WIKI/USER%3AARUNREGINALD
175 HTTP://EN.WIKIBOOKS.ORG/WIKI/USER%3AARUNREGINALD
176 HTTP://EN.WIKIBOOKS.ORG/WIKI/USER%3AERVINN
177 HTTP://EN.WIKIBOOKS.ORG/WIKI/USER%3AMIKM
178 HTTP://EN.WIKIBOOKS.ORG/WIKI/USER%3AERVINN
179 HTTP://EN.WIKIBOOKS.ORG/WIKI/USER%3AMIKM
180 HTTP://EN.WIKIBOOKS.ORG/WIKI/USER%3AARUNREGINALD

194

http://de.wikibooks.org/wiki/File:MarsSunsetCut.jpg
http://de.wikibooks.org/wiki/File:James%20Gosling%202008.jpg
http://de.wikibooks.org/wiki/File:Java%20Development%20Path.svg
http://de.wikibooks.org/wiki/File:Explaining%20Java%20Runtime%20Environment.svg
http://de.wikibooks.org/wiki/File:How%20JVM%20Interpreter%20works.svg
http://de.wikibooks.org/wiki/File:How%20JIT%20Compilation%20works.svg
http://de.wikibooks.org/wiki/File:Java%20Compilation%20Basics.svg
http://de.wikibooks.org/wiki/File:Third-party%20JVM-_targeted%20Compilation.svg
http://de.wikibooks.org/wiki/File:java_stand_alone_appl.jpg
http://de.wikibooks.org/wiki/File:Java%20applet%20appl.jpg
http://de.wikibooks.org/wiki/File:Java%20servlet%20appl.jpg
http://de.wikibooks.org/wiki/File:Java%20jsp%20appl.jpg
http://de.wikibooks.org/wiki/File:Java%20ejb%20appl.jpg
http://de.wikibooks.org/wiki/File:Java%20mvc%20appl.gif
http://de.wikibooks.org/wiki/File:Navigation_Left_Arrow.svg
http://de.wikibooks.org/wiki/File:Navigation_Right_Arrow.svg
http://de.wikibooks.org/wiki/File:Java%20map%20interfaces.svg
http://de.wikibooks.org/wiki/File:Java%20collection%20interfaces.svg
http://de.wikibooks.org/wiki/File:java_collection_set_implementations.jpg
http://de.wikibooks.org/wiki/File:java_collection_list_implementations.jpg
http://de.wikibooks.org/wiki/File:java_collection_queue_implementations.jpg
http://de.wikibooks.org/wiki/File:java_map_implementation.jpg
http://de.wikibooks.org/wiki/File:java_collection_implementation.jpg
http://de.wikibooks.org/wiki/File:java_map_implementation.jpg
http://de.wikibooks.org/wiki/File:Java%20exception%20classes.svg
http://en.wikibooks.org/wiki/User%3APeter%20Campbell
http://en.wikibooks.org/wiki/User%3AArunreginald
http://en.wikibooks.org/wiki/User%3AArunreginald
http://en.wikibooks.org/wiki/User%3AArunreginald
http://en.wikibooks.org/wiki/User%3AArunreginald
http://en.wikibooks.org/wiki/User%3AArunreginald
http://en.wikibooks.org/wiki/User%3AArunreginald
http://en.wikibooks.org/wiki/User%3AArunreginald
http://en.wikibooks.org/wiki/User%3AArunreginald
http://en.wikibooks.org/wiki/User%3AErvinn
http://en.wikibooks.org/wiki/User%3AMikm
http://en.wikibooks.org/wiki/User%3AErvinn
http://en.wikibooks.org/wiki/User%3AMikm
http://en.wikibooks.org/wiki/User%3AArunreginald

	1 Introduction
	1.1 Are you new to programming?
	1.2 Programming with Java™

	2 About This Book
	2.1 Who should read this book?
	2.2 How can you participate
	2.3 Necessary prerequisites

	3 History
	3.1 The Green team
	3.2 Reshaping thought
	3.3 The demise of an idea, birth of another
	3.4 Recent history
	3.5 Versions
	3.6 Citations

	4 The Java Platform
	4.1 Java Runtime Environment (JRE)
	4.2 Java Development Kit (JDK)
	4.3 Similar concepts

	5 Getting Started
	5.1 Getting Started

	6 Compilation
	6.1 Compiling to bytecode
	6.2 Automatic Compilation of Dependent Classes
	6.3 Packages, Subdirectories, and Resources
	6.4 Filename Case
	6.5 Compiler Options
	6.6 Additional Tools
	6.7 JBuilder
	6.8 JCreator
	6.9 Eclipse
	6.10 NetBeans
	6.11 BlueJ
	6.12 Kawa
	6.13 Ant
	6.14 The JIT compiler

	7 Execution
	7.1 JSE code execution
	7.2 J2EE code execution
	7.3 Jini

	8 Understanding a Java Program
	8.1 The Distance Class: Intent, Source, and Use
	8.2 Detailed Program Structure and Overview
	8.3 Comments in Java programs

	9 Syntax
	9.1 Unicode
	9.2 Literals
	9.3 Blocks
	9.4 Whitespaces
	9.5 Required Whitespace
	9.6 Indentation

	10 Statements
	10.1 What exactly are statements?
	10.2 Where do you find statements
	10.3 Variables
	10.4 Data types
	10.5 Whole numbers and floating point numbers
	10.6 Assignment statements

	11 Classes, Objects and Types
	11.1 Objects and Classes
	11.2 Instantiation and Constructors
	11.3 Type
	11.4 Multiple classes in a Java file
	11.5 External links

	12 Packages
	12.1 Java Package / Name Space
	12.2 Wildcard imports
	12.3 Importing packages from .jar files
	12.4 Class Loading / Name Space

	13 Nested Classes
	13.1 Nest a class inside a class
	13.2 Nest a class inside a method
	13.3 Anonymous Classes

	14 Access Modifiers
	14.1 Access modifiers

	15 Methods
	15.1 Method Definition
	15.2 Method Overloading
	15.3 Method Overriding
	15.4 Parameter Passing
	15.5 Functions
	15.6 Return Parameter
	15.7 Special method, the Constructor
	15.8 Static Methods
	15.9 External links

	16 Primitive Types
	17 Types
	17.1 Data Types in Java
	17.2 Java as hybrid language
	17.3 Examples of Types
	17.4 Array Types
	17.5 Primitive Data Types
	17.6 Data Conversion (Casting)
	17.7 Autoboxing/unboxing

	18 java.lang.String
	18.1 java.lang.String
	18.2 Using StringBuffer/StringBuilder to concatenate strings
	18.3 Comparing Strings
	18.4 Splitting a String
	18.5 Creating substrings
	18.6 Modifying String cases
	18.7 See also

	19 Arrays
	19.1 Intro to Arrays
	19.2 Array Fundamentals
	19.3 Two-Dimensional Arrays
	19.4 Multidimensional Array

	20 Data and Variables
	20.1 Strong Typing
	20.2 Case Conventions
	20.3 Scope

	21 Generics
	21.1 What are Generics?
	21.2 Introduction
	21.3 Note for C++ programmers
	21.4 Class<T>
	21.5 Variable Argument
	21.6 Wildcard Types

	22 Defining Classes
	22.1 Fundamentals

	23 Creating Objects
	23.1 Introduction
	23.2 Creating object with the new keyword
	23.3 Creating object by cloning an object
	23.4 Creating object receiving from a remote source

	24 Interfaces
	24.1 Interfaces
	24.2 External links

	25 Using Static Members
	25.1 What does static mean?
	25.2 What can it be used for?
	25.3 Danger of static variables
	25.4 External links

	26 Destroying Objects
	26.1 finalize()

	27 Overloading Methods and Constructors
	28 Arrays
	28.1 Intro to Arrays
	28.2 Array Fundamentals
	28.3 Two-Dimensional Arrays
	28.4 Multidimensional Array

	29 Collection Classes
	29.1 Introduction to Collections
	29.2 Generics
	29.3 Collection or Map
	29.4 Set or List or Queue
	29.5 Map Classes
	29.6 Thread Safe Collections
	29.7 Classes Diagram (UML)
	29.8 External links

	30 Throwing and Catching Exceptions
	30.1 Exception arguments
	30.2 Catching an exception
	30.3 Exception handlers
	30.4 Exception classes in the JCL
	30.5 Catch clauses
	30.6 Example of handling exceptions
	30.7 Application Exceptions
	30.8 Runtime Exceptions
	30.9 Keyword references
	30.10 Minimize the use of the keyword 'null' in assignment statements
	30.11 Minimize the use of the new Type[int] syntax for creating arrays of objects
	30.12 Check all references obtained from 'untrusted' methods
	30.13 Comparing string variable with a string literal
	30.14 See also

	31 Links
	31.1 External References
	31.2 External links

	32 License
	33 GNU Free Documentation License
	34 Authors
	List of Figures

