Định lý Menelaus[1] là một định lý nâng cao trong hình học tam giác, được phát biểu như sau: Cho tam giác ABC. Các điểm D, E, F lần lượt nằm trên các đường thẳng BC, CA, AB. Khi đó D, E, F thẳng hàng khi và chỉ khi

Định lý Menelaus

Chứng minh

sửa

*Phần thuận: Giả sử D, E, F là 3 điểm thẳng hàng với nhau. Vẽ đường thẳng qua C và song song với AB cắt đường thẳng DE tại G.
  (c.dựng) nên theo định lý Ta-lét, ta có:
      
Nhân    và vế theo vế
 
Từ đó suy ra
 
*Phần đảo: Giả sử  . Khi đó gọi F' là giao của đường thẳng ED với đường thẳng AB.
Theo chứng minh ở trên, ta có  
Kết hợp giả thiết =>  
Hay  
Nên   
=>   trùng với  .
Vậy định lý đã được chứng minh.

Định lý hiểu đơn giản là hệ quả talet

Xem thêm

sửa

Tham khảo

sửa
  1. ^ Định lý được đặt theo tên của nhà toán học Menelaus xứ Alexandria (thế kỷ II - III), người tìm ra định lý này trong quyển sách Sphaerica vào năm 98
  • Coxeter, H. S. M. and Greitzer, S. L. "Menelaus's Theorem." §3.4 in Geometry Revisited. Washington, DC: Math. Assoc. Amer., pp. 66–67, 1967.
  • Beyer, W. H. (Ed.). CRC Standard Mathematical Tables, 28th ed. Boca Raton, FL: CRC Press, p. 122, 1987.
  • Graustein, W. C. Introduction to Higher Geometry. New York: Macmillan, p. 81, 1930.
  • Grünbaum, B. and Shepard, G. C. "Ceva, Menelaus, and the Area Principle." Math. Mag. 68, 254-268, 1995.
  • Honsberger, R. "The Theorem of Menelaus." Ch. 13 in Episodes in Nineteenth and Twentieth Century Euclidean Geometry. Washington, DC: Math. Assoc. Amer., pp. 147–154, 1995.
  • Durell, C. V. Modern Geometry: The Straight Line and Circle. London: Macmillan, pp. 42–44, 1928.
  • Graustein, W. C. Introduction to Higher Geometry. New York: Macmillan, p. 81, 1930.
  • Wells, D. The Penguin Dictionary of Curious and Interesting Geometry. London: Penguin, p. 150, 1991.
  NODES
Idea 1
idea 1