
A Computing Curricula Series Report
2020 December 31

Computing Curricula 2020

CC2020
Paradigms for  

Global Computing Education

encompassing undergraduate programs in

Computer Engineering

Computer Science

Cybersecurity

Information Systems

Information Technology

Software Engineering

with data science



 

 
A Computing Curricula Series Report  

 
Computing Curricula 2020 

 
CC2020 

 
Paradigms for Global Computing Education  

 
encompassing undergraduate programs in 

 
 
 

Computer Engineering 

Computer Science 

Cybersecurity 

Information Systems 

Information Technology 

Software Engineering 
with data science  

 
 
 

Association for Computing Machinery (ACM) 
IEEE Computer Society (IEEE-CS) 

 
2020 December 31 



Computing Curricula 2020  Computing Curricula Report  
CC2020  2020 December 31 

Page 2 of 203

Copyright © 2021 by ACM and IEEE 

ALL RIGHTS RESERVED 

Copyright and Reprint Permissions: Permission granted to use these curriculum guidelines for 
the development of educational materials and programs. Other use requires specific permission. 

Permission requests should be addressed to: ACM Permissions Department at 
permissions@acm.org or to the IEEE Copyrights Manager at copyrights@ieee.org. 

ISBN: 978-1-4503-9059-0 
DOI: 10.1145/3467967 

Web link: https://dl.acm.org/citation.cfm?id=3467967 

 When available, you may order additional copies from: 
 ACM Order Department, P.O. Box 30777, New York, NY 10087-0777 

"#$%!&'()&*!+,%!()%%$-.'!-/!0$1,12$,.!%3(()&*!0&)45!

Association for Computing Machinery (ACM) 

IEEE Computer Society (IEEE-CS) 

,16!

ACM China 

ACM India 

Association for Information Systems (AIS) 

Education SIG of the Association for Information Systems and 
Computing Academic Professionals (ED-SIG)  

 Informatics Europe 
Italian Association of Computer Scientists (GRIN)  

Special Interest Group on Computer Human Interaction of (SIGCHI) 



Computing Curricula 2020   Computing Curricula Report  
CC2020   2020 December 31 

Page 3 of 203 

"#'!0)..)+$17!%)2$'*$'%!,16!)&7,1$8,*$)1%!#,9'!)00$2$,../!'16)&%'6!*#$%!&'()&*:!
 
 

ACM China 

ACM SIGCSE China 

Association for Computing Machinery (ACM) 

Association for Information Systems (AIS) 

Association of Italian Faculty Members in Computer Science and Engineering –  
Gruppo di Ingegneria Informatica (GII)  

 
Brazilian Computer Society (SBC) 

China Computer Federation (CCF) 

Computing and Information Technology Research and Education New Zealand (CITRENZ) 

Council of European Professional Informatics Societies (CEPIS) 

European Association of Cognitive Ergonomics (EACE) 

IEEE Computer Society (IEEE-CS) 

Information Processing Society of Japan (IPSJ) 

Information Systems and Computing Academic Professionals –  
Education Special Interest Group (ISCAP/EDSIG) 

 International Federation for Information Processing (IFIP) 

Italian Association for Informatics - Associazione Italiana per  
l’Informatica e il Calcolo Automatico (AICA)  

 
Italian Association of Computer Scientists (GRIN) 

IT Professional New Zealand (ITPNZ) 

Latin American Center on Computing (CLEI) 

Spanish Scientific Association ADIE (Asociación para el Desarrollo de la Informática Educativa  
- Computers in Education Association) 

Spanish Scientific Association SCIE (Sociedad Cientifica Informatica Española) 

Spanish Scientific Society AENUI (Asociación de Enseñantes Universitarios de la Informática  
- Association of University Teachers of Informatics) 

 
  



Computing Curricula 2020   Computing Curricula Report  
CC2020   2020 December 31 

Page 4 of 203 

CC2020 Task Force 
 
 
 

Co-Chairs 
  

Alison Clear 
Eastern Institute of Technology 

New Zealand 
 

Allen Parrish 
University of Alabama 

United States of America  
 

 
 

Editorial Committee 
 

Alison Clear 

Eastern Institute of Technology 

New Zealand 

John Impagliazzo 
Hofstra University 

United States of America  

Allen Parrish 
University of Alabama 

United States of America  
 

Pearl Wang 
George Mason University 

United States of America 

 
 

Steering Committee 
 

Paolo Ciancarini 
University of Bologna 

Italy 

 

Alison Clear 
Eastern Institute of Technology 

New Zealand 

 

Ernesto Cuadros-Vargas 
Latin American Center for 

Computing Studies (CLEI) 

Peru 

 
Stephen Frezza 
Gannon University 

United States of America 

Judith Gal-Ezer 
Open University 

Israel 

 

John Impagliazzo 
Hofstra University 

United States of America 

 

Allen Parrish 
University of Alabama 

United States of America 

 

Arnold Pears 
KTH Royal Institute of 

Technology 

Sweden 

 

Shingo Takada 
Keio University 

Japan 

 

Heikki Topi 
Bentley University 

United States of America 

 

Gerrit van der Veer 
Vrije Universiteit 

Netherlands 

 

Abhijat Vichare 
ACM India 

India 

 

Pearl Wang 
George Mason University 

United States of America 

 

Les Waguespack 
Bentley University 

United States of America 

 

Ming Zhang 
Peking University 

China 

 
 
 
 
 
 

(continued on next page) 
  



Computing Curricula 2020   Computing Curricula Report  
CC2020   2020 December 31 

Page 5 of 203 

 
 

CC2020 Task Force (continued) 
 

 
 
 
 

Hala Alrumaih 
Imam Mohammad Ibn Saud Islamic Univ.  

Saudi Arabia 

 

Renata Araujo 
Brazilian Computer Society 

Brazil 

Jeffrey Babb 
West Texas A&M University 

United States of America 



Computing Curricula 2020   Computing Curricula Report  
CC2020   2020 December 31 

Page 6 of 203 

 

Contents 
 
 

 
CC2020 TASK FORCE ...................................................................................................................................... 4 
CC2020 TASK FORCE (CONTINUED) .............................................................................................................. 5 
CONTENTS ....................................................................................................................................................... 6 
EXECUTIVE SUMMARY ................................................................................................................................ 12 
CHAPTER 1:  INTRODUCING CC2020 ......................................................................................................... 14 

1.1:  CC2020 EXPECTATIONS ................................................................................................................................ 14 
1.1.1:  Project Purpose, Vision and Mission ..................................................................................................... 14 
1.1.2:  Project Strategies .................................................................................................................................... 15 
1.1.3:  Project Diversity ..................................................................................................................................... 15 

1.2:  PROJECT STAKEHOLDERS ............................................................................................................................. 16 
1.2.1:  Prospective Students and their Guardians ............................................................................................ 16 
1.2.2:  Current Students .................................................................................................................................... 16 
1.2.3:  Industry ................................................................................................................................................... 16 
1.2.4:  Computing Educators and Curriculum Developers .............................................................................. 17 
1.2.5:  Professional Associations, Educational Organizations, and Authorities ............................................. 17 

1.3:  PROJECT BACKGROUND ................................................................................................................................ 17 
1.3.1:  Brief History ........................................................................................................................................... 17 
1.3.2:  Project Organization and Structure ....................................................................................................... 18 

1.4:  OVERALL SCOPE OF COMPUTING ................................................................................................................. 18 
1.4.1:  Current Discipline Structure .................................................................................................................. 19 
1.4.2:  Timeline of Curricular Guidelines ........................................................................................................ 19 

1.5:  GUIDING PRINCIPLES ..................................................................................................................................... 20 
1.5.1:  Four Principles ....................................................................................................................................... 20 
1.5.2:  Constituents and Public Outreach ......................................................................................................... 21 

1.6:  CC2020 REPORT STRUCTURE ....................................................................................................................... 21 
1.7:  DIGEST OF CHAPTER 1 ................................................................................................................................... 22 

CHAPTER 2:  EVOLUTION OF COMPUTING EDUCATION ..................................................................... 23 
2.1:  WHAT IS COMPUTING? .................................................................................................................................. 23 

2.1.1:  Early Meanings ...................................................................................................................................... 23 
2.1.2:  Recent Undertakings .............................................................................................................................. 23 

2.2:  LANDSCAPE OF COMPUTING DISCIPLINES .................................................................................................... 24 
2.2.1:  Early Developments ................................................................................................................................ 24 
2.2.2:  Contemporary Advances ........................................................................................................................ 25 

2.3:  STATUS OF COMPUTING DISCIPLINE REPORTS ............................................................................................. 26 
2.3.1:  Computer Engineering ........................................................................................................................... 26 
2.3.2:  Computer Science ................................................................................................................................... 26 
2.3.3:  Cybersecurity .......................................................................................................................................... 27 
2.3.4:  Information Systems .............................................................................................................................. 27 
2.3.5:  Information Technology ........................................................................................................................ 28 
2.3.6:  Software Engineering ............................................................................................................................ 28 
2.3.7:  Data Science (Under Development) ....................................................................................................... 29 

2.4:  EXTENSIONS OF COMPUTING DISCIPLINES ................................................................................................... 29 



Computing Curricula 2020   Computing Curricula Report  
CC2020   2020 December 31 

Page 7 of 203 

2.4.1:  Computing Interrelationships ................................................................................................................ 29 
2.4.1:  Emerging Curricula ............................................................................................................................... 30 
2.4.2:  Computing + X ....................................................................................................................................... 31 
2.4.3:  X + Computing ....................................................................................................................................... 31 
2.4.4:  Other Tertiary Computing Models ......................................................................................................... 32 
2.4.5:  Computing in Primary and Secondary Education ................................................................................ 33 
2.4.6:  Computing Specializations ..................................................................................................................... 33 

2.5:  DIGEST OF CHAPTER 2 ................................................................................................................................... 34 
CHAPTER 3:  KNOWLEDGE-BASED COMPUTING EDUCATION ........................................................... 35 

3.1:  KNOWLEDGE-BASED LEARNING ................................................................................................................... 35 
3.1.1:  Learning and Knowledge ....................................................................................................................... 35 
3.1.2:  Learning from Knowledge Contexts ...................................................................................................... 35 
3.1.3:  Knowledge and Computing Education .................................................................................................. 36 

3.2:  REVISITING COMPUTING CURRICULA 2005 .................................................................................................. 36 



Computing Curricula 2020   Computing Curricula Report  
CC2020   2020 December 31 

Page 8 of 203 

5.3.4:  Other Visualizations ............................................................................................................................... 65 
5.4:  CHALLENGES CONCERNING COMPETENCY VISUALIZATION ....................................................................... 65 

5.4.1:  Consistent Vocabulary ........................................................................................................................... 66 
5.4.2:  Entity Comparison ................................................................................................................................. 66 
5.4.3:  Visualization types .................................................................................................................................. 66 

5.5:  DIGEST OF CHAPTER 5 ................................................................................................................................... 66 
CHAPTER 6:  GLOBAL AND PROFESSIONAL CONSIDERATIONS ........................................................ 67 

6.1:  GLOBAL CONTEXT AND COMPUTING PROGRAMS ........................................................................................ 67 
6.2:  COMPUTING NOMENCLATURE ...................................................................................................................... 68 

6.2.1:  Degree Names, Job Positions and Job Titles ......................................................................................... 68 
6.2.2:  Degree Names and the Workplace ......................................................................................................... 69 
6.2.3:  Use of the Word “Engineer” .................................................................................................................. 69 

6.3:  WORLDWIDE COMPUTING DEGREE STRUCTURES ....................................................................................... 70 
6.3.1:  Computing Education in Africa ............................................................................................................. 70 
6.3.2:  Computing Education in Australasia .................................................................................................... 70 
6.3.3:  Computing Education in China ............................................................................................................. 70 
6.3.4:  Computing Education in Europe ........................................................................................................... 71 
6.3.5:  Computing Education in India .............................................................................................................. 71 
6.3.6:  Computing Education in Japan ............................................................................................................. 72 
6.3.7:  Computing Education in the Middle East ............................................................................................. 72 
6.3.8:  Computing Education in Latin America ............................................................................................... 73 
6.3.9:  Computing Education in North America .............................................................................................. 73 
6.3.10:  Computing Education in the United Kingdom .................................................................................... 73 

6.4:  GLOBAL ECONOMICS AND COMPUTING EDUCATION ................................................................................... 74 
6.4.1:  Innovation Spaces .................................................................................................................................. 74 
6.4.2:  Forces Shaping Academic Programs .................................................................................................... 75 
6.4.3:  Innovation in Computing ....................................................................................................................... 75 
6.4.4:  Entrepreneurship in Computing ............................................................................................................ 76 

6.5:  PROFESSIONALISM AND ETHICS .................................................................................................................... 76 
6.5.1:  Ethics in the Curriculum ....................................................................................................................... 76 
6.5.2:  Professional and Ethical Work .............................................................................................................. 77 
6.5.3:  Cultural Sensitivity and Diversity .......................................................................................................... 77 

6.6:  DIGEST OF CHAPTER 6 ................................................................................................................................... 78 
CHAPTER 7:  CURRICULAR DESIGN – CHALLENGES AND OPPORTUNITIES ................................... 79 

7.1:  TRANSFORMING TO COMPETENCIES ............................................................................................................. 79 
7.1.1:  Distinguishing Competency from Knowledge ....................................................................................... 79 
7.1.2:  Curricular Dynamics .............................................................................................................................. 79 
7.1.3:  Conveying Computing Competencies .................................................................................................... 80 
7.1.4:  Knowledge Transfer ............................................................................................................................... 80 
7.1.5:  Skill Transfer .......................................................................................................................................... 80 
7.1.6:  Disposition Transfer ............................................................................................................................... 80 
7.1.7:  Need for Local Adaptation ..................................................................................................................... 81 

7.2:  INDUSTRY ENGAGEMENT FOR WORKPLACE COMPETENCIES ..................................................................... 81 
7.2.1:  Professional Advisory Boards ................................................................................................................ 82 
7.2.2:  Work-Study and Cooperative Programs ................................................................................................ 82 
7.2.3:  Internship Programs .............................................................................................................................. 83 

7.3:  INSTITUTIONAL RESOURCE REQUIREMENTS ................................................................................................ 83 
7.3.1:  Attracting and Retaining Academic Educators ..................................................................................... 83 
7.3.2:  Need for Adequate Laboratory Resources ............................................................................................. 83 

7.4:  PROGRAM QUALITY ASSURANCE AND ACCREDITATION .............................................................................. 84 
7.4.1:  Accreditation Overview .......................................................................................................................... 84 



Computing Curricula 2020   Computing Curricula Report  
CC2020   2020 December 31 

Page 9 of 203 

7.4.2:  Benefits of Program-Specific Accreditation .......................................................................................... 84 
7.4.3:  Quality Assurance .................................................................................................................................. 85 
7.4.4:  Global Recognition ................................................................................................................................. 85 

7.5:  DIGEST OF CHAPTER 7 ................................................................................................................................... 86 
CHAPTER 8:  BEYOND THE CC2020 REPORT ........................................................................................... 87 

8.1:  TECHNOLOGY TRENDS FOR CC2020 AND BEYOND ...................................................................................... 87 
8.1.1:  Current and Emerging Technologies .................................................................................................... 87 
8.1.2:  Existing Computing Areas with No Endorsed Curriculum .................................................................. 87 
8.1.3:  Emerging Computing Areas .................................................................................................................. 88 

8.2:  PUBLIC ENGAGEMENT AND THE CC2020 PROJECT ..................................................................................... 89 
8.2.1:  CC2020 Project Website ......................................................................................................................... 89 
8.2.2:  Relating Curricula and Competencies ................................................................................................... 89 
8.2.3:  Project Dissemination ............................................................................................................................ 90 

8.3:  THE ROLE OF COMPETENCY IN FUTURE CURRICULAR GUIDELINES .......................................................... 90 
8.3.1:  Recent Curricular Development ............................................................................................................ 90 
8.3.2:  Future Curricular Development ............................................................................................................ 90 

8.4:  COMPETENCY ADVOCACY ............................................................................................................................. 91 
8.5:  FUTURE ACTIVITIES ....................................................................................................................................... 91 
8.6:  DIGEST OF CHAPTER 8 ................................................................................................................................... 92 

ACKNOWLEDGMENTS ................................................................................................................................. 93 
APPENDIX A:  POSTER EXPLAINING CC2005 CURRICULAR VISUALS ............................................... 94 
APPENDIX B:  COMPUTING SKILLS FRAMEWORKS .............................................................................. 95 

B.1:  SKILLS FRAMEWORK FOR THE INFORMATION AGE .................................................................................... 95 
B.2:  SKILLS AND THE EUROPEAN COMPETENCY FRAMEWORK .......................................................................... 98 
B.3:  SKILLS AND THE I COMPETENCY DICTIONARY ............................................................................................ 99 

B.3.1:  Task Dictionary ................................................................................................................................... 100 
B.3.2:  Task Dictionary Chart ......................................................................................................................... 100 
B.3.3:  Examples of Task Evaluation Diagnostic Level and Criteria ............................................................ 101 
B.3.4:  Skill Dictionary .................................................................................................................................... 102 
B.3.5:  Skill Dictionary Chart ......................................................................................................................... 102 
B.3.6:  Skill Proficiency Level ......................................................................................................................... 103 

B.4:  SKILLS VIA ENTERPRISE INFORMATION TECHNOLOGY ............................................................................ 104 
APPENDIX C:  PRELIMINARY DRAFT COMPETENCIES – EXAMPLES .............................................. 105 

C.1: INITIAL CC2020 EXPLORATIONS OF COMPETENCIES ................................................................................ 105 
C.1.1: Drafting Competencies ......................................................................................................................... 105 
C.1.2: Strategy for Generating Competencies ................................................................................................ 105 

C.2: DRAFT COMPETENCIES BY DISCIPLINE ...................................................................................................... 106 
C.2.1:  Computer Engineering Draft Competencies ....................................................................................... 107 
C.2.2:  Computer Science Draft Competencies .............................................................................................. 111 
C.2.3:  Information Systems Draft Competencies .......................................................................................... 115 
C.2.4:  Information Technology Competencies .............................................................................................. 118 
C.2.5:  Software Engineering Draft Competencies ........................................................................................ 120 
C.2.6:  Master’s in Information Systems Draft Competencies ....................................................................... 123 

APPENDIX D:  COMPETENCY-BASED COMPUTING CURRICULA ..................................................... 124 
D.1:  COMPETENCY IN COMPUTING BACCALAUREATE EDUCATION ................................................................. 124 
D.2:  THE CC2020 DEFINITION OF COMPETENCY .............................................................................................. 125 
D.3:  THE ANATOMY OF COMPETENCY SPECIFICATION .................................................................................... 126 

D.3.1: The Competency Statement’s Role in a Competency Specification .................................................... 128 



Computing Curricula 2020   Computing Curricula Report  
CC2020   2020 December 31 

Page 10 of 203 

D.3.2: Knowledge, “Knowing What,” as a Component of Competency ........................................................ 129 
D.3.3:  Skills, “Knowing How,” as Components of Competency ................................................................... 133 
D.3.4:  Dispositions, “Knowing Why,” as a Component of Competency ....................................................... 134 

D.4:  STRUCTURING COMPETENCY STATEMENTS FOR COMPETENCY SPECIFICATION .................................... 135 
D.4.1:  Developing Competency Statements and Specifications .................................................................... 135 
D.4.2:  Elaborating Competency Statements .................................................................................................. 136 

D.5:  COMPETENCY IN COMPUTING EDUCATION ............................................................................................... 140 
D.6:  COMPETENCY IN FUTURE CURRICULAR GUIDELINES ............................................................................... 141 
D.7:  SUMMARY .................................................................................................................................................... 142 

APPENDIX E:  FROM COMPETENCIES TO CURRICULA ...................................................................... 143 
E.1:  COMPETENCY IN FUTURE CURRICULAR GUIDELINES ............................................................................... 143 

E.1.1:  Stakeholders ......................................................................................................................................... 143 
E.1.2:  Competency Targets ............................................................................................................................ 144 
E.1.3:  Outcome Expectations and Learning Specifications .......................................................................... 144 

E.2:  IDENTIFYING AND AUTHORING COMPETENCIES ........................................................................................ 145 
E.2.1:  Free-form Narratives vs. Semi-formal Specifications ........................................................................ 146 
E.2.2:  Eliciting competencies ......................................................................................................................... 147 
E.2.3:  Hierarchical Structure of Competencies ............................................................................................. 147 
E.2.4:  Deriving Semi-formal Specifications from Free-form Narratives ..................................................... 148 
E.2.5:  Authoring Free-form Narratives from Competency Components ..................................................... 148 

E.3:  USING COMPETENCY SPECIFICATIONS AS A FOUNDATION FOR CURRICULUM SPECIFICATIONS ............ 149 
E.3.1:  Existing Models ................................................................................................................................... 149 
E.3.2:  Building Curricular Guidelines by Based on Competency Specifications ......................................... 151 
E.3.3:  Building University-level Curricula Based on Competency Specifications ....................................... 151 
E.3.4:  Specifying Program Outcomes as Competencies from Pedagogical Requirements .......................... 152 

E.4:  COMPETENCIES AND STAKEHOLDER VALUE ............................................................................................. 152 
E.5:  ASSESSING COMPETENCIES ........................................................................................................................ 153 
E.6:  SUMMARY .................................................................................................................................................... 153 

APPENDIX F:  REPOSITORY DEVELOPMENT ........................................................................................ 154 
F.1:  REPOSITORY DEVELOPMENT ...................................................................................................................... 154 

APPENDIX G:  ADDITIONAL VISUALIZATIONS AND ANALYSES ....................................................... 156 
G.1:  USE CASE-BASED ANALYSIS ....................................................................................................................... 156 

G.1.1:  Case 1: Question from Prospective Student ....................................................................................... 156 
G.1.2:  Case 2: Question from Industry .......................................................................................................... 159 
G.1.3:  Case 3: Question from Teacher .......................................................................................................... 161 
G.1.4:  Case 4: Question from Educational Authority ................................................................................... 163 

G.2:  COMPARISON OF COMPETENCY SPECIFICATIONS ..................................................................................... 167 
G.3:  VARIOUS VISUALIZATIONS OF KNOWLEDGE ............................................................................................. 167 
G.4:  VISUALIZING FULL CURRICULA ................................................................................................................. 171 

APPENDIX H:  GLOSSARY AND NOMENCLATURE ............................................................................... 174 
H.1:  CC2020 REPORT DEFINITIONS ................................................................................................................... 174 
H.2:  DEFINITIONS/NOMENCLATURE ON A GLOBAL SCALE ............................................................................... 176 

APPENDIX I: SUSTAINABLE COMPUTING AND ENGINEERING COMPETENCE IN CHINA .......... 186 
I.1:  ADAPTABLE AND SUSTAINABLE COMPETENCIES ........................................................................................ 186 
I.2:  AGILE EDUCATION FOR SUSTAINABLE COMPETENCIES ............................................................................. 187 
I.3:  FACTORS AFFECTING AGILE COMPUTING AND ENGINEERING EDUCATION ............................................. 188 
I.4:  OPEN EDUCATION ECOSYSTEMS FOR AGILE EDUCATION .......................................................................... 189 
I.5:  SERVICE-ORIENTED COMPUTING EDUCATION ............................................................................................ 190 



Computing Curricula 2020   Computing Curricula Report  
CC2020   2020 December 31 

Page 11 of 203 

APPENDIX J:  CONTRIBUTORS AND REVIEWERS ................................................................................ 191 
REFERENCES ................................................................................................................................................ 196 

R1:  REFERENCES FOR REPORT .......................................................................................................................... 196 
R2:  ADDITIONAL REFERENCES NOT CITED ....................................................................................................... 201 

 
  



Computing Curricula 2020   Computing Curricula Report  
CC2020   2020 December 31 

Page 12 of 203 

 

Executive Summary 
 
 
The field of computing has dramatically influenced science, engineering, business, education, philanthropy, and many 
other areas of human endeavor. In today’s world, nearly everyone uses computers as part of everyday life. From 
smartphones and televisions to guidance systems, computing continues to be present in human life. This computing 
landscape offers students many challenging career opportunities. For those who are working in industry and 
government, computing is and will continue to be an essential component in shaping the future for humanity.  
 
The computing disciplines need to attract quality students from a broad and diverse cross-section of the public and 
prepare them to be capable and responsible professionals. Over decades, professional and scientific computing 
societies have taken leading roles in providing support for higher education in various ways, particularly in the 
formulation of curricular guidelines. The landmark report Computing Curricula 2005 (CC2005), also known as the 
Overview Report, consolidated undergraduate computing curricula as they existed in 2005. It contrasted published 
computing curricular guidelines for computer engineering, computer science, information systems, information 
technology, and software engineering.  It also illustrated the focus of these five curricula and provided tables to 
highlight the topic intensity and graduate profiles. CC2005 became a positive contribution to computing education.  
 
Since 2005, much has changed in the computing field and, simultaneously, in the computing education world. The 
computer engineering reports progressed from CE2004 to CE2016; computer science reports from CS2001 to CS2008 
to CS2013. Information systems progressed from IS2002 to IS2010 with a new report pending. The initial information 
technology report was in draft form in 2005, eventually to become IT2008, and then IT2017. The software engineering 
report SE2004 became SE2014. Additionally, the computing field saw an emergence of cybersecurity which led to 
the CSEC2017 report. A data science report is currently under development.  It became apparent that a need existed 
to create a contemporary new report called Computing Curricula 2020, known also as CC2020. 
  
For this purpose, a task force of fifty people from twenty countries, with a fifteen-member steering committee carrying 
the main operational responsibilities, has examined undergraduate curriculum guidelines, and has referred to the 
computing professions and other supporting information, as necessary. This report does not address graduate 
computing education or pre-baccalaureate education, although it occasionally mentions these areas.  
 
This CC2020 report encompasses most of the themes contained in its predecessor. However, the changing dynamics 
of computing, computing education research, and changes in the workplace have resulted in many new “add-ons” and 
features that did not appear in the earlier report. Some of these additions include the following. 

• Focusing on competency  
• Transitioning from knowledge-based learning to competency-based learning  
• Expanding curricular disciplines to include cybersecurity as well as data science 
• Expanding curricular and competency diagrams and visualizations 
• Establishing an interactive website that will bring CC2020 results to public use 
• Charting a framework for future computing curricular activities 

 
The CC2020 report covers undergraduate programs in computer engineering, computer science, cybersecurity, 
information systems, information technology, software engineering, and data science (under development.)  It also 
provides a brief history of the evolution of previous curricular reports. Four important guidelines were followed. 

1. The report must preserve and support the notion of computing in current and future decades world-wide. 
2. The report must capture future trends and visions from industry, research, and "grass-roots" developments. 
3. The report must be expansive and support existing, emerging, and future computing programs for its 

constituents.  
4. The report must be flexible to achieve global enduring acceptance and be adaptable within multiple 

educational contexts. 
 
The stakeholders or constituents of this report are prospective students and their parents, current students, industry 
and governmental officials, computing educators, and educational organizations and authorities.   Although computing 



Computing Curricula 2020   Computing Curricula Report  
CC2020   2020 December 31 

Page 13 of 203 

as a discipline has been around for more than eighty years, many population groups are still not clear about the subject 
area or what it means. The philosophy underpinning the CC2020 report is to treat computing as a meta-discipline—a 
collection of disciplines having a central focus of computing. 
 
When compared with CC2005, the CC2020 report moves from knowledge-based learning to competency-based 
learning. Competency requires demonstration of human behavior with knowledge and skills.  In general terms, one 
can think of competencies as the qualities an individual must possess to be effective in a job, role, function, task, or 
duty.   
 
There is a general agreement in educational circles that career success requires three things. 

• Knowledge—"know-what"—a proficiency in core concepts and content and the application of learning to 
new situations; 

• Skills—"know-how"—the ability to carry out tasks with determined results; and    
• Dispositions—"know-why"—intellectual, social, or moral tendencies. 

Hence, any definition of competency must connect the three dimensions within a context or task represented as: 
Competency = Knowledge + Skills + Dispositions. 

This report centers on competencies and develops a competency framework.  
 

An important aspect of this report is that it addresses the need for visualization tools.  For example, by utilizing the 
competency dimensions of knowledge, skills, and dispositions, it is possible to generate a visual diagram that shows 
the commonalities and the differences between two computing disciplines for prospective students.  These 
competency-based visuals as well as other visuals provide a rich set of perspectives on computing disciplines.  
 
The report also suggests directions for the future. It emphasizes the need for industry engagement to formulate 
workplace competencies and the need for professional advisory boards to become involved with the development of 
meaningful computing programs, for example, through internship programs.  
 
It is not the intent of this report to completely solve the nomenclature problem surrounding the computing field. For 
example, “information technology” as used in this report refers to a subset of the computing field; some areas of the 
world use this term to represent the entire computing field. This "Tower of Babel" challenge may never achieve a 
solution. However, stakeholders must be aware of the nuances and differences in the meaning of different 
terminologies used in different parts of the world.  Universal acceptance of global diversity and cultural sensitivity 
are essential in all fields, especially in the field of computing which is remarkably diverse itself. Degree structures are 
different in different countries and sometimes even in the same country. Generally, there exist two, three, and four-
year programs at the undergraduate level.  
 
This CC2020 report does not provide specific curricula for each computing discipline.  Instead, the report suggests 
and provides many opportunities. These include refreshing the paradigm of teaching and educating, moving from 
knowledge or outcomes to proficiencies, and engaging graduates to exploit the benefits of workplace competencies. 
These are described in the closing chapters of the report. 
 
The report is the result of an unprecedented cooperative effort among several computing organizations spanning 
twenty countries. As one of the volumes of the “Computing Curricula Series,” it provides introspection and analysis 
of six computing disciplines based on current curricular guidelines that are the product of many years of 
experimentation and refinement by industry leaders, computing educators, and faculty colleagues in other disciplines. 
The academia-employer partnerships that will follow in the wake of this report will help build even stronger computing 
programs for undergraduates worldwide.  
 
Finally, this report is more than an overview of curricular guidelines. The overriding goal is to provide a useful and 
dynamic pathway toward the 2030s.  The report also provides a perspective on the major computing disciplines as 
they currently exist and how they might exist in the future. It will help guide students, industry, and academia in the 
preparation of capable computing graduates for the future.  CC2020 will help shape the future of computing education. 
 

¾ CC2020 Task Force 
 
  



Computing Curricula 2020   Computing Curricula Report  
CC2020   2020 December 31 

Page 14 of 203 

 

Chapter 1:  Introducing CC2020  
 
The Computing Curriculum 2020 (CC2020) project is an initiative launched jointly by several professional computing 
societies to summarize and synthesize the current state of curricular guidelines for academic programs that grant 
baccalaureate-level degrees in computing as well as propose a vision for future curricular guidelines. This project aims 
not only to reflect the state-of-the-art in computing education and practice, but also to provide insights into the future 
of the field of computing education for the 2020s and beyond. The participating societies engaged a task force of 
individuals representing organizations from academia, industry, and government. The principal organizations involved 
are the Association for Computing Machinery (ACM) and the IEEE Computer Society (IEEE-CS). Other 
organizations include the Association for Information Systems (AIS) and the Education Special Interest Group of 
Information Systems and Computing Academic Professionals (EDSIG/ISCAP), and the ACM Special Interest Group 
for Computer Human Interaction (SIGCHI). Project collaborators include: Information Processing Society of Japan 
(IPSJ), the Chinese Computing Federation (CCF), the Latin American Center on Computing (CLEI), ACM India, 
Informatics for All, and Informatics Europe. The results from this initiative provide a durable portfolio of resources 
useful to students, industry, government agencies, educational institutions, and the public on a global scale. This report 
is one key element of this portfolio. 
 
 
 
1.1:  CC2020 Expectations 
 
The Computing Curricula 2005 Overview report CC2005 [Acm02] was an inaugural effort of several computing 
organizations to provide a perspective on several computing disciplines for which baccalaureate curricula existed. 
Much in the computing world has changed over fifteen years. Geography and varied conceptions of computing as 
disciplines, professions, and cultures have influenced the context of degree-granting computing programs. The 
CC2020 project considers regions of the world by involving organizational representatives from a variety of countries 
to be part of the project. While currently published curricular guidelines (i.e., computer engineering, computer science, 
cybersecurity, information systems, information technology, software engineering) and the currently emerging 
curricular models (i.e., data science) comprise CC2020’s central domain of interest, the CC2020 deliverables are 
intended to inform the process of rethinking existing or shaping new computing degree programs and disciplines. 
 
 
1.1.1:  Project Purpose, Vision and Mission  
 
The following statement reflects the purpose of this CC2020 project.  

The purpose of the CC2020 project, as a modern extension of the CC2005 report, is to 



Computing Curricula 2020   Computing Curricula Report  
CC2020   2020 December 31 

Page 15 of 203 

The CC2020 Task Force vision is that: 
The CC2020 report shall become a sought-after and durable set of guidelines for use by 
(prospective) students, industry, governments and educational institutions worldwide to 
assist them to gain insight on the expectations of computing baccalaureate-degree 
graduates for the next decade. 

 
Likewise, knowledge alone is not sufficient for an individual to be productive in the changing world of computing. 
Graduates of computing programs will require technical skills and dispositions that are integrated with knowledge to 
achieve the professional expectations of a modern workplace. Therefore:  

The mission of the CC2020 project and this report is to produce a globally accepted 
framework for specifying and comparing computing baccalaureate degree programs that 
meet the growing demands of a changing technological world and is useful for students, 
industry, and academia.  

 
 
1.1.2:  Project Strategies 
 
The CC2020 Task Force established a set of goals to achieve the project’s vision and mission. These steps formed a 
pathway toward completion of the CC2020 Report.  

1. Develop a project plan with achievable milestones to complete ongoing projects on time.  
2. Develop a robust report that reflects the project’s vision and mission. 
3. Garner feedback from constituents for the development of this report. 
4. Disseminate the CC2020 Report worldwide.  
5. Evaluate the efficacy of the CC2020 Report. 

 
Underlying these steps was the effort to extend the earlier overview report so it incorporates the developments of the 
past fifteen years as well as the advancements forecast in the next decade. Computing technologies have developed 
and continue to develop rapidly over time in ways that have had a profound effect on graduate expectations, curriculum 
design, and learning.  
 
The CC2020 Report proposes a performance-centered framework expressing what graduates of baccalaureate 
computing programs should be able to learn and deliver with what they know. This Report articulates computing 
competencies to enable faculty members to implement baccalaureate degree programs that focus on what students 
should be able to accomplish rather than what instructors should teach. The Report draws on learning sciences and 
educational research and practices to advance the case for learning and curriculum development. 
 
 
1.1.3:  Project Diversity 
 
The CC2020 Report promotes sound principles regarding the ways in which computing permeates society on a global 
scale. Notwithstanding, it is not possible to cover all modes of thinking and all ways of learning. For example, a 
comprehensive analysis of experiential learning is beyond the scope of this report. Individual institutions and their 
faculties should use innovative strategies to engage students in the learning process.  
 
There are many pedagogical challenges and opportunities involving the computing field. Although this Report 
addresses the need for accessibility for all people, it does not discuss how this might be achieved. The members of the 
Task Force believe such attention should take place at the institutional level as well as through ongoing research by 
scholars and practitioners.  
 
One underlying theme of the Report is the development of computing talent from all sectors and groups in our society. 
A lack of diversity limits creativity and productivity. It excludes many potentially qualified individuals and can be a 
significant concern for many employers. For example, the underrepresentation of women in computing in some 
countries has received much attention [Reg1]. This Report recognizes the importance of diversity and recommends 
that academic computing departments promote best practices to attract and retain greater student diversity.  
 



Computing Curricula 2020   Computing Curricula Report  
CC2020   2020 December 31 

Page 16 of 203 

The development of the CC2020 Report placed inclusion at the core of its activities from the very first step of forming 
its membership. The Task Force has a diverse composition by gender, type of work, affiliation, geography, and global 
professional presence. Some statistics for the task force follow. 
 

Number of Task Force members: 50 
Number of continents represented: 6 
Number of countries represented: 20 
Number of women: 21; men: 29 
 

Task force co-chairs: 1 woman; 1 man 
Steering committee: 5 women, 10 men 
Number of international professional societies represented: 11 
Number of industry-government members: 7  
Number of academic members: 43  

 
The members of the Task Force are aware that they cannot satisfy the desires of all people. They made every effort to 
position this Report within the broader computing landscape. As a global document, this Report provides guidelines 
for diverse communities and is not prescriptive in its recommendations.  
 
 
 
1.2:  Project Stakeholders  
 
The development of the CC2020 Report identified five groups of stakeholders, the members of which may benefit 
from the competency-based approach to computing education that is described in this report. The project stakeholders 
include: (a) prospective students and their parents or guardians, (b) current students, (c) industry, (d) educators, and 
(e) educational organizations and authorities. The members of the Task Force believe that all stakeholders will benefit 
from the outcomes of this CC2020 project. 
 
 
1.2.1:  Prospective Students and their Guardians  
 
When prospective students, supported by their parents or guardians, are considering studying computing at a 
university, they need to understand differences in computing programs when making their choice. This report and the 
project’s website will enable them to compare programs so that they can evaluate the extent to which a program aligns 
with their expectations of a job or a career path. Students may understand that they want to study computing, but very 
few will likely understand that there are many disciplines and what the differences are between them. A typical 
question posed by a prospective student might be: 

I am considering a computing degree that fits my preferences. Among the candidate schools, there are several 
computing programs available. Are graduates of these programs expected to work primarily as individuals 
(e.g., doing coding) or also work with other people? 

 
 
1.2.2:  Current Students  
 
Current students enrolled at an institution of higher learning could face a choice of courses from their own institution 
or another institution. This stakeholder category could also apply to students in another discipline who are considering 
a hybrid curriculum that includes computing components such as a minor in a computing discipline. A typical question 
posed by a current student might be: 

Which areas of study does the information systems curriculum of my university emphasize more (with more 
detailed coverage or longer duration) than the current information systems curriculum guidelines? 

 
1.2.3:  Industry 
 
Industry refers to entities that (1) are hiring graduates, (2) are collaborating with universities to choose or specialize 
a curriculum or need a special course, or (3) are collaborating in a curriculum by providing internships.  For 
representatives of industry (such as hiring managers), the most important question relates to the preparation of the 
graduates of a program compared to the expectations of a specific employer. More importantly, industry employers 
and recruiters need to understand what incoming employees have learned. For example, employers who are looking 
for software developers would likely prefer to hire individuals who have engaged in deep studies of topics usually 
found in software engineering or computer science programs. On the other hand, if the employers are looking for 



Computing Curricula 2020   Computing Curricula Report  
CC2020   2020 December 31 

Page 17 of 203 

individuals who have studied organizational issues and acquired a solid foundation in computing, then they would 
prefer graduates from an information systems curriculum. A relevant question that industry stakeholders would like 
answered could be: 

Our industry requires our employees to have specific knowledge at relevant knowledge levels and several key 
dispositions. Are there outcomes of a course in curriculum XYZ that are appropriate for the continued 
professional education for our employees? 

 
 
1.2.4:  Computing Educators and Curriculum Developers 
 
Computing educators are faculty members or teachers of a computing academic unit within a school or university, 
and curriculum developers who are responsible for designing and implementing educational experiences related to a 
computing discipline. This includes academic administrators (for example, deans and department chairs.)  These 
computing educators should understand how their current curriculum, or a prospective curriculum, fits within accepted 
curricular recommendations. It would be useful if they were able to compare their curriculum to professional curricula 
guidelines to help them understand what may be missing. They might ask this question. 

What knowledge areas are applicable for my course? Could I adopt an existing course from elsewhere to fill 
a gap or provide an alternative in my curriculum? 

 
 
1.2.5:  Professional Associations, Educational Organizations, and Authorities  
 
Educational organizations or authorities are entities that have some authority over university education. Similar 
stakeholders might include professional organizations or societies, national or regional ministries of education that 
govern and finance universities, and national or international bodies that rate, assess, or accredit university 
education, or define qualifications for certification. The following shows a typical question that educational 
authorities may like answered.  

Could we accept students from a specified curriculum X to complete curriculum Y? 
 
 
 
1.3:  Project Background 
 
Computing curriculum guidelines have been of interest to colleges and universities and their faculty members for more 
than six decades. The following is a summary of the project background. 
 
 
1.3.1:  Brief History 
 
In the 1980s, the ACM and the Computer Society of the Institute for Electrical and Electronics Engineers (IEEE-CS) 
established a joint committee to update Curriculum’78. The committee’s goal was to develop more modern computing 
curricula (CC) guidelines for baccalaureate, undergraduate degree programs in computing. The committee’s effort 
created Computing Curricula 1991 [Tuc1], also called CC1991 or CC’91. That report, which many educators 
interpreted as computer science, received only moderate acceptance because by the early 1990s different computing 
disciplines were maturing (e.g., information systems) or emerging (e.g., computer engineering, information 
technology, software engineering). However, the efforts of the CC’91 committee resulted in a series of comprehensive 
reports that reflected not only maturing but also emerging computing disciplines. Many of these documents are 
available on the ACM website [Acm01]. Additionally, Europe also formulated computing definitions through the 
European Higher Education Area (EHEA) [Eur2]. 
 
In the late 1990s, ACM and IEEE-CS cooperated to generate the CC2001 report [Acm01] that represented some major 
advances. This report called for the creation of an overview document; it also called for each of the major computing 
disciplines recognized at the time to develop its own curricular report. The major areas at the time included computer 
engineering, computer science, information systems, information technology, and software engineering, although 
information systems had published its own discipline reports for two decades. The CC2001 report recognized the 
growing and dynamic nature of computing. The number of computing-related disciplines was increasing; hence, work 



Computing Curricula 2020   Computing Curricula Report  
CC2020   2020 December 31 

Page 18 of 203 

in curricular development was to embrace new computing disciplines as they emerge. The tenets established within 
the CC2001 report eventually produced the broadly influential CC2005 overview report [Acm02] that was co-
sponsored by the ACM, the Association for Information Systems (AIS), and IEEE-CS.  
 
This CC2005 report received worldwide acclaim by contrasting the differences and the commonalities of diverse 
computing discipline areas. It was an inaugural effort of several computing organizations to provide perspective on 
several computing disciplines for which baccalaureate curricula existed. It also described “how the respective 
computing undergraduate degree programs compare and complement each other.” [Acm02 p1] Chapter 3 in the 
CC2020 Report reviews the CC2005 report in greater depth. 
 
Since the publication of  CC2005, much has changed. Each of the curricula described in 2005 has been updated, in 
some cases multiple times. New areas of the computing field have gained prominence to warrant production of their 
own curriculum guidelines. The global and interdisciplinary nature of computing has become even more evident today 
[Sim1]. The 2005 document was by its own admission, “North-American-centric,” and it mentioned the need for 
future such documents to be more international in scope. The CC2020 project fulfills that promise.  
 
 
1.3.2:  Project Organization and Structure 
 
In 2015, the Association for Computing Machinery (ACM) began to explore avenues through which to update the 
overview report. In 2016, the ACM decided to proceed with CC2020. It established an exploratory committee to 
ascertain the need for a new report. Initially, ACM and IEEE-CS became the principal sponsors of the CC2020 project. 
Other professional organizations joined in the effort with additional sponsorship. These included the ACM China, the 
Association for Information Systems (AIS), the Education Special Interest Group of Information Systems and 
Computing Academic Professionals (EDSIG/ISCAP), and the Special Interest Group on Computer Human Interaction 
(SIGCHI). Project collaborators included ACM 
India, the Chinese Computing Federation (CCF), 
GRIN (Italian Association of Computer Scientists), 
Informatics for All (I4All), Informatics Europe, the 
Information Processing Society of Japan (IPSJ), and 
the Latin American Center for Computer Studies 
(CLEI).  
 
The ACM and IEEE Computer Society initially 
appointed two respective CC2020 project co-chairs.  
In 2017, each co-chair then recruited representative 
members of the sponsoring organizations to serve on 
the CC2020 steering committee. The steering 
committee was expanded into a task force of fifty 
volunteers who joined the effort to work on the 
project and produce this report. Figure 1.1 illustrates 
the current structure of the CC2020 project.  The 
responsibility of the steering committee has been to define the directions and content of this project, incorporating 
input from all members of the task force and the extended 



Computing Curricula 2020   Computing Curricula Report  
CC2020   2020 December 31 

Page 19 of 203 

disciplines currently identified by curricular documents, but also acknowledges that the boundaries of computing 
disciplines have expanded and will continue to expand greatly.  
 
 
1.4.1:  Current Discipline Structure 
 
The baccalaureate disciplines for which computing curricula exist or are in the development process at the time of this 
writing are as follows.  

 Computer engineering (CE) 
Computer science (CS) 
Cybersecurity (CSEC) 
 

Information systems (IS) 
Information technology (IT) 
Software engineering (SE)  
Data science (DS) 1 

 
Each of these disciplines has a recent volume (or will soon complete a volume) sponsored by ACM and IEEE-CS for 
undergraduate curriculum guidelines that one or more international professional and scientific societies have endorsed 
and published. These disciplines have affected a large majority of undergraduate students worldwide who are majoring 
in computing. 
 
One would expect that groups from other disciplines in computing might undertake the effort to create and maintain 
international undergraduate curricular guidelines. In such cases, those guidelines will become part of future editions 
of this report.  
 
 
1.4.2:  Timeline of Curricular Guidelines 
 
The foundation for the CC2020 Report is the set of curriculum standards that currently exist for undergraduate degree 
programs in major computing-related fields. The diagram in Figure 1.2 illustrates what has become the “computing 
curricula series,” and the top-level overview block, CC2020, represents this Report. For the six-existing discipline-
specific curricula volumes, each one represents the best judgment of the volunteers representing relevant professional, 
scientific, and educational associations. Each report serves as a definition of what these degree programs should be 
and accomplish. 
 

 
Figure 1.2 Structure of the Computing Curricula Series  

 
 

1 Under development with support from ACM. 

IS 
2010 

  
Information 

Systems 
Curricular 
Volume 

CS 
2013 

  
Computer 

Science 
Curricular 
Volume 

SE 
2014 

  
Software 

Engineering 
Curricular 
Volume 

CE 
2016 

  
Computer 

Engineering 
Curricular 
Volume 

IT 
2017 

  
Information 
Technology 
Curricular 
Volume 

CSEC 
2017 

  
Cyber- 

security 
Curricular 
Volume 

DS 
202x 

  
Data 

Science 
Curricular 
Volume 

New 
Areas 

  
Future 

Disciplines 
Curricular 
Volumes 

CC2020 
 

Paradigms for 
Global 

Computing 
Education 



Computing Curricula 2020   Computing Curricula Report  
CC2020   2020 December 31 

Page 20 of 203 

 
The CC2020 Report encompasses recent and ongoing curricula guideline efforts including the following.   

• Information Systems 2010 (IS2010) 
• Computer Science Curricula 2013 (CS2013) 
• Software Engineering Curricula 2014 (SE2014) 
• Computer Engineering Curricula 2016 (CE2016) 
• Information Technology Curricula 2017 (IT2017) 
• Cybersecurity Curricula 2017 (CSEC2017) 
• Data Science Curricula (under development) 202x (DS202x) 
• Other emerging disciplines 

 
The data science curricular guideline report addressing the computing components useful for data engineering, big 
data, and data analytics is currently under development. Other recent publications that have had some influence in this 
area include the EDISON Data Science Framework [Edi1] and Envisioning the Data Science Discipline: The 
Undergraduate Perspective: Interim Report by the National Academies Press [Nas1].  
 
Professional organizations should view the computing curricular reports mentioned above as suggested guidelines 
instead of strict prescriptions. Curriculum developers have had and still have the freedom to act independently for 
their constituencies. The anticipation is that undergraduate baccalaureate degree programs will greatly exceed the 
minimal recommendations suggested in these and subsequent curricular reports. 
 
While some of the mentioned reports are undergoing revision at the time of this writing (e.g., IS2010), the task force 
has made no effort to update their contents as that endeavor is beyond the mission and authority of this project. Rather, 
the CC2020 Task Force took current curricula volumes, compared their contents, and synthesized what it believes to 
be essential descriptive and comparative information. The current curricular volumes contain much detailed 
information not included here. Readers who want detailed information about any of the disciplines covered in this 
report should consult the original sources found on the ACM website [Acm01]. 
 
In addition to using these reports, the Task Force referred to the computing professions and other supporting 
information as necessary in preparing the CC2020 Report. The Report did not focus on other types of undergraduate 
computing degree programs, on graduate education in computing, or on the identities of the computing research 
communities. Additionally, 



Computing Curricula 2020   Computing Curricula Report  
CC2020   2020 December 31 

Page 21 of 203 

terminologies such as “informatics” or “information and communication technology (ICT)” with a similar 
meaning as the word computing to represent a field. This report assimilates these similarities and differences. 
  
2. It must capture future trends and visions from industry, from research, and from across the entire spectrum of 
society.  



Computing Curricula 2020   Computing Curricula Report  
CC2020   2020 December 31 

Page 22 of 203 

 
 

Figure 1.3. Landing page (partial) of the CC2020 website at https://www.cc2020.net/  
 
 
Appendix A shows an example of a poster that displayed the use of the CC2005 report for a broader audience. 
Appendix B presents several computing skill frameworks. Appendix C illustrates examples of competencies for 
various computing curricula. Appendix D explores the nature of competency-based computing curricula. Appendix E 
addresses the use of competencies for specification of degree programs in computing. Appendix F addresses a strategy 
for the development of a visualization repository. Appendix G contains a large set of visualization examples. 
Appendix H provides a glossary of terms as well as a crosscutting nomenclature as used in different parts of the world. 
Appendix I summarizes the Chinese “Blue Book” project surrounding agile competencies. Appendix J recognizes 
contributors to the CC2020 project as well as reviewer contributions.  
 
The CC2020 Task Force anticipates that this report will help students decide on a computing path of study, industry 
representatives to improve their understanding of the profiles of graduating students, and educators to create effective 
curricula or improve the curricula they already have. This CC2020 Report, with its recommendations and illustrations, 
should be a guiding light for computing education worldwide. Its intent is to help those who enable students to develop 
computing competencies so that the students can achieve professional success in their future careers.  
 
 
 
1.7:  Digest of Chapter 1 
 
Chapter 1 reviewed the vision, mission, purpose, and development of the CC2020 Report.  It described the project 
strategies and project stakeholders and how they will benefit from this report.  It also reviewed the background 
associated with the CC2020 Report and the guiding principles for the development of the Report. Finally, the chapter 
previewed the structure of the Report.  
  



Computing Curricula 2020   Computing Curricula Report  
CC2020   2020 December 31 

Page 23 of 203 

 

Chapter 2:  Evolution of Computing Education  
 
This chapter discusses some of the background related to the CC2020 Report as well as the meaning and landscape of 
computing. It describes seven of the curricular reports either published or under development by ACM and IEEE-CS.  
It also addresses extensions of computing disciplines such as emerging curricula, Computing + X, and X + Computing 
scenarios, as well as other curricular reports. The content of this chapter is primarily expressed from an academic 
perspective. Industry perspectives are covered starting in Chapter 4. 
 
 
 
2.1:  What is Computing? 
 
In this report, the word computing refers to a goal-oriented activity requiring, benefiting from, or associated with the 
creation and use of computers. As originally expressed in CC2005 [Acm02], computing includes a variety of 
interpretations such as designing and constructing hardware and software systems for a wide range of purposes: 
processing, structuring, and managing various kinds of information; problem solving by finding solutions to problems 
or by proving a solution does not exist; making computer systems behave intelligently; creating and using 
communications and entertainment media; and finding and gathering information relevant to any particular purpose.  
 
 
2.1.1:  Early Meanings 
 
Early on, computing had a somewhat singular meaning. In its short history, various shades of interpretation have 
evolved with varying specializations. For example, a person with a background in information systems will view 
computing somewhat differently from a computer engineer’s view. The emergence of new information technology 
industries, the increased reliance on computation in all parts of society, and the shifts in the demand for computing 
throughout a worldwide economy reflect changes in the field and its broad applications [Nrc1]. Because society needs 
people to do computing well, it is important to understand that computing is not only a profession but also a collection 
of disciplines [Acm02]. 
 
Computing is not just a single area of study, but rather a family of study areas. During the 1990s, important changes 
in computing, communications technology, and their societal effects led to important changes in this family of 
disciplines. Those changes included the following. 

• Computer engineering emerging from electrical engineering 
• Computer science evolving into a more mature academic discipline 
• Information systems expanding as computers became the foundation for organizational processes and work 

environments 
• Information technology emerging as a new discipline that fosters building and maintenance of computing 

infrastructures  
• Software engineering emerging as a discipline based on computer science and computer engineering 

After the 1990s, computing programs around the world saw a maturation. They continued to evolve, thereby creating 
a greater range of study opportunities for students and educational institutions [Acm02]. Additionally, there were 
many jobs available focused on software use rather than design and development that accelerated that maturation.  
 
 
2.1.2:  Recent Undertakings 
 
Advances in worldwide curricula development have expanded the scope of the traditional computing disciplines: 
computer engineering, computer science, information systems, information technology, and software engineering. 
New curricular efforts have led to significant developments in cybersecurity, data science, and other emerging areas 
of study. While these efforts are generally acknowledged to be within the frontiers of computing education, what lies 
at the core of computing and how this core supports future expansions in computing education is less clear.  
 



Computing Curricula 2020   Computing Curricula Report  
CC2020   2020 December 31 

Page 24 of 203 

Section 2.3 of this report describes recent updates to curricular development in the traditional computing areas of 
study as described above. Additionally, it addresses a recent curricular report in cybersecurity published in 2017. It 
also previews an emerging ACM effort in data science. The study of artificial intelligence, an area of renewed interest, 
is not included in this report because an ACM/IEEE-CS sponsored curricular guideline does not currently exist.  
 
In 2018, the National Academies of Sciences, Engineering, and Medicine in the United States described the changing 
landscape of computing as follows [Nas2]. 

    Two areas have been central in the last decade: the continued and increased need for information security, and data as a 
resource and driver for decision making. The protection of digital information and data; the protection of software and 
hardware systems and networks from unauthorized access, change, and destruction; and the education of users to follow best 
security practices are crucial to every organization. We rely upon a connected, networked, and complex cyberspace with 
vulnerabilities that is almost continuously under attack. … 
    During the last decade, computing has taken a new, more empirically driven path with the maturing of machine learning, 
the emergence of data science, and the “big data” revolution. Data science combines computing and statistical methods to 
identify trends in existing data and generate new knowledge, with significant applications throughout all sectors of the 
economy, including marketing, retail, finance, business, health care and medicine, agriculture, smart cities, and more. … 
    Software tools and systems for animation, visualization, virtual reality, and conceptualization have emerged as a medium 
for the arts (digital media and multimedia practices) and are driving advances in the entertainment industry (computer-
generated graphics in films and video games, and digital methods in music recording), as well as training and education using 
virtual environments. 
    Computing has become more pervasive among a host of academic disciplines, beyond just the practical use of ubiquitous 
software tools. New algorithmic approaches and discoveries are helping to drive advances across a range of fields, leading 
to new collaborations and an increased demand for deeper knowledge of computing among academics and researchers, 
challenging conventional disciplinary boundaries.  

It is expected that this National Academies report will generate a profound influence on the global development of 
data engineering and data science as well as computer security.  
 
 
 
2.2:  Landscape of Computing Disciplines 
 
This section of the report provides both historical and contemporary perspectives on the evolution of computing. The 
section places computing in context as viewed by professionals in computing.  
 
 
2.2.1:  Early Developments 
 
At the earliest stages of the development of computing, education and training for computing jobs were strongly 
associated with research and development of computing technologies as manifested by the manufacturers of the 
artifacts that industry produced. Relatively soon, however, universities started to offer courses associated with 
computing. By the end of the 1950s, about 150 universities and colleges in the United States offered courses in 
computing in a broad range of topics ranging from “logical design of computers” through “programming of digital 
computers” as well as from “information storage and retrieval” to “business and industrial analysis” [Fei1,Ted1]. Fein 
also provides an insightful discussion that explores the concept of a “computer sciences” discipline and suggests that 
one such area of study is likely to emerge. Fein [Fei1] continues:  

Most aspects of computers, data processing and the related fields discussed in this study now meet (the specifications of a 
discipline articulated in the paper) or may be meeting them in the next ten years. 

 
Fein also clearly defined computing as a field of study that consists of multiple disciplines, proposing five different 
departments: computer, operations research, information and communication, systems, and philosophy of 
organization. A modern interpretation would roughly correspond to current disciplines such as computer 
science/computer engineering, operations research/management science, information science, information systems, 
and computing ethics. It is interesting to see how the breadth of the field links computing as an academic discipline to 
the practical applications and contexts [Fei1].  
 
In the 1960s, three major streams of academic computing program types emerged: computer science, computer 
engineering, and information systems. These three had clearly different perspectives: computer science was a highly 



Computing Curricula 2020   Computing Curricula Report  
CC2020   2020 December 31 

Page 25 of 203 

theoretical study of “information structures and processes and how those structures and processes can be implemented 
on a digital computer” [Ted1 p45]; computer engineering was an offshoot of electrical engineering that focused on 
applying established engineering practices and processes to the design and construction of computing hardware; and 
(management) information systems focused on the practical use of computing in organizations (mostly businesses). 
Both computer science and information systems had ACM-sponsored curriculum recommendation projects, leading 
ultimately to Curriculum 68 [Acm13] for computer science and IS curricula for graduate (1972) [Acm14] and 
undergraduate (1973) [Acm15] programs. 
 
In 1989, a Task Force on the Core of Computer Science characterized the discipline of computing as a combination 
of three separate but tightly intertwined aspects: theory, abstraction (modeling), and design [Den1]. Those aspects 
relied on three different intellectual traditions (the task force called them paradigms): the mathematical (or analytical, 
theoretical, or formalist) tradition; the scientific (or empirical) tradition; and the engineering (or technological) 
tradition [Ted2 p153]. 
 
 
2.2.2:  Contemporary Advances 
 
In the 1970s, 1980s, and 1990s, relatively little changed structurally in computing education—computer engineering, 
computer science, and information systems all evolved but continued to have separate identities that made it relatively 
easy for prospective students to choose between different options. However, in the early 2000s, the landscape of 
computing education started to change significantly. Software engineering emerged as its own discipline with a 
curriculum recommendation after decades of organizational practice and research. Programs in information 
technology started to fill the need for graduates with an applied focus on developing and maintaining computing 
infrastructure and supporting users. At the same time, the five established computing disciplines (CE, CS, IS, IT, and 
SE) strengthened their collaboration which allowed computing to gain a stronger integrated identity. One of the 
achievements of CC2005 was the formation of an integrated 
computing discipline which was the result of the analysis, 
documentation, and clarification of the relationships between 
the five subdisciplines. The document illustrated the general 
characteristics of computing education with Figure 2.1 which 
summarizes the development of the field during the 
transformation that took place starting in the 1990s. 
 
In the 2010s, two new areas emerged as new disciplines in 
the broader computing space: cybersecurity and data science. 
In 2017, a curriculum recommendation and accreditation 
criteria for cybersecurity emerged. Data science, however, 
often has different instantiations and possible directions 
depending on the disciplinary background of those engaging 
in a discussion [Cas1].  
 
As Figure 2.1 suggests (based on academic curricular reports), hardware and software occur in different forms. 
Computing hardware is primarily the domain of computer engineering, often with close links to electrical engineering. 
The disciplines with the strongest focus on software development are computer science and software engineering. 
Computer science is the foundational discipline with an emphasis on discovery related to programming, algorithms, 
and data structures, whereas software engineering addresses more applied concerns regarding the processes and 
actions needed for designing reliable, secure, and high-quality software systems. Information technology and 
information systems focus on organizational needs and uses for computing from infrastructural and 
information/organizational process perspectives, respectively.  
 
 
 

 

 
Figure 2.1 Computing disciplines compared,  

from CC2005 
 



Computing Curricula 2020   Computing Curricula Report  
CC2020   2020 December 31 

Page 26 of 203 

2.3:  Status of Computing Discipline Reports 
 
This section briefly characterizes seven computing disciplines for which the ACM and IEEE-CS together with AIS 
have been developing as undergraduate curriculum recommendations over the past decade. The seven areas include 
computer engineering, computer science, cybersecurity, information systems, information technology, software 
engineering, and data science (in progress.) This section describes the disciplines with a focus on their educational 
programs. 
 
 
2.3.1:  Computer Engineering 
 
Computer engineering (CE) brings together computing and electrical engineering in a way that embodies the science 
and technology of design, construction, implementation, and maintenance of software and hardware components of 
modern computing systems, computer-controlled equipment, and networks of intelligent devices. CE is the computing 
discipline that explicitly focuses on the development of hardware and software interface as a hardware embedded 
element of a computing system. The Computer Engineering Curricula 2016 Report, known also as CE2016, represents 
curriculum guidelines for undergraduate degree programs in computer engineering [Acm06]. The goals of the effort 
include incorporating past and future development needs, supporting professionals responsible for teaching a range of 
degree programs in computer engineering worldwide.  
 
The capabilities of CE graduates integrate aptitudes of electrical engineering, software engineering, and computer 
science with a heavy emphasis on mathematics required as a foundation. CE2016 is noticeably clear about the fact 
that graduates from CE programs should have the ability to design computers, design computer-based systems, and 
design networks with additional specifications that design needs to exceed simple configuration and assembly. CE is 
specifically an engineering discipline where graduates must have a breadth of knowledge in mathematics and 
engineering sciences with a preparation for professional practice or graduate work in engineering. Many countries 
provide CE graduates the opportunity to become licensed professional engineers according to local governmental 
rules.  
 
The computer engineering discipline enables graduates to analyze and design circuits, manage the design of computer 
hardware components, and develop networking hardware solutions. For students interested in gaining experiences in 
integrating computing capabilities directly with computing hardware, computer engineering could be an appropriate 
degree program choice. Computer engineering also provides an excellent preparation for the design and development 
of modern technologies that tightly integrate the physical world with the world of the artificial.  
 
 
2.3.2:  Computer Science 
 
The Computer Science Curricula 2013 project had two directives in developing its subsequent report, known as 
CS2013 [Acm04]. They included (1) a review of Computing Curriculum 2001 and CS2008, and (2) seeking input 
from diverse audiences to broaden participation in computer science (CS). CS2013 also had several high-level themes 
that provided overarching guidance for the development of its report. These include embracing an outward-looking 
view of the discipline, size management of the curriculum, providing actual exemplars to identify and describe existing 
successful courses and curricula, and being responsive to institutional needs, goals, and resource constraints. 
 
Because of its theoretical foundations, computer science is often viewed as a fundamental discipline. It is, however, 
at times erroneously equated with all of computing. This misconception is understandable given that the theoretical 
roots of computer science have emerged separately from the engineering tradition of computing’s earliest days [Ted1 
p3.2]. While the physical sciences are fundamental and offer theoretical basis to engineering fields, none subsumes 
the other and each has a well understood distinct identity. Similarly, this Report and its predecessors have successfully 
established independent identities relative to computer science. 
 
CS continues to have a more theoretical focus 



Computing Curricula 2020   Computing Curricula Report  
CC2020   2020 December 31 

Page 27 of 203 

abstraction, complexity, and evolutionary change as recurring themes in computer science, while sharing common 
resource, security, and concurrency as general principles. These principles are strongly linked to proficiency in 
programming and software development which are especially important in most CS programs. CS2013 allocates about 
40% of its core hours to algorithms and complexity, programming languages, software development fundamentals, 
and software engineering. 
 
 
2.3.3:  Cybersecurity 
 
Cybersecurity (CSEC) is a highly interdisciplinary field of study. Specific degree programs are often associated 
conceptually and practically with one of the established disciplines in a way that has a significant effect on the 
fundamental identity of the program. The Cybersecurity Curricula 2017 report [Acm08], known also as CSEC2017, 
became public in 2017. The report recommends security in eight areas to include data, software, component, 
connection, system, human, organizational, and societal. The CSEC2017 mission was to develop comprehensive and 
flexible curricular guidance in cybersecurity education that would support future program development and to produce 
a curricular volume that structures the cybersecurity discipline and provides guidance to institutions seeking to develop 
or modify a broad range of programs. 
 
The report explicitly states that there is a broad spectrum of cybersecurity jobs from technical (e.g., cryptography, 
network defense) to managerial (e.g., policy and regulatory compliance) positions. At the same time, it also recognizes 
that every graduate of a cybersecurity program requires both technical skills and business acumen, essentially a 
managerial understanding of the organizational actions needed to ensure system-level security. A degree in 
cybersecurity prepares graduates for a broad range of application areas, including public policy, procurement, 
operations management, risk management, research, software development, IT security operations, and enterprise 
architecture. 
 
The need for the specialized abilities that cybersecurity graduates have occurs almost daily. Continuous challenges of 
various types face organizations around the world who must secure data regarding their customers. Solutions that 
secure organizational data are multidimensional ranging from highly technical to organizational policies and societal 
legal and regulatory responses, creating a significant need for professionals with a broad range of specialized security 
expertise combined with the generic individual foundational abilities (such as problem solving, critical thinking, oral 
and written communication, teamwork, negotiation) that all computing professionals need. 
 
Activities related to cybersecurity education have existed for some time.  For example, in the United States, the 
National Security Agency Center of Academic Excellence program has been active for fifteen years [Nsa1], academic 
conferences associated with cybersecurity and education have been held for at least a decade, and accreditation bodies 
such as ABET [Abe1] have recently established cybersecurity accreditation criteria.   
 
 
2.3.4:  Information Systems 
 
As the name suggests, the discipline of information systems (IS) focuses on information (i.e., data in a specific context) 
together with information capturing, storage, processing and analysis/interpretation in ways that supports decision 
making. The IS field also deals with building information processing into organizational procedures and systems that 
enable processes as permanent, ongoing capabilities. The discipline emphasizes the importance of building systems 
solutions, preferably so that they can be continuously improved. At the same time, IS recognizes that in terms of many 
of the technical computing knowledge areas and skills, it relies on knowledge developed by other computing 
disciplines. 
 
The Curriculum Guidelines for Undergraduate Degree Programs in Information Systems 2010 report is also known 
as IS2010 [Acm03].  The IS discipline is also preparing new curriculum guidelines (IS2020) to be available in 2021.  
The new IS report will emphasize that information systems as a discipline can make significant contributions to several 
domains, including business, and that its core areas of expertise are highly valuable or essential for the best practices 
within these domains. The IS discipline focuses on the ability of computing to enable transformative change within 
domains of human activity, sometimes called IS environments. That is, IS addresses the ongoing and innovative use 



Computing Curricula 2020   Computing Curricula Report  
CC2020   2020 December 31 

Page 28 of 203 

of computing technologies to enable human activities to achieve their goals in ways that are better, faster, cheaper, 
less painful, cleaner, or more effective.  
 
Degree programs in information systems always include coursework and other educational experiences in computing 
and information technology together with the coverage of an IS environment such as business. IS fosters foundational 
professional abilities that are important for all computing disciplines. Given the role of information systems as a bridge 
builder and integrator, communication and leadership skills have even more weight than in the context of the other 
computing disciplines. In the context of analytics, IS focuses on the integration of analytics into organizational 
systems.  
 
 
2.3.5:  Information Technology 
 
Information technology (IT) emphasizes the central role of user needs. The Information Technology Curricula 2017 
report, known also as IT2017, is globally relevant and informed by educational research [Acm07]. Its task group 
sought to balance perspectives from educators, practitioners, and information technology (IT) professionals. The 
IT2017 report took a futuristic approach to curricular recommendation and proposed a learner-center framework for 
programs that prepare successful IT graduates for professional careers or further their academic study. It eliminated 
all notions of topics and learning outcomes, often represented by long lists of knowledge activities. Instead, the task 
group developed the use of competencies defined as a combination of knowledge, technical skills, and (human) 
dispositions. The IT task group followed pedagogical research and practice similar to what takes place in medical 
schools.  
 
Degree programs in information technology started to appear in the 1990s. They were a precursor to the discipline 
that emerged in the 2000s through the development of the IT2008 curriculum recommendation and accreditation 
criteria. IT is a response to the need for professionals with the capability to develop, acquire, maintain, and support 
the increasingly complex computing technology requirements of modern organizations. Information technology is 
“the study of systemic approaches to select, develop, apply, integrate, and administer secure computing technologies 
to enable users to accomplish their personal, organizational, and societal goals.” [Acm07 p18] For IT, the primary 
focus is on technology, closely aligned with user goals.  
 
In the IT graduate profile specification, the focus is on analysis of problems and user needs, specification of computing 
requirements, and design of computing-based solutions. As general professional capabilities, communication, the 
ability to make ethically informed judgments, and the ability to function effectively as a team member augment this 
set. Of the currently identified computing disciplines, IT deals most directly with specific, concrete technology 
components in an organizational context. 
 
 
2.3.6:  Software Engineering 
 
Software engineering (SE) is an engineering discipline that focuses on the development and use of rigorous methods 
for designing and constructing software artifacts that will reliably perform specified tasks. The term “software 
engineer”—used to denote a profession—is much more broadly employed than “software engineering” as an academic 
discipline or a degree program. There are many more individuals with a job title or professional identity of a “software 
engineer” than those who have graduated from software engineering programs. Adding to the confusion, software 
engineering or software development is often a part of computer engineering and computer science programs.  
 
The purpose of the Software Engineering 2014: Curriculum Guidelines for Undergraduate Degree Programs in 
Software Engineering report, known also as SE2014, is to provide guidance to academic institutions and accreditation 
agencies about what should constitute undergraduate software engineering (SE) education [Acm05]. The SE2014 
report identified a set of student outcomes describing the qualities of a SE graduate. These include professional 
knowledge, technical knowledge, teamwork, end-user awareness, design solutions in context, performance trade-offs, 
and continuing professional development. Similarly, the report presented a list of principles “that embraces both 
general computing principles as well as those that reflect the special nature of software engineering and that 
differentiate it from other computing disciplines.”  
 



Computing Curricula 2020   Computing Curricula Report  
CC2020   2020 December 31 

Page 29 of 203 

Even though SE focuses on creating software-based solutions, it is much more than programming. SE emphasizes the 
use of appropriate software development practices and the integration of engineering rigor with the ability to apply 
advanced algorithms and data structures developed in computer science. The strong focus of software engineering is 
on the design of reliable, trustworthy, secure, and usable software systems. The capabilities of trained software 
engineers often apply to large-scale systems with high reliability and security requirements such as complex 
manufacturing systems, industrial applications, business critical systems, medical devices, autonomous transportation 
systems, and military solutions. 
 
 
2.3.7:  Data Science (Under Development)  
 
Data science (DS) is a new area of computing that is closely related to the fields of data analytics and data engineering. 
One definition of data science is “a set of fundamental principles that guide the extraction of knowledge from data … 
[and] involves principles, processes, and techniques for understanding phenomena via the (automated) analysis of 
data.” [Pro1]  
 
Several DS projects have emerged in recent years. These include the EDISON Data Science Framework (2017) project 
[Edi1], the National Academies Report on Data Science for Undergraduates (2018) [Nas1], the Park City Report 
(2017) [Par1], the Business Higher Education Framework (BHEF) Data Science and Analytics (DSA) Competency 
Map (2016) [Bhe1], and the Business Analytics Curriculum for Undergraduate Majors (2015) [Ban1]. ACM 
conducted initial DS workshops in 2015; a report described the discussions, reflected the diversity of opinions, and 
proposed a list of knowledge areas useful for the field [Cas1]. In August 2017, the ACM Education Council created a 
task force to articulate the role of computing in the DS field [Dat1]. The task force produced an initial draft report 
tentatively tagged as (DS202x) in February of 2019 [Dat2] followed by a second draft report in December of 2019 
[Dat3].  
 
The second draft describes a “competency framework” that addresses knowledge areas representing a body of material 
for data science degree programs that capture high-level competencies, skills, and dispositions. The knowledge areas 
include (a) computing fundamentals, (b) data acquirement and governance, (c) data management, storage, and 
retrieval, (d) data privacy, security, and integrity, (e) machine learning, (f) data mining, (g) big data, (h) analysis and 
presentation, and (i) professionalism. For a full curriculum, these areas need augmentation with courses covering 
calculus, discrete structures, probability theory, elementary statistics, advanced topics in statistics, and linear algebra. 
 
 
 
2.4:  Extensions of Computing Disciplines 
 
Computing is much more than any of the individual disciplines alone. For a student of any one of these current seven 
computing disciplines, it is useful to be aware of what the other disciplines offer, particularly in their areas of specific 
strength. All computing disciplines emphasize required professional knowhow of individual practitioners, including 
problem solving, critical thinking, communication, and teamwork. These professional capabilities bring computing 
disciplines closer together instead of separating them. 
 
 
2.4.1:  Computing Interrelationships 
 
The discussion in Section 2.3 demonstrates two things—that clear differences exist between the computing disciplines 
and that they all have distinguishing characteristics that are essential for their individual identities. CE is the only 
discipline that focuses on integration of hardware, software, and signal processing that are essential in areas such as 
cyber-physical systems, data communication, or medical imaging. CS has a strong and specific focus on developing 
strong conceptual foundations and computational capabilities. CSEC explores questions of safety, security, and 
continuity across the entire computing landscape. IS focuses on discovering and implementing positive organizational 
change using computing capabilities with a special emphasis on value generated by information. IT emphasizes 
building and maintaining organizational computing infrastructure capabilities and user support. SE addresses large-



Computing Curricula 2020   Computing Curricula Report  
CC2020   2020 December 31 

Page 30 of 203 

scale software development processes, particularly in safety and security critical areas. DS addresses large-scale data 
management, storage, and retrieval founded in mathematics and statistics. 
 
 

 
Figure 2.2 illustrates three levels (foundations, technology, domain activity) of computing as related to hardware, 
software, and organizational needs.  The internal regions are dotted because they are not absolute. Information 
technology platforms and infrastructure capture the integration of hardware and software into technology solutions 
that enable computing-based solutions having capabilities associated with data storage, processing, artificial 
intelligence, and visualization. Computer engineering, computer science, and software engineering provide the 
components required for these computing technology capabilities to exist. Information technology focuses on making 
and keeping them available for individual and organizational users. The area of digital intelligence and transformation 
covers the capture, management, and analysis of data enabling individuals, organizations, and societies to conduct 
their activities in a way that helps them better achieve their goals. The fields of information systems (and data science) 
enable digital intelligence and transformation.  Security permeates the entire space of computing.  These are the 
processes through which organizations change using computing capabilities.  
 
 
2.4.1:  Emerging Curricula  
 
Computing curricula in different forms offer a rich variety of fields that continue to expand rapidly. Consequently, the 
number of educational fields that focus on the intersection of a specific scientific or business domain continues to 
grow. One of the more interesting but also the most complex of the emerging new computing-related disciplines is 
artificial and augmented intelligence (AI). The roots of AI go back to the 1950s, and these areas of computing have 
blossomed during the last ten years. AI and its allied field of robotics have become highly popular fields of study in 

 

 
 

Figure 2.2. A contemporary view of the landscape of computing education  
Legend: Curricular reports: CE=computer engineering; CS=computer science; CSEC=cybersecurity;  

IS=information systems; IT=information technology; SE=software engineering; DS=data science (under development).  
 



Computing Curricula 2020   Computing Curricula Report  
CC2020   2020 December 31 

Page 31 of 203 

computing. Although at the time of this writing no formal professionally endorsed AI curriculum exists, a curricular 
recommendation in these areas has the potential to emerge in the next few years.  
 
Current curricular areas that have emerged in recent times include cloud computing, smart cities, sustainability, 
parallel computing, internet of things, and edge computing. Additionally, the predicted top-ten emerging computing 
trends are (a) deep learning (DL) and machine learning (ML), (b) digital currencies, (c) blockchain, (d) industrial IoT, 
(e) robotics, (f) assisted transportation, (g) assisted/augmented reality and virtual reality (AR/VR), (h) ethics, laws, 
and policies for privacy, security, and liability, (i) accelerators and 3D, and (j) cybersecurity and AI [Iee1]. All these 
areas have some coverage within existing curricula guidelines, and some areas (e.g., cybersecurity) even have their 
own formal guidelines. Other areas include 3D graphics and accelerators. One can only guess whether these top-ten 
trends will still be viable over the next dozen years. Section 8.1.1 surveys some of the current and emerging technology 
trends.   
 
 
2.4.2:  Computing + X  
 
A growing interest in recent times is the development of computing programs (e.g., software engineering or 
information systems) that have an extension to a non-computing discipline (e.g., avionics or finance). This is 
referred to as “Computing + X” where ‘Computing’ represents one of the computing disciplines and ‘X’ is a non-
computing discipline. This mode of learning has the goal of integrating a non-computing area of study as an 
extension of a computing area. For example, if X is linguistics, then CE + X represents a linguistic extension of a 
computer engineering program. Such programs allow students to pursue their computing interests in other academic 
fields. It also allows computing students to pursue flexible programs of study that incorporate a strong 
grounding in a computing discipline with technical or professional exposure in other fields. 
 
The relatively recent initiatives surrounding Computing + X are nothing new. For decades, computing programs had 
offered tracks, concentrations, or minors in a variety of subject areas to expand the knowledge base of students for 
computing programs. These programs continue today. However, the level of interest in the longtime practice has 
increased. So, the Computing + X phenomenon continues where X could be in areas such as astronomy, chemistry, 
economics, languages, linguistics, music, and other computing extensions. Computing + X allows students to discover 
transformational relationships between computing and non-computing fields. Degrees in this category often have the 
term ‘informatics’ included in them such as medical informatics, health informatics, legal informatics, bioinformatics, 
or chemical informatics. In many ways, the computing area of information systems was the original “Computing + 
X” discipline, integrating computing primarily with business to transform the way businesses and other enterprises 
operate.  
 
 
2.4.3:  X + Computing  
 
Computing is ubiquitous with application areas in almost every field imaginable. Therefore, the study of 
computing in other disciplines arises naturally. That is, computing becomes an extension to an established 
discipline of study. This representation is “X + Computing” where ‘X’ is the established non-computing domain 
usually in science, business, or humanities. For example, a program in computational biology would have its 
roots in some aspect of biology augmented by a study in computing related to it. Computational finance is 
another example where computing becomes an extension of finance. Archaeology uses many aspects of 
computing to understand where to find and how to study remains, presenting yet another example. 
 
As before, for decades, non-computing programs had offered tracks, concentrations, or minors in a variety of subject 
areas to expand the knowledge base of students from non-computing programs. The “X + Computing” practice 
continues today where ‘X’ could be principal interest areas such as accounting, biology, art, or other computing 
extensions. “X + Computing” allows non-computing students to discover transformational relationships between their 
principal area of study and computing. Hence, “X + Computing” is different from “Computing + X” because in the 
former, the base area is a non-computing discipline (e.g., chemistry) while in the latter, the base area is a computing 
discipline (e.g., computer engineering).   
 



Computing Curricula 2020   Computing Curricula Report  
CC2020   2020 December 31 

Page 32 of 203 

Whether it is X + Computing or Computing + X, both designations reflect the impact computing has had across a 
broad range of other, non-computing domains. Not surprisingly, in the German-speaking world, the term business 
informatics (Wirtschaftsinformatik) is used for degree programs that are globally aligned with those in information 
systems [Hel1]. In all extended degree programs, the fundamental question is the same: how do computing and 
computational thinking transform the way in which those working within non-computing domain X achieve their 
goals? In practice, this mode of thinking requires three types of abilities: domain, computing, and integrative related 
to the transformative opportunities offered by the computing field. Beyond graduation, graduates may benefit from 
interdisciplinary studies and lifelong learning. 
 
There are many similar examples to represent other fields with computing. For example, high-



Computing Curricula 2020   Computing Curricula Report  
CC2020   2020 December 31 

Page 33 of 203 

2.4.5:  Computing in Primary and Secondary Education  
 
The computing education community around the world has done extensive work to improve the availability and quality 
of computing-related courses in primary and secondary education, with a specific focus on improving the diversity of 
students selecting computing as their career. Some examples of influential actors in this area include the following.  
 

1. In the United States, Computer Science Principles is a year-long course offered in high schools that 
introduces students to the foundational concepts of computer science and challenges them to explore how 
computing and technology can impact the world. It is a rigorous, engaging, and approachable course that 
explores many of the foundational ideas of computing, so all students understand how these concepts are 
transforming the world in which we live.  Code.org is an approved Advanced Placement (AP) CS Principles 
provider and is a not-for-profit organization founded by Hadi Partovi that focuses on “expanding access to 
computer science in schools and increasing participation by women and underrepresented minorities.” 
Among other activities, code.org organizes an annual “Hour of Code” event with millions of participants 
annually, offers a library of computer science courses for primary and secondary education, and advocates 
computer science education with policy makers, primarily in the United States.  Furthermore, CSforAll is a 
hub for the national “Computer Science for All” movement, which works to enable all students in grades 
kindergarten through twelfth year (K-12) to achieve computer science literacy as an integral part of their 
educational experience. It has currently 355 member organizations, including content providers, education 
associations, and both companies and non-profits as funders [CSf].  

 
2. The Computer Science Teachers Association (CSTA) is a membership organization for primary and 

secondary education teachers in computer science with more than 25,000 members in 145 countries [CSTA]. 
CSTA’s mission is to “empower, engage and advocate for K-12 CS teachers worldwide.” ACM established 
it in 2004. 

 
3. The importance of how teachers are being educated should not be overlooked.  In Europe, the importance of 

a general education in computing (i.e., informatics) has been recognized.  Digital literacy, computational 
thinking, and other informatics related competences are important for pre-university students, especially 
because they generate interest and understanding of what computing really is. See ACM Europe Council, 
Informatics for All [ACM18]. 

 
4. CSpathshala is an ACM India education initiative to bring a modern computing curriculum to Indian schools 

[Csp1]. Launched in 2016, CSpathshala has developed an unplugged curriculum to teach computational 
thinking (CT) without the use of computers along with sample teaching aids for the first eight years of school 
in India. More than 300,000 students largely from rural government schools in India are learning 
computational thinking using the CSpathshala curriculum. The draft “National Education Policy 2019,” 
recently released by the Indian government, also recognizes CT as a fundamental skill and recommends 
teaching CT from age six using well-designed worksheets.  

 
5. Similar initiatives include those in Finland, New Zealand, Sweden, the United Kingdom, and Europe overall 

[Cas2, Fra1, Ins1, Roy1]. Computing in the Middle East is described in section 6.3.7. 
 
 
2.4.6:  Computing Specializations  
 
Many specializations exist in computing. One area that goes back to the 1940s is scientific computing—considered to 
consist of algorithms and the associated methods for computing discrete approximations used to solving problems 
involving continuous mathematics. Numerical methods and computational science are other names used for this area 
which deals with mathematical models to solve problems, methods for system optimization, and computing 
infrastructure in support of engineering and science problems.   
 
Another such area is digital game design and development (DGDD). Another is media development. In the United 
States alone, more than five hundred DGDD programs currently exist [Are1], and many more exist worldwide. 
Curricular efforts in game and media programs are ongoing. The game and media industries develop specialized 



Computing Curricula 2020   Computing Curricula Report  
CC2020   2020 December 31 

Page 34 of 203 

hardware and software that are now being utilized in higher education. The industry stands at about US $43.4B in the 
United States alone [The1, Dea1], thereby making this emerging area a worldwide phenomenon. 
 
In the future, the world should expect to see increasing specialization on the development of core computational 
capabilities within computer science and software engineering (software), and especially in computer engineering 
(integration of hardware and software). The number of types of computing degree programs should also increase 
dramatically that focus on the transformation of computing programs into specific domains of human activity (e.g., 
information systems and Computing + X) as well as a greater integration of computing in existing domains or other 
disciplines (e.g., X + Computing). The world should also witness more degree program types for specialized pervasive 
themes with a broad ranging effect across multiple domains (e.g., cybersecurity, data analytics, artificial intelligence), 
as well as continued contributions of degree programs that prepare professionals for roles focused on organizational 
computing infrastructure (e.g., information technology). 
 
 
 
2.5:  Digest of Chapter 2 
 
This chapter examined the continuing evolution of computing education.  In the context of undergraduate programs, 
computing can refer to a family of study areas corresponding to the discipline reports for computer engineering, 
computer science, cybersecurity, data science, information systems, information technology, and software engineering 
degrees that have been developed by the ACM and IEEE-CS with AIS in recent decades.  On the other hand, the 
changing landscape of computing has now led to the recognition of the importance of information security and data 
as a resource for decision making.  Within the computing education landscape, there exists a rich variety of fields that 
continue to broaden, including opportunities for Computing + X and X + Computing degrees, and tertiary models for 
computing programs.  Around the world, computing education has also expanded into primary and secondary schools.  
At the same time, specialization areas such as scientific computing or digital game design have led to new degree 
programs, a trend that will continue.   
 
 
  



Computing Curricula 2020   Computing Curricula Report  
CC2020   2020 December 31 

Page 35 of 203 

 

Chapter 3:  Knowledge-based Computing Education  
 
The philosophical underpinning of the CC2020 Report treats computing as a meta-discipline—a collection of 
disciplines having a central focus of computing. This chapter explains the concept of knowledge-based learning and 
how it has encompassed computing education over decades. It reviews the CC2005 report which is primarily a 
knowledge-based document. Additionally, it addresses how workplace and employment dynamics affect knowledge-
based learning and related issues.  
 
 
 
3.1:  Knowledge-Based Learning  
 
This section addresses some of the underpinnings of knowledge-based learning (KBL). It explores the definitions of 
learning and knowledge, the attributes of KBL, and the relationship between KBL and computing curricula.  
 
 
3.1.1:  Learning and Knowledge 
 
Before discussing knowledge-based learning, it is useful to first understand the contextual meaning of learning and 
knowledge. The word learning refers to the endeavor of “knowledge or skill acquired by instruction or study” [Mer3], 
often in an environment conducive to the activity. In turn, the word knowledge refers to the “acquaintance with or 
understanding of a science, art, or technique.” [Mer4] 
 
There is an inextricable connection between the two words knowledge and learning. The former refers to content while 
the latter refers to activity. Thus, people acquire content and skills through the process of learning. Humans acquire 
(learn) content (knowledge) continuously, almost from the time of birth. For the purposes of this report, content 
acquisition refers to learning in formal settings or structures such as in classrooms or online environments. 
 
Recently, the term content knowledge has come into use, which refers to the body of knowledge and information that 
teachers teach and that students should learn in a subject or content area. Content knowledge generally refers to the 
facts, concepts, theories, and principles taught and learned in specific academic courses [Edg1]. This form of 
knowledge occurs in core courses of study, curriculum, or learning standards. 
 
 
3.1.2:  Learning from Knowledge Contexts 
 
In general, learning occurs by building on the knowledge a person already has. That is, a person, namely a student, 
scaffolds new knowledge based on the student’s existing knowledge. Knowledge-based learning (KBL) depicts this 
form of learning activity. More formally, “knowledge-based learning is learning that revolves around both the 
knowledge that the student already has, and the understanding that they are going to achieve by doing work.” [Tes1]  
 
Students, teachers, and the public have all experienced knowledge-based learning. Basic schooling allows 
advancement from one grade level to the next based on the verified knowledge acquired in one grade before 
advancement takes place. Often, verification takes place by evaluating students’ knowledge content through tests, oral 
or written examinations, interviews, and other tools useful in assessing whether a student has achieved the expected 
knowledge base for a given level. At universities, course prerequisites attempt to ensure that a student has the 
necessary knowledge needed to advance to the next course level.  
 
Knowledge-based learning has existed for millennia. Whether formally or informally, KBL has used approaches to 
elevate human knowledge on a global scale. Teachers deliver information to learners and then check their level of 
attainment. Reflective learners can assess themselves on the acquired new knowledge. Teachers direct learners on 
what they need to know and check whether they learned it. Using this approach and providing reliable comment, 
teachers can help students see where they have learned or where they have erred.  
 



Computing Curricula 2020   Computing Curricula Report  
CC2020   2020 December 31 

Page 36 of 203 

Knowledge-based learning enjoys many benefits. It builds on learners’ existing knowledge; it helps learners see how 
they are progressing, and it helps them highlight gaps in their knowledge. With clear learning objectives, learners can 
see how their existing knowledge will help them to complete the task [Dso1]. Practicing knowledge-based techniques 
can identify where learners require more emphasis. By building on the knowledge a person already has, KBL lifts 
learners’ confidence by showing them that they have the knowledge they need to finish a task [Icd1].  
 
 
3.1.3:  Knowledge and Computing Education 
 
For computing and other disciplines, knowledge has always been the focus of the study area. Computing curricular 
reports often describe a discipline through knowledge areas (KAs), knowledge units (KUs), and learning outcomes 
(LOs). Sometimes, people refer to this structure as the “knowledge area, knowledge unit, learning outcome” (KA-
KU-LO) model with lists of topics associated with each knowledge unit. These curricular reports generally do not 
provide guidance related to skills or guidance related to human behavior particularly reflected by performance in the 
workplace.  
 
These documents reflected the KBL concept, viewed traditionally as a form of learning that involves knowledge 
students learned and already have, together with the understanding that they are going to achieve through work [Cla1]. 
That is, teachers transfer knowledge to students through experience, notes, textbooks, or other means; having received 
the knowledge, students have an expectation of achievement because of it and work toward demonstrating that 
achievement. Almost all universities worldwide produce graduates through knowledge-based learning.  
 
However, the traditional knowledge-based learning paradigm may be insufficient by itself to address all the challenges 
in educating for the future. Technology now influences new ways of learning. Students use many non-traditional 
learning formats, thereby challenging traditional methods. Furthermore, universities produce computing graduates 
who may be intellectually smart, but have difficulties in workplace settings. Learning in computing education needs 
to incorporate knowledge along with other attributes. 
 
 
 
3.2:  Revisiting Computing Curricula 2005  
 
The CC2005 report provided readers with an overview of five undergraduate computing degree programs that were 
available in the early 2000s. At that time, five computing curricula reports were in existence, which included computer 
engineering (CE2004), computer science (CS2001), information systems (IS2002), information technology (a work 
in progress that was later published as IT2008), and software engineering (SE2004). These computing fields were 
related but quite different from each other.  
 
The CC2005 report explained the character of the various undergraduate degree programs in computing and assisted 
people in determinimg which programs best suited their goals and circumstances. Beneficiaries of the report included 
recruiters from industry and government, students and potential students, university faculty members and 
administrators who were developing plans and curricula for computing-related programs at their institutions. In 
addition, beneficiaries included those interested in accreditation of computing programs, and responsible parties in 
public education including boards of education, government officials, elected representatives, and others who seek to 
represent the public interest. 
 
 
3.2.1:  Intent of CC2005 
 
Reliable information about the number of different types of computing degree programs was difficult to ascertain in 
the early 2000s. Hence, the focus on just five prominent computing programs (CE, CS, IS, IT, SE) satisfied the 
committee’s criterion for proper inclusion to distinguish undergraduate curricular guidelines. These five computing 
areas represented most undergraduates specializing or majoring in computing. Notwithstanding, at that time, the 
committee expected additional computing disciplines to generate curricular expansion as extensions to the report. 
Candidate programs for future editions could include new fields that did not yet exist or established fields that did not 



Computing Curricula 2020   Computing Curricula Report  
CC2020   2020 December 31 

Page 37 of 203 

have generally accepted curricular guidelines. In the end, each one of the five discipline-specific curricular volumes 
reflected in the CC2005 report represented the best judgment of the relevant professional, scientific, and educational 
associations and served as a definition of what these five computing degree programs should be. 
 
The CC2005 committee made no effort to update the contents of existing curricular reports as that effort was beyond 
its mission and authority. Rather, the committee had reviewed the five curricular volumes, compared their contents to 
one another, and synthesized what they believed to be essential descriptive and comparative information. In addition 
to using the five curricular reports as the basis for the CC2005 report, the committee had referred to the computing 
professional organizations and other supporting information, as necessary. The committee did not focus on other types 
of undergraduate computing degree programs (e.g., associate degree or similar programs), graduate education in 
computing, computing research communities, or nontraditional computing education such as vendor-specific 
certification programs. Additionally, the CC2005 committee realized that computing itself will continue to evolve and 
new computing-related fields would likely emerge.  
 
 
3.2.2:  Content of CC2005 
 
The most significant part of the CC2005 report is the definitive articulation of the five computing disciplines (CE, CS, 
IS, IT and SE). In addition to addressing the landscape of computing in the early 2000s, the report defined the meaning 
of “computing” and provided a brief history of the evolution of computing before, during, and after the 1990s as 
shown earlier in Figure 2.1 It then described (and defined) each of the five computing disciplines followed by graphical 
visuals for these five disciplines. Discussion of these visuals occurs later in this chapter—see 3.2.4. 
 
One of the useful aspects of CC2005 was the discussion on the expectations of graduates for the degree programs. 
The discussion revolved on two themes. One theme dealt with curricular summaries as a comparison of degree 
programs with an interpretation of the tabular representation and suggestions on its use. The other theme focused on 
expected degree outcomes with an expected comparison of degree graduates. Both these tabular representations are 
useful elements to contrast the outcomes of the five computing degrees.  
 
The CC2005 report also acknowledged the rapid pace of change in academia and how computing might affect the 
offered degrees, specifically in the five focus degree areas of computer engineering, computer science, information 
systems, information technology, and software engineering. The pace of change particularly reflects the changes in 
the workplace where change is continuous. Because of this change, computing degree programs should be responsive 
to such variations.  
 
Additionally, the CC2005 report addressed institutional considerations such as the evolution of degree programs and 
strategies to monitor course portfolios. It addressed diversity challenges, faculty development, adaptation, as well as 
organizational and curricular structures. Coupled with curricular response to market forces and academic integrity, the 
report discussed aspects of quality assurance and program accreditation as it exists in the US and the UK. Regardless 
of the metrics used, all agreed that program quality should be paramount for all computing disciplines.  
 
 
3.2.3:  Comparison Tables  
 
CC2005 provided a comparative view of the emphasis on computing topics among the five types of computing degree 
programs. A comparison table provided a summary of the topics studied at the undergraduate level in one or more of 
the computing disciplines, presented in its first column. The remaining columns showed the numerical values per topic 
for each of the five types of computing degree programs. These values range between 0 (lowest) and 5 (highest) and 
they represent the expected relative emphasis each type of computing degree program might place on each given topic.  
 
In addition to this comparison table, the CC2005 report provided a table showing the relative performance capabilities 
of computing graduates by discipline [Acm02 p28,Tab3.3]. This table focused on outputs, summarizing the relative 
capability expectations of computing graduates. Table 3.1 shows an excerpt of that table.  
 

 



Computing Curricula 2020   Computing Curricula Report  
CC2020   2020 December 31 

Page 38 of 203 

Table 3.1. Computing Graduate Profiles (excerpt from [Acm02, 28 Tab3.3]) 

 
 
 
3.2.4:  Curricular Visuals  
 
One highlight of the CC2005 report consists of the two-dimensional visual graphics that depicted the five computing 
disciplines. These graphics illustrated the commonalities and differences among computing disciplines. Their 
dimensions highlighted the relative degree to which a computing discipline focused on theory versus practice; it also 
highlighted the degree to which a computing discipline focused on hardware versus humans. They suggested how 
each discipline occupies the problem space framework of computing as shown in Figure 3.1. The focus is on what 
students in each of the disciplines typically do after graduation, not on all topics a student might study. Some 
individuals will have career roles that go beyond the scenarios described by these snapshots.  
 
The horizontal range runs from theory, principles, and innovation on the left, to application, deployment, configuration 
on the right. Thus, someone who likes the idea of inventing new things or enjoys a university setting to develop new 
principles will want to work in a discipline that occupies the space to the left. Conversely, someone who wants to help 
people choose and use appropriate technology or who wants to integrate off-the-shelf products to solve organizational 
problems will want an area that occupies space to the right. Because there are many kinds of job tasks that fall between 
the extremes, one should not just look only at the far left and far right but consider possibilities between the extremes.  
 
The vertical axis runs from computer 
hardware and architecture at the bottom to 
organizational issues and information 
systems at the top. As we go up this axis, 
the focus changes from wires, hardware, 
chips, and circuits at the bottom to people, 
information, and organizational issues at 
the top. Thus, someone who likes 
designing circuits or is curious about a 
computer’s inner workings will care about 
the lower portion of the diagram; someone 
who wants to see how technology can work 
for people or who is curious about how 
technology affects organizations will care 
about the upper portions. We can consider 
the horizontal and vertical dimensions 
together. Someone who cares about 
making things work for people and is more 
interested in devices than organizations 
will be interested in the lower right, while 
someone who wants to develop new 
theories about how information affects organizations will be interested in the upper-left area of the diagram. 
 

 

Figure 3.1. Problem Space Framework (CC2005) 



Computing Curricula 2020   Computing Curricula Report  
CC2020   2020 December 31 

Page 39 of 203 

 

 
 

Figure 3.2 Visuals from CC2005 
 
Figure 3.2 provides curricular illustrations that sketch the conceptual territory occupied by each of the five computing 
disciplines. These are informal illustrations used to communicate the CC2005 task force’s subjective interpretation of 
the various disciplines. They are not based on any precise quantitative foundation. Furthermore, they show only 



Computing Curricula 2020   Computing Curricula Report  
CC2020   2020 December 31 

Page 40 of 203 

computing interests or themes. Computer engineering occupies a broad area across the bottom because computer 
engineering covers the range from theory and principles to the practical application of designing and implementing 
products using hardware and software. Computer science covers most of the vertical space between the extreme top 
and extreme bottom because computer science generally deals with theory and software development such as operating 
systems and web browsers. Information systems occupies the shaded area across most of the top-most level because 
it concerns the relationship between computing systems and the organizations they serve and often tailor application 
technologies to the needs of the enterprise. Information technology covers the shaded area along the top right edge 
because it focuses on the application, deployment, and configuration needs of organizations and people over a wide 
spectrum. Software engineering spans the entire horizontal dimension at the middle of the diagram because the subject 
covers a wide range of large-scale software applications with respect to the systematic development of software. The 
images from Figure 3.2 have received worldwide acclaim in computing educational circles. They have appeared in 
many contexts such as the poster shown in Appendix A. 
 
 
3.2.5:  Global and Other Considerations  
 
The CC2005 report and the associated five volumes of the Computing Curricula Series benefited to some degree from 
international input. Notwithstanding, the CC2005 task force was very conscious of the void of encompassing greater 
global contributions to its work. The task force recognized that future efforts must feature significantly expanded 
international participation. Some differences include the structure of the academic year, the emphasis given to the 
study of computing within a degree program, and quality control mechanisms such as different expectations and 
practices regarding accreditation. In addition, there were differences in approaches to defining the focus of degree 
programs and in terminology.  
 
The CC2005 report addressed other issues useful for a global computing community. The CC2005 task force 
recognized that the computing field is evolving and as a result, it provided some suggestions for academia to keep in 
step with the pace of change. It also recognized that the pace of change that exists in the workplace in which graduates 
of computing-degree programs should have the ability to fulfill their own career opportunities. In addition, the CC2005 
report addressed institutional considerations and urged institutions to be mindful of the evolution of computing degree 
programs, to initiate strategic approaches to manage change, and to approach diversity through faculty adaptation and 
development as well as organizational and curricular structures.  
 
The CC2005 report received universal acceptance as a document to differentiate computing degree programs at the 
time. Educators, students, and industry professionals are familiar with the illustrations shown in Figure 3.2 and the 
poster in Appendix A. Overall, the CC2005 project was a positive contribution to students, to industry, and to the 
computing academic communities.  
 
 
 
3.3:  Limitations of a Knowledge-Based View 
 
CC2005 reflected a knowledge-based view of computing education. This view resulted in the ability to conceptualize 
specializations with respect to the types of knowledge that they contain, in models already shown in Figure 3.2.   Such 
a view has been helpful in establishing the course structure of curricula within the various specializations, and it 
reflects the traditional model of education in that regard. In such a view, curricula reflect topics taught within a 
conglomeration of courses, but the skills learned within those courses depends heavily on the design of the individual 
course. Two wildly different curricula in terms of skills learned could both meet the same knowledge-based curricular 
requirements.  
 
 
3.3.1:  The Skills Gap 
 
The variability stated above is a ubiquitous consequence of classical education in most disciplines. However, for jobs 
that require certain skills, it means that recent computing graduates may not have those skills even though they 
graduate from a curriculum that meets prescribed knowledge-based requirements. This has classically put the onus on 



Computing Curricula 2020   Computing Curricula Report  
CC2020   2020 December 31 

Page 41 of 203 

industry to do training to meet the requirements of their workforce. However, with the fast-paced dynamics of change 
in the computing fields, industry is frequently no longer willing to train recent graduates of computing programs. 
Some industries and companies expect to have performance (and profit) almost immediately after hiring.  People 
seeking computing careers will have a strong potential for success only if they possess relevant skills and appropriate 
temperament.  
 
Currently there are still plenty of jobs in the computing industry, and this trend is expected to continue for the 
immediate future.  For example, in the United States, a recent study by the Bureau of Labor Statistics (BLS) estimates 
that by 2024, computing employment in the United States will increase by 12% [Bls1], with information security 
leading by 36.5% [Bls2]. Employment growth for information security analysts projected for 2014–2024 is 18%. 
Other computing occupations have even larger projected growth: application software developers (19% across all 
industries, 31% within the computer industry), computer systems analysts (21% across all industries, 33% within the 
computer industry), and web developers (27% across all industries, 39% within the computer industry). Figure 3.3 
presents these data. 

 
Figure 3.3. Left: Computing occupations projected growth 2014-2024 across all sectors (job outlook) and in the computing sector.  

Right: Computing jobs in 2014. (Courtesy of Bureau of Labor Statistics) 
 
Thus, there are plenty of jobs available, but not every graduate has the skills and temperament to be successful.  The 
gap between the skills of today’s college graduates and the skills expected by employers is frequently known as a 
skills gap.  The degree to which a skills gap exists in computing in different parts of the world would require analysis 
of labor and economic data that is beyond the scope of this report.  Anecdotally, a recent survey by PSI Services found 
the following situation in the United States [Psi1]. 

• 80% of Americans (US) agree there is a skills gap, and 35% say it affects them personally. 
• 42.5% of recent graduates were underemployed as of March 2018, according to the Federal Reserve Bank of 

New York. 
• $160 billion is the annual cost that researchers from the Centre for Economic Research calculated to be the 

total cost of the skills gap to US companies. 
• 60% of US employers have job openings that stay vacant for 12 weeks or longer. The average cost from job 

vacancies is at least $800,000 annually. 



Computing Curricula 2020   Computing Curricula Report  
CC2020   2020 December 31 

Page 42 of 203 

• 81% of employers indicated that prospective employees lack critical thinking and analytical reasoning skills. 
75% think graduates lack adequate innovation and diversity skills. 

 
Students who graduate from a university computing program might assume that the baccalaureate degree is a basic 
qualification to attain a position, and that those who have baccalaureate computing degrees will be easily employable 
in the computing field. The current high demand for computing professionals reinforces this idea.  Yet the skills gap 
that exists for college graduates in general is arguably true for computing graduates in at least parts of the world today.  
And with the supply of computing graduates significantly lagging the demand for computing graduates, this skills gap 
simply exacerbates what is already a dire shortage. 
 
Similar skill gap analyses can be performed in other parts of the world [Iee2].  Readers are encouraged to investigate 
their own situation.   
 
 
3.3.2:  Non-Degree Certifications 
 
To address the skill challenge, industry market forces have non-degree certifications that have had some influence on 
academic institutions. Some of these certifications have even become part of some university computing curricula 
such as acquiring network certification in an academic networking class. Individuals who complete certification exams 
can use these credentials to supplement the value of their academic education to potential employers. Potential 
employees can use certifications to demonstrate their job readiness and pursuit of extra-curricular activities to 
demonstrate IT skills to potential employers. Table 3.3 lists some leading computing certifications for 2017 compiled 
by the CRN media outlet [Nov1]. The CC2020 public website will show a more inclusive collection of certifications 
on a global scale.  
 

 

Table 3.3. Common Computing Certifications 
Entry-level networking and security (CompTIA, Cisco) 
Professional networking and routing and switching (Cisco, 

Citrix) 
Virtualization and networking (Citrix VMWare) 
Windows servers and infrastructure (Microsoft) 
IT service management (Axelos) 

Project management (Project Management Institute, Axelos) 
Security (ISC2) 
Security management (ISC2) 
Cloud computing (Amazon) 
Risk management (ISACA)  
IT auditing (ISACA) 

 
 
 
3.3.3:  Skills Frameworks 
 
Non-degree certifications are an attempt to bridge the skills gap in computing.  Industry has also utilized skills 
frameworks.  Appendix B provides several summaries that address computing skills such as SFIA, e-CF, and iCD 
frameworks.  Developed in consultation with professional societies, these skills frameworks are utilized as part of the 
hiring process to articulate expectations for specific types of jobs [Sfi1].  
 
Industry can utilize skills frameworks to define its employment needs, and a combination of degrees and certifications 
as credentials to distinguish candidates for jobs.  The question for baccalaureate computing education is: Is there a 
way to define curricular standards in a way that captures industry needs with greater fidelity?  Industry and academia 
need to utilize a common language for defining outcomes and expectations.  For academics to consider skills is a step 
in the right direction.  A more complete answer is provided in Chapter 4. 
 
 
 
3.4:  Digest of Chapter 3 
 
This chapter discussed the concepts associated with knowledge-based learning that have 



Computing Curricula 2020   Computing Curricula Report  
CC2020   2020 December 31 

Page 43 of 203 

and reflected a model of education that primarily aided in establishing the course structure of respective curricula.  
The skills that students learned within those courses then relied on the design of the individual courses.  As noted in 
recent job reports, however, the traditional model of computing education can lead to computing graduates not having 
the skills and attributes needed to pursue computing careers.  
 
 
  



Computing Curricula 2020   Computing Curricula Report  
CC2020   2020 December 31 

Page 44 of 203 

 

 Chapter 4:  Competency-based Computing 



Computing Curricula 2020   Computing Curricula Report  
CC2020   2020 December 31 

Page 45 of 203 

4.1.2:  Previous Work on Computing Competency  
 
In 2017, the Accreditation Committee of the European Quality Assurance Network for Informatics Education 
(EQANIE) published new program outcomes for accreditation of business informatics or information system or related 
programs in consultation with members and stakeholders [Eqa1].  EQANIE describes program outcomes as “quality 
standards for knowledge, skills and competences that graduates of an accredited course should have achieved as the 
educational base for practicing their profession or for post-graduate studies.”   The European Commission’s Digital 
Competence Framework 2.0 (DigComp 2.0) identified the key components of digital competence in five areas which 
can be summarized as (1) Information and data literacy, (2) Communication and collaboration, (3) Digital content 
creation, (4) Safety, and (5) Problem Solving [Eco1].  
 
The IT2017 project was the first of the ACM/IEEE baccalaureate curriculum projects to embrace the concept of 
competency as the primary characteristic of curriculum definition. The arrival of the IT2017 report [Acm07] heralded 
a shift away from the knowledge area, knowledge unit, learning outcome mindset and redirected emphasis toward 
performance. The report stated that “competence refers to the performance standards associated with a profession 
or membership to a licensing organization” and that “assessing some level of performance is frequently used as 
a competence measure, which means measuring aspects of the job at which a person is competent.” Independent 
of IT2017, the MSIS2016 report [Acm11] introduced competencies at the master’s level, indicating that 
“competencies represent a dynamic combination of cognitive and meta-cognitive skills, demonstration of knowledge 
and understanding, interpersonal, intellectual and practical skills, and ethical values.” The Software Engineering 
Competency Model [Iee3] defined competency as the “demonstrated ability to perform work activities at a stated 
competency level.” These three publications suggest that competency is a combination of knowledge, technical skills, 
and human behavior within a computing context.  
 
 
Information Technology 
 
The information technology report (IT2017) embraced competency-based learning, rather than the knowledge area, 
knowledge unit, learning outcome model, mostly because almost all graduates from information technology degree 
programs enter industry and the workplace. The report adopted the term competency as related to performance in the 
workplace, that is, what a graduate should bring to a job.  
 
In education, success in career readiness requires that students in degree programs develop a range of qualities 
typically organized along three dimensions: knowledge, skills, and dispositions, so competency must connect these 
three elements or dimensions. The IT2017 report described this concept simply as:  
 

Competency = Knowledge + Skills + Dispositions… in Context 
 
The interrelated dimensions had the following meanings. Knowledge designates an awareness and understanding of 
core concepts and content. This dimension receives initial attention from teachers when they design their syllabi, from 
departments when they develop program curriculum, and from accreditation organizations when they articulate 
accreditation criteria. This is the “know-what” dimension. Skills refer to capabilities and strategies that develop over 
time through deliberate practice and through interactions with others. Skills also require engagement in higher-order 
cognitive activities such as programming. This is the “know-how” dimension. Dispositions encompass socio-
emotional skills, behaviors, and attitudes that characterize the inclination to carry out tasks and the sensitivity to know 
when and how to engage in those tasks [Per1]. This “know-why” dimension is the most challenging for academics 
because some computing faculty may ignore disposition in educational settings.  
 
There has been general agreement in education that success in career readiness requires that students in degree 
programs develop a range of qualities typically organized along these three dimensions. The IT2017 report also 
addressed approaches to learning. It rejected the content-driven mode of framing curricular guidelines using a 
disciplinary body of knowledge that can be subdivided into areas, units, and topics to track recent developments in 
the rapidly changing computing field. Instead, it proposed the use of the “Understanding by Design” approach to 
transform content-based curricular models into a competency-based curricular framework. Here, learning transfer is 
multi-faceted with the transfer blended with skills and dispositions. Dispositions relate to metacognitive awareness, 



Computing Curricula 2020   Computing Curricula Report  
CC2020   2020 December 31 

Page 46 of 203 

for example, being responsible, adaptable, flexible, self-directed, and self-motivated, and having self-confidence, 
integrity, and self-control. They also include how to work with others to achieve a common goal or solution.  
 
Information Systems 
 
Instead of specifying a body of knowledge or a set of courses as developed in the previous MSIS2006 report, the 
MSIS2016 curricular model identified a set of graduate competencies. Here, the term “competency” referred to 
graduate level ability to use knowledge, skills, and attitudes to perform specified tasks successfully. The report used 
a more formal definition for competency, as mentioned in the previous section [Loc1 p21].  

Competencies represent a dynamic combination of cognitive and metacognitive skills, demonstration of knowledge and 
understanding, interpersonal, intellectual and practical skills, and ethical values. 

In this context, competency is an integrative concept that brings together graduate level knowledge, skills, and 
attitudes.  
 
The report also specified four different levels of category attainment: awareness, novice, supporting (role), and 
independent (contributor). The awareness level implies that a graduate student knows that the competency category 
exists and is aware of the reasons it is important for the domain of practice. The novice level specifies that a graduate 
can effectively communicate regarding matters related to the competency, perform component activities under 
supervision, and develop on-the-job experience related to the competency. The supporting (role) level indicates that a 
graduate has achieved a level of knowledge and skill that allows him/her to collaborate effectively in a supporting role 
with colleagues who have achieved a higher level of the competency to produce the desired outcomes. Finally, the 
independent (contributor) level refers to a graduate who has achieved a level of knowledge and skills that allows the 
graduate to perform without continuous support/supervision, the tasks required to produce the desired outcomes. 
Higher levels of competencies do exist, at an expert level.  
 
The MSIS2016 curricular model suggested that all programs should not expect to prepare students to attain 
competencies at the same level in all competency categories. Different professional profiles have different needs and 
the professional profiles that a program desires its graduates to achieve can vary. That is, programs should determine 
the level at which its graduates should attain each of the competency categories.  
 
Software Engineering Competency Model 
 
The software engineering competency model (SWECOM) [Iee3] described capabilities for software engineers who 
participate in the development of and modifications to software-intensive systems. The model specifies skill areas, 
skills within skill areas, and work activities for each skill. Activities occur at five levels of increasing proficiency. 
 
The SWECOM suggests that competency is a combination of knowledge, skill, and ability. A competent person has 
the knowledge and ability to perform work activities (i.e., skills) at a given competency level. The competency model 
includes cognitive attributes, behavioral attitudes, and technical skills. Some cognitive skills include reasoning, 
analytics, problem-solving, and innovation skills. Behavioral attributes include aptitude, enthusiasm, trustworthiness, 
cultural sensitivity, as well as communication, teamwork, and leadership skills. The model also specifies lifecycle 
skill areas, cross-cutting skills (e.g., quality, safety, security), and related activities. It also defines competency levels 
to be that of a technician (able to follow instructions), an entry-level practitioner (can assist in performing activities 
with some supervision), a practitioner (able to perform activities with little or no supervision), a technical leader 
(capable to lead and direct participants), and a senior software engineer (capable to create new processes and modify 
existing processes).  
 
The SWECOM philosophy is quite similar to the IT2017 and the MSIS2016 philosophies of competency. Knowledge 
and technical (computing) skills are integrated with behavioral attributes that correspond to either disposition or 
ability. Competency is central to the model and provides a modern view to generate excellence in computing 
education.  
 
4.1.3:  Initial and Developing CC2020 Explorations of Competencies   
 
As noted above, interest in CC2020 lies both in identifying the evolution toward competency-based model curricula 
that have taken place over the past several years and in articulating a sound and clear approach to writing competencies 



Computing Curricula 2020   Computing Curricula Report  
CC2020   2020 December 31 

Page 47 of 203 

that are useful for future curricular efforts.  This chapter addresses the former. In pursuit of the latter, the CC2020 task 
force in 2017–2018 initially explored the creation of competency statements by organizing subgroups of experts from 
different computing disciplines. Their initial work produced competency statements compatible with the definition 
that Competency = Knowledge + Skills + Dispositions, in context. Appendix C presents a set of preliminary draft 
computing competencies for computer engineering, computer science, information systems, information technology, 
and software engineering competencies generated from this early effort and other work. These initial explorations 
from 2018 have inspired a more detailed expression of competency, presented in the next section.  
 
 
4.2:  A Competency Model 
 
 
The CC2020 Task Force developed a definition of competency and a template for specifying the subject matter of 
baccalaureate computing education. This definition evolved from those developed and applied in the different 
educational frameworks reported in the IT2017 report, the MSIS2016 report, the SWECOM report, as well as the 
preliminary work conducted on developing competencies within CC2020 mentioned in Section 4.1.3  
 
The CC2020 representation developed in this report supports a consistent, scalable model for writing curricular 
specifications and competencies. One could also use it for automated visualization and comparison of curricula. 
However, this CC2020 Report provides only a framework for creating competencies. It does not create new 
competencies because they could vary greatly based on use, task, or context. That is, the CC2020 Report provides 
readers with a competency framework and it lets each program unit or curricular group develop their own set of 
competencies for their purposes and interests.  
 
 
4.2.1:  The CC2020 Competency Model    
 
CC2020 articulates a notion of competency as a practical educational goal [Wag5,Fre5,Tak1,Top5] that refines the 
Knowledge-Skill-Disposition (K-S-D) framework popularized in the IT2017 report. While the knowledge dimensions 
of computing have been extensively explored in the various computing curricula, what is meant by skill and disposition 
have had significantly less focus. Extending previous work, the CC2020 Reports specifies competency as composed 
of K-S-D dimensions observed within the performance of a task, T. 
 

Competency = [Knowledge + Skills + Dispositions] in Task 
 
A competency specification enumerates knowledge, skills, and dispositions that are observable in the accomplishment 
of a task, a task that prescribes purpose within a work context [Wag5]. Figure 4.1 illustrates the conceptual structure 
of competency.  
 
 

 
Figure 4.1. Conceptual Structure of the CC2020 Competency Model 

 
 
4.2.2:  Component Definitions     
 
The four components (knowledge, skills, dispositions, and task) that structure the competency specification are 
defined here.  



Computing Curricula 2020   Computing Curricula Report  
CC2020   2020 December 31 

Page 48 of 203 

 
1. Knowledge 
Knowledge is the “know-what” dimension of competency as a factual understanding. This dimension reflects the 

enumerated subject matter that teachers catalog as topics in their syllabi, departments distribute and balance among 
the courses they develop in an academic program, accreditation organizations stipulate in their accreditation criteria, 
and employers identify in job descriptions of their workers. An element of knowledge designates a core concept 
essential to a competency. Alone, however, a concept is static and inert; it must be acted upon with a degree of 
expertise to become a behavior. 
 

2. Skills 
Skills introduce the capability of applying knowledge to actively accomplish a task. Hence, a skill expresses an 

element of knowledge as acted upon with proficiency to define the “know-how” dimension of competency. Skills 
require time and practice to develop. Consequently, skill development often requires engagement in a progressive 
hierarchy of higher-order cognitive process. CC2020’s definition of competency has adopted Bloom’s levels of 
cognitive process [Acm16] to specify the degree of skill expected in successful task accomplishment.  

 
One often assesses the skills dimension of competency indirectly through observation of the process or quality of 

work produced. The activation of “know-what” animated by “know-how” fuses the knowledge and skills dimensions. 
For that reason, the usefulness of any element of knowledge in a competency specification is only understandable 
when applied at a level of skillfulness; that is, specified or observed as a level of Bloom’s cognitive process. Therefore, 
each element of knowledge and the requisite level of skill necessarily and naturally pair in the specification of a 
competency.  
 

3. Dispositions 
Dispositions frame the “know-why” dimension of competency and prescribe a temperament of quality of 

character in task performance. Dispositions moderate the behavior of applying “know-what” that becomes “know-
how.” How dispositions moderate knowledge and skill could be thought of as the extent that it accounts for the relation 
between the predictor and the criterion [Bar1] in that dispositions connect the ‘better’ or ‘correct’ application of 
knowledge and skill to the context where and why it is applied.  

 
Dispositions are habitual inclinations that are socio-emotional tendencies, predilections, and attitudes (e.g., 

trustworthiness).  Dispositions control whether and how an individual is inclined to use his/her skills.  Dispositions 
can denote the values and motivation that guide applying knowledge while designating the quality of knowing 
indicative of a standard of professional performance. 
 

;: Task 
Task is the construct that frames the skilled application of knowledge and makes dispositions concrete. Task 

expressed as a colloquial prose statement provides the setting to manifest dispositions, where individuals moderate 
their choices, actions, and effort necessary to pursue and succeed in an efficient and effective manner. In this sense, 
task enfolds the purposeful context of competency, exposing the integral nature of knowledge, skills, and dispositions. 
To this end, a task definition stipulates pragmatic engagement that reflects professional practice relevant to the specific 
vision for the program graduates. For this reason, task descriptions provide an explicit context for the program to 
develop pedagogy that enables graduates to demonstrate competency as a computing professional.  
 
 
4.2.3:  Competency Statements      
 
An effective specification of competency is a synthesis of both a colloquial, prose competency statement that sets out 
a task, and the component structure of constituent K, S, and D elements necessary to succeed in that task. Essentially, 
a competency specification expresses a model of knowledge that is skillfully and professionally applied in some task 
execution.  
 
The competency statement corresponding to a competency specification is a free-form colloquial expression that 
succinctly conveys the pertinent ability and goals attained through a course of study or the capabilities relevant to 
successfully performing a task in the workplace. The competency statement expresses the competency in terms that 
are familiar and comprehensible to a wide audience, typically using a vocabulary familiar to, and that resonates with, 



Computing Curricula 2020   Computing Curricula Report  
CC2020   2020 December 31 

Page 49 of 203 

the stakeholder audience. The competency statement is then structurally augmented and amplified in the enumeration 
of knowledge, skills, and dispositions that complete the competency specification. 
 
While the natural language of the competency statement favors a public audience, the competency component 
structure is more formal as it enumerates the components, e.g., knowledge elements demonstrated at a skill level and 
moderating dispositions determined necessary to demonstrate the competency in task. This structural enumeration of 
components is essential for automating comparative analyses and visualization of curricula. Having both the free-form 
of the competency statement alongside the more formal component-specific enumeration corroborates that the two 
perspectives align. Any divergence perceived between these perspectives would suggest the need for a closer reflection 
upon the correctness of one or both representations. 
 
 
4.2.4:  Component Elements      
 
A competency is a collection of specific components of knowledge, skills, and dispositions. Tables 4.1, 4.2, 4.3, and 
4.4 present suggested elements of these dimensions. The knowledge dimension of competency encompasses concepts 
that are technical (computing concepts), foundational and professional (indicative of a workplace), and domain 
specific (the task setting). Appendix D elaborates on these component tables in greater detail. 
 
Table 4.1 illustrates thirty-four abbreviated knowledge areas partitioned into an ordered sequence of six categories. 
While the table is incomplete, it does provide an example of high-level vocabulary for computing knowledge rooted 
in the collective wisdom of different computing communities. This summary of computing knowledge areas represents 
a well-understood and consistent vocabulary from which computing competency statements can evolve.  
 
 

Table 4.1. Elements of Computing Knowledge 

Users and 
Organizations 

Systems  
Modeling 

Systems 
Architecture and 

Infrastructure 

Software 
Development 

Software 
Fundamentals 

Hardware 

Social Issues and 

Professional 

Practice 

Security Policy and 

Management 

IS Management and 

Leadership 

Enterprise 

Architecture 

Project Management 

User Experience 

Design  

 

Security Issues 

and Principles 

Systems Analysis 

& Design 

Requirements 

Analysis and 

Specifications 

Data and 

Information 

Management 

Virtual Systems and 

Services 

Intelligent Systems (AI)  

Internet of Things 

Parallel and Distributed 

Computing 

Computer Networks 

Embedded Systems 

Integrated Systems 

Technology 

Platform Technologies 

Security Technology and 

Implementation 

Software Quality, 

Verification and 

Validation  

Software Process 

Software  

    Modeling and 

Analysis 

Software Design 

Platform-Based 

Development 

 

Graphics and 

Visualization 

Operating Systems 

Data Structures, 

Algorithms and 

Complexity 

Programming 

Languages 

Programming 

Fundamentals 

Computing Systems 

Fundamentals 

Architecture and 

Organization 

Digital Design 

Circuits and 

Electronics 

Signal Processing 

 
 
The thirteen elements of foundational and professional knowledge listed in Table 4.2 represent a subset of the 
professional listings derived from the IT2017 report and subsequently from Appendix D in this report.  Computing 
professionals are commonly expected to demonstrate high levels of skill in applying this knowledge which deserves 
explicit attention in baccalaureate programs.  
 
Domain knowledge represents elements of the context that situates the task. In the general, these elements may 
represent the disciplinary (e.g., business, medicine, manufacturing). In the more detailed, they may be more specific 
(e.g., international currency exchange, radiographic imaging, automobile assembly). In any case, the scope and level 
of detail of domain knowledge will emerge from the intended use of the competency (i.e., Computing + X or 
X + Computing, for which see Section 2.4).  
 



Computing Curricula 2020   Computing Curricula Report  
CC2020   2020 December 31 

Page 50 of 203 

Table 4.2. Elements of Foundational and Professional Knowledge 

Knowledge Elements Meaning 

Analytical and Critical Thinking 
 

A mental process of simplifying complex information into basic parts and 
evaluating results to make proper decisions 

Collaboration and Teamwork 
 

Apportion challenging tasks into simpler ones and then work together to 
complete them efficiently 

Ethical and Intercultural Perspectives 
 

Ethical perspectives of the different viewpoints someone uses to view a 
problem in the context of individual human values 

Mathematics and Statistics 
 

Use of numbers and theories abstractly especially in the collection and 
analysis of numerical data 

Multi-Task Prioritization and Management 
 

Processing several issues or tasks at once while arranging them according to 
importance to do specific one first 

Oral Communication and Presentation 
 

Conveying a message orally using real-time presentations with visual aids 
related audience interests and goals 

Problem Solving and Trouble Shooting 
 

A logical and orderly search for the source of a unit problem and making the 
unit operational again 

Project and Task Organization and Planning 
 

A process to provide decisions about a project concerning organization and 
planning to achieve a successful result 

Quality Assurance / Control 
 

Use of techniques, methods, and processes to identify and prevent defects 
according to defined quality standards 

Relationship Management 
 

A strategy to maintain an ongoing level of engagement usually between a 
business and its customers or other businesses  

Research and Self-Starter/Learner 
 

Someone who begins or undertakes work or a project without needing 
direction or encouragement to do so 

Time Management 
 

An ability to use a person’s time in an effective or productive manner to 
work efficiently 

Written Communication Use of a written form of interaction between people and organizations that 
provides an effective way of messaging 

 
 
As CC2020 defines skill— the proficient applying of knowledge—Table 4.3 summarizes an ordered sequence of six 
cumulative levels of skill (cognitive skill) together with abbreviated definitions. These levels correlate with Bloom’s 
taxonomy that permits the adoption of a commonly agreed vocabulary as described in the 2001 revisions to Bloom’s 
taxonomy of educational objectives [And5]. The table lists the cognitive skills as verbs.  
 
 

Table 4.3. Levels of Cognitive Skills Based on Bloom’s Taxonomy 

Remembering Understanding Applying Analyzing Evaluating Creating 

Exhibit memory of 

previously learned 

materials by 

recalling facts, 

terms, basic 

concepts, and 

answers. 

Demonstrate 

understanding of 

facts and ideas by 

organizing, 

comparing, 

translating, 

interpreting, and 

giving descriptions. 

Solve problems in 

new situations by 

applying acquired 

knowledge, facts, 

techniques, and 

rules in a different 

way. 

Examine and break 

information into 

parts by identifying 

motives or causes; 

make inferences and 

find evidence to 

support solutions. 

Present and defend 

opinions by making 

judgments about 

information, validity 

of ideas, or quality 

of material. 

Compile 

information together 

in a different way by 

combining elements 

in a new pattern or 

by proposing 

alternative solutions. 

 
 
Dispositions define the third dimension of competency. Table 4.4 displays eleven prospective dispositions derived 
from the literature. Disposition, as an intrinsic component of competency, represents the opportunity to express 
institutional and programmatic values expected in the workplace. Dispositional expectations enrich the 
description/assessment of competency and/or the related pedagogy. Ascribing a disposition to a competency indicates 
a clear commitment to self-reflection and examination that distinctly distinguishes a competency from a learning 
outcome.  
 
 



Computing Curricula 2020   Computing Curricula Report  
CC2020   2020 December 31 

Page 51 of 203 

Table 4.4. Prospective Elements of Dispositions 

Element Elaboration Element Elaboration 

Adaptable Flexible; agile, adjust in response to change Professional: Professionalism, discretion, ethical, astute 

Collaborative: Team player, willing to work with others Purpose-driven: Goal driven, achieve goals, business acumen 

Inventive: Exploratory. Look beyond simple solutions Responsible: Use judgment, discretion, act appropriately 

Meticulous: Attentive to detail; thoroughness, accurate Responsive: Respectful; react quickly and positively 

Passionate: Conviction, strong commitment, compelling Self-directed: Self-motivated, determination, independent 

Proactive: With initiative, self-starter, independent   

 
 
Dispositions are an essential characteristic of a well-structured competency model, and they have an intricate 
involvement in statements related to workplace or academic activities. People inherently know and recognize these 
elements of human behavior. While it may be difficult to teach disposition, faculty members should instill these 
concepts in their students through assessment design, exercises, sustained practice, readings, case studies, and their 
own example. The workplace and society assume that dispositions as in Table 4.4 are expected of every competent 
computing graduate. 
 
 
4.2.5:  Creating Competency Statements      
 
The competency model adopted in this CC2020 Report suggests that statements surrounding competency include 
knowledge elements paired with skill level and with dispositions. The following examples demonstrate a way to do 
this. Each of the three example competencies that follow specifies a statement of the task to be undertaken and itemizes 
the components deemed pertinent to effectively and efficiently accomplishing that task. 
 

Example A: From Computer Engineering 
 

Competency Title: A 

 
Competency Statement 
Manage the design of a computer system for a manufacturer using appropriate tools, design digital 
circuits including the basic building blocks of Boolean algebra, computer numbering systems, 
data encoding, combinatorial and sequential elements. 
 
Knowledge Element 
[Table #] 

Skill Level 
[Table 4.3] 

Architecture and Organization [4.1] Creating 
Digital Design [4.1] Creating 
Circuits/Electronics [4.1] Creating 
  
Analytical and Critical Thinking [4.2] Applying 
Mathematics and Statistics [4.2] Applying 
Problem Solving and Trouble Shooting [4.2] Applying 

Research and Self-Starter/Learner [4.2] Applying 
 
Disposition(s) 
[Table 4.4] 

Self-directed Meticulous Inventive 

 
 
 



Computing Curricula 2020   Computing Curricula Report  
CC2020   2020 December 31 

Page 52 of 203 

 
Example B: From Information Technology 

 
Competency Title: B 

 
Competency Statement 
Analyze and compare several networking topologies in terms of robustness, expandability, and 
throughput used within a cloud enterprise. 
 
Knowledge Element 
[Table #] 

Skill Level 
[Table 4.3] 

Computer Networks [4.1] Analyzing 
Platform Technologies [4.1] Analyzing 
  
Analytical and Critical Thinking [4.2] Applying 
Mathematics and Statistics [4.2] Applying 
Quality Assurance [4.2] Applying 
 
Disposition(s) 
[Table 4.4] 

Self-directed Purpose-driven Responsible 

 
 
 

Example C: From Software Engineering 
 

Competency Title: C 

 
Competency Statement 
Identify and document system requirements by applying a known requirements elicitation 
technique in work sessions with stakeholders, using facilitative skills, as a contributing member 
of a requirements team. 
 
Knowledge Element 
[Table #] 

Skill Level 
[Table 4.3] 

Requirements Analysis [4.1] Evaluating 
  
Oral Communication [4.2] Applying 
Written Communication [4.2] Applying 
Teamwork and Collaboration [4.2] Applying 
 
Disposition(s) 
[Table 4.4] 

Purpose-driven Responsible Collaborative 

 
 
 
 
4.3:  From Competencies to Curricula 
 
A coherent competency model permits the definition of a computing curricula (i.e., structured collections of learning 
experiences) in a manner that benefits its constituencies: students, benefactors, faculty, administrators, employers, 
accreditors, lawmakers, and society. It is useful to examine how key stakeholders can identify and author competencies 
as well as develop curricula based on the outcome expectations associated with competencies. This section 



Computing Curricula 2020   Computing Curricula Report  
CC2020   2020 December 31 

Page 53 of 203 

summarizes the more comprehensive discussion in Appendix E and reviews topics that are essential for enabling the 
practical definition and use of competencies.  
 
 
4.3.1:  Identifying and Authoring Competencies       
 
Different stakeholder groups may wish to identify and author collections of competencies. Computing educators at a 
university may wish to identify a collection of competencies to define the expected outcomes of the university’s 
baccalaureate program(s) in computing. Computing educators who represent professional or academic societies might 
desire to specify competencies to establish the outcome expectations of a national or global level model curriculum. 
Industry representatives might use a collection of competencies to specify their expectations for degree program 
graduates either for a specific job or for general use.  
 
As described earlier, stakeholders can specify competencies using either narrative competency statements or a 
component specification that separately identifies the knowledge-skill pairs and dispositions. For most purposes, the 
process of identifying and authoring competencies involves elicitation of required narrative competency statements in 
collaboration with those who best know the expectations that program graduates will face both soon after graduation 
and throughout their careers. Educators writing competency statements, for example, might collaborate with 
employers, students, or educational authorities and/or bodies. 
 
The methods and techniques for discovering competencies for a program specification are quite similar to those of 
systems requirements elicitation, including interviews, surveys, and evaluation of existing requirements.  
 
To define the highest level or most abstract competencies of a program, a course, or other curricular unit, it is necessary 
to articulate the knowledge, skill, and disposition components associated within a context. In a free-form competency 
statement, the focus is typically on the general outcome of the competency in the expected context. Expressing a 
competency in this manner, the knowledge, skill, and disposition components might not contain full or detailed 
exposure. Instead, users may need to infer the details from the free-form statement. Therefore, articulating the context 
of a competency is always crucial since it provides the motivation for the stakeholder, making it meaningful to learn 
and perform that competency.  
 
The literature offers some insight for developing competency statements [Per1]. In this setting, writers of competency 
statements should: 

• stipulate them as learner-oriented, essential competencies; 
• specify them in “clear, specific, unadorned, and concise language” that are measurable; 
• structure them as action oriented and begin with “the verb that most precisely describes the actual, preferred 

outcome behavior to be achieved;” 
• construct them to be consistent with “standards, practice, and real-world expectations for performance,” thus 

reflecting what “the practitioner actually needs to be able to do;” and 
• formulate them to contribute to a “cluster of abilities needed by the graduate to fulfill the expected overall 

performance outcomes.” 
 
Component specifications fully aligned with competency statements are essential for comparison and analysis 
purposes. In addition, the process of translating a free-form competency statement into a component specification may 
reveal non-desirable characteristics of the statement and can offer opportunities for significant improvement. The 
process of deriving component specifications from free-form statements is an iterative one and requires willingness 
and ability to interpret the statements in a way that allows identification of components inferred from the narrative 
statement. 
 
In some cases, it is useful to start from the competency components. Identifying the knowledge, skills, and dispositions 
components of a competency before constructing a competency statement is also be a good starting point. This is 
especially true in cases when the identity of a target competency is not fully clear and first requires calibration at a 
component level. 
 
 



Computing Curricula 2020   Computing Curricula Report  
CC2020   2020 December 31 

Page 54 of 203 

4.3.2:  Competency Specifications and Curricular Specifications       
 
Competencies alone do not address the question of how the educational experiences needed to enable students to 
acquire expected competencies by the time of graduation can be determined. Outcome expectations specified as 
competencies require transformation into a curriculum form consisting of educational activities that help to scaffold 
students’ progression in various types of outcome areas. 
 
Past experiences associated with processes that derived educational experiences from competencies can be helpful— 
e.g., the MSIS 2016 report [Acm11], the International Academy of Astronautics (IAA) Space Industry Systems 
Engineering competency model [Squ1], and the business curricula for competency specifications [Chy5].) Guidance 
from these experiences includes the following efforts. 

• Determine the characteristics of learning experiences that constitute a curriculum based on outcome 
expectations specified with competencies. 

• Indicate program competencies as a foundation for curricular specification benefits from existing competency 
models (e.g., those developed by industry, government, or professional societies). 

• Develop educational experiences that require not only identification of competencies, but also specification 
of the expected attainment levels from novice to expert. 

• Derive an initial set of learning outcomes associated with each competency; then, organize the learning 
outcomes into learning experiences. The sets of learning outcomes within each learning experience determine 
the topics in which students should engage and the pedagogical forms expected from the engagement. 

• Assess continuously the extent to which the implemented learning experiences enable students to attain the 
expected competencies at the expected level. 

 
The opportunity for students to develop skills and dispositions is a positive but potentially resource-intensive effect 
of specifying program outcomes with competencies. In many cases, such an approach requires a different set of 
pedagogical assumptions and methods compared to a mostly knowledge-based specification of assessable outcomes. 
In practice, competency-based outcome specifications can lead to a broader set of types of learning experiences. These 
often include a much stronger focus on various forms of experiential learning, from interactive simulations, to 
intensive projects, to field experiences, and to internships and cooperative programs with industry. Domain-specific 
skills and dispositions require a learning environment that is different from a traditional classroom environment. 
 
 
 
4.4:  Digest of Chapter 4  
 
This chapter discussed the nature of competency—a salient feature of the CC2020 project. It presented several 
competency statements to exemplify applications. Competency-based curricula are more expressive in their learning 
goals, and more easily translated to the language of graduate job descriptions and industry needs. Recognizing the 
knowledge-based approaches taken in many computing curricula to date, recent developments in computing curricula 
imply that the components of computing curricula should include not just knowledge and skills but also dispositions, 
skill levels, and typical (maybe “practical”) tasks expected of graduates. The use of the competency model can also 
assist in potentially automating the comparative analyses and visualization of curricula programs in computing. For 
these reasons, the CC2020 task force recommends that future curricular reports adopt this competency-based approach 
to describe computing curricula. 
 
 
  



Computing Curricula 2020   Computing Curricula Report  
CC2020   2020 December 31 

Page 55 of 203 

 

Chapter 5:  Analysis and Visualization of Curricula  
 
 
This chapter describes the analysis and visualization of curricula specified using different approaches. The goal is to 
use the digital representation of these curricula to analyze courses, programs, and entire curricula that have been 
specified within paradigms described in Chapter 3 and Chapter 4. This chapter offers illustrative visualization 
examples although the examples are not exhaustive.  
 
This discussion is based on the curricula already established by ACM and other professional organizations.  Thus, 
these illustrative examples are analyses and visualizations of existing curricula and are not introducing new curricular 
specifications. Readers should consult the original reports for curricular specifications.  
 
 
 
5.1:  On Visualization  
 
The competency model introduced in the previous chapter specifically lends itself to visualization and analysis.  In 
this section, a visualization toolset is introduced and an approach to formally analyzing curricula that are defined using 
this competency model is presented. 
 
Data form the basis of analysis and visualization. A given specification (e.g., a competency statement consisting of 
knowledge elements paired with skills, and dispositions) forms a basic data set. A repository that stores knowledge 
and competency specifications is central to the data and its analysis. The elements of knowledge, skills, skill level, 
and dispositions appear in Tables 4.1, 4.2, 4.3, and 4.4 in the previous chapter.  
 
 
5.1.1:  Some Basic Functions 
 
The basic functions of this set of tools include the following. 

1. Content Management: User(s) may enter competency specification(s) in various formats. 
2. Reporting/Presentation: User(s) may retrieve, display, format, and disseminate representations of competency 

specifications. 
3. Analysis: User(s) may query repository content specifying any category attributes or specification content and 

represent the query results as listings, comparisons, or visualizations for the purpose of analyses. 
 
The first function (content management) supports the collection and curation of glossaries of knowledge, skills, and 
dispositions along with synonyms and translations. Repository contents may be input manually or mechanically 
imported/exported using published formats and protocols (see Appendix F). This will accommodate not only 
competencies specific to formal curricular guideline development but also industry characterizations of professional 
and employment competency.  
 
The second function (reporting/presentation) provides a facility for representing competency specifications formatted 
for copying into formal organizational or institutional documents such as academic programs, accreditation standards, 
or professional licensure reports.   
 
The third function (analysis) concerns analyzing and visualizing knowledge or competency specifications. This may 
occur individually or collectively in comparison with each other. “Low-level” analysis involves individual 
specifications, and “high-level” analysis involves collections of specifications. This approach is useful for various users 
and stakeholders.  
 
 



Computing Curricula 2020   Computing Curricula Report  
CC2020   2020 December 31 

Page 56 of 203 

5.1.2:  Analysis of Competencies 
 
Competencies can be assembled into collections such as curricula, curriculum standards, specific job requirements, or 
requirements for categories of jobs. All such specifications are similar in nature and structure. Hence, it is possible to 
define the general notion of a “competency target” that reflects an entity defined by a collection of competencies.  
 
Table 5.1 identifies four competency targets. The Singular-Aggregate dimension of the table reflects whether the target 
is for a single entity or for a category of entities. The Education-Workforce dimension reflects whether the target 
relates to an education product or to a workforce product. 
 

Table 5.1. Competency Targets  Education Workforce 
Singular Programs Jobs 

Aggregate Subdisciplines Careers 
 
Each of these four targets represent an important application of competencies. Programs are individual computing 
educational programs delivered by colleges and universities. Subdiscipline represents curricular standards for each 
computing subdiscipline developed by the professional societies such as future curricular reports for computer 
engineering or computer science. Jobs reflects a specific work opportunity where industry or government can specify 
the requirements in terms of a set of competencies. Careers is a category composed of similar jobs where industry or 
government can specify the requirements across a category in terms of a set of competencies.  
 
Since a set of competencies can characterize a target, it is possible to view the structured K-S-D portion of each 
competency’s specification as a point in 3-D space, and a set of competencies as a point cloud. This approach lends 
itself to a visualization of competencies that require further exploration as presented in this chapter and Appendix G. 
 
While visualization of competencies in this model may provide insights, the idea of considering the proximity of 
targets is also a promising concept. Developing a specific distance metric between two targets is a potential area for 
future research and is based on the idea of obtaining an ordered value for this metric. Such a distance metric could 
enable pairs of targets ranked in terms of “closeness” similarity. For example, suppose students are searching for an 
educational program (i.e., Programs) to prepare themselves to be network administrators (i.e., Careers). If 
competency specifications exist for both the potential programs and the desired career, then the distance metric can 
rank programs in terms of how close they are to the desired career. The educational program that is the closest distance 
to the network administrator career target could be the optimal degree program for the students.  
 
It is possible to use a distance metric to support comparisons among all four types of targets. The following scenarios 
provide opportunities for target proximity. 

• For education providers, there is the opportunity to reduce the distance between the competencies 
associated with a program and the targeted jobs and careers by that program. The articulation of that 
distance could allow providers to make changes that close the gap and positively establish a reduction 
in that distance.  

• For education providers, there is the opportunity to calibrate programs with national and international 
standards for curricula in various fields by evaluating the distance between the provider’s program and 
the curricular standard for the subdiscipline. 

• For pre-college students, there is the opportunity to select a program based on the program whose 
competencies are the shortest distance from the desired job or career. 

• For employers, there is the opportunity to quantify the distance between the competencies required for 
a position, and the competencies exhibited by various candidates based on their completion of various 
educational programs and processes. 

• For college graduates, there is the opportunity to search for jobs based on the distance between personally 
held competencies and the competencies required for targeted careers. 

 
Based on pairs of targets, Table 5.2 conceptualizes several questions that could be addressed by this framework. 
 
 



Computing Curricula 2020   Computing Curricula Report  
CC2020   2020 December 31 

Page 57 of 203 

 
 

Table 5.2. Framework Questions 
Target #1 Target #2 Practical Exemplar Question 
Program Career How well does ABC University’s information technology program prepare someone to 

be a network administrator?  
Subdiscipline Career How well does a computer engineering degree from XYZ University prepare someone to 

be a chief information security officer? 
Program Job How well does ABC University’s computer science program prepare someone to be a 

senior programmer at ACME Corporation? 
Program Career How well does ABC University’s information systems program prepare a current 

business student to develop a career in programming? 
Program Program What are the differences between ABC University’s computer engineering program and 

XYZ University’s software engineering program? 
Program Subdiscipline How closely aligned is ABC University’s current computer science program to the 

(hypothetical) competency-based curriculum espoused by the pending CS202x report? 
 
The target proximity approach attempts to unify the education and workforce sides of computing. The past approach 
was to define computing curriculum standards in terms of knowledge areas, knowledge units, and learning outcomes. 
That approach complements academia and uses the classical role and scope of higher education as the curator of 
knowledge.  
 
On the workforce side, there have been successful attempts to define job requirements in terms of competencies 
through the development of competency frameworks. Recall the examples mentioned earlier and see Appendix B for 
the Skills Framework for the Information Age (SFIA), the European Competency Framework (e-CF), and the 
i Competency Dictionary (iCD). 
 
As noted in Chapter 4, computing educators have been transitioning to competencies for several years for some of the 
recent model curricula. However, the process is a long way from utilizing a common language that transcends both 
education and workforce. The lack of a formal structure in many previous notions of competencies means that 
constituents have not had a way to quantify and analyze competencies in terms of the questions in Table 5.2. This 
CC2020 report advocates a transition over time to a common language that stakeholders can utilize across education 
and workforce constituencies to understand and minimize the gap between education outputs (graduates) and the 
inputs required for a successful contribution to a global workforce in computing. 
 
 
 
5.2:  Competency-based Visualization Examples 
 
The questions or queries typically made by each of the stakeholder communities can suggest various visualizations of 
the query results. Users choose these representations to demonstrate the expressive potential of graphic 
communication. There is no intent to describe the computation required for the data to underpin the graphic. They are, 
however, all conceived as derived from the competency repository structure that implements the competency 
specification syntax. See Appendix G for use cases as well as many visualizations consistent with the CC2020 project. 
 
The procedure used in the following discussion assumes that data is available for use and analysis. From this basis, it 
is possible to visualize competency for stakeholder use.  
 
 
5.2.1:  Student Use Case 
 
A student is interested in entering undergraduate education in computing and wants to know what type of curriculum 
would best fit her interests. She might have some ideas about dispositions that are relevant in her future curriculum, 
and/or have a preliminary view on domains that would provide her with future job opportunities. She might start by 
checking promising dispositions (or, alternatively, she could start by choosing the knowledge categories and areas—
only the first scenario is shown here, but the alternative would lead to the same results). She would see a list of 



Computing Curricula 2020   Computing Curricula Report  
CC2020   2020 December 31 

Page 58 of 203 

dispositions (Figure 5.1(a)), from which she would choose, resulting in the interface showing the chosen dispositions 
as shown in Figure 5.1(b). Note that the dispositions are indicated by color, as there is no order dimension. 

 

                    
 

(a) Before choosing                                   (b) After choosing 

Figure 5.1.   Choosing dispositions by a prospective student 
 
The student may also indicate which knowledge categories and knowledge areas seem interesting for her. Figures 5.2 
and 5.3 show a possible process. She first chose three categories: Users and Organizations, Systems Modeling, and 
Software Fundamentals. In Figure 5.2, the ellipses of these three categories are highlighted with red borders. If needed, 
the student could indicate which individual knowledge areas are most relevant. Figure 5.3(a) shows the knowledge 
areas for each of the chosen three categories. The student chose the knowledge area User Experience Design for Users 
and Organizations category, and Systems Analysis and Design and Requirements Analysis and Specification for 
Systems Modeling category; the ellipses of the chosen knowledge areas are highlighted with red borders. The student 
did not want to make a detailed choice in the category of Software Fundamentals. The resulting choices are shown in 
Figure 5.3(b). 
 

 
Figure 5.2.   The student’s choice of computing categories 

 



Computing Curricula 2020   Computing Curricula Report  
CC2020   2020 December 31 

Page 59 of 203 

  
 

  (a) Choosing knowledge areas (b) Final result 

Figure 5.3   Detailed choice of knowledge areas 
 
 

If the student is satisfied with this set of knowledge areas, she may confirm and ask for a global view of how the 
various curricula match her interests. Based on the student’s choices, the system searches for curricula that fit this 
intended content. In Figure 5.4, the intended knowledge categories—partly specified into knowledge areas—are 
mapped for each of the six curricular guidelines. The blue squares indicate the extent to which the knowledge 



Computing Curricula 2020   Computing Curricula Report  
CC2020   2020 December 31 

Page 60 of 203 

 
Figure 5.4.   Mapping of chosen knowledge categories to the six curricular guidelines 

 
 

 
Figure 5.5.   Disposition and competency details 

 
 
5.2.2:  Industry Use Case 
 
A user from industry has developed a list of relevant knowledge areas for which relevant skills, knowledge levels, 
and/or dispositions are required for the company’s computing employees. She wants to find out which curriculum 
might potentially provide professional education for the company’s employees, in their context. Initially, CS and IT 
seem to be available and promising.  
 
Similar to the process that the student took in Figures 5.2 and 5.3 in section 5.2.1, the industry user decides to choose 
Hardware, Software Fundamentals, and Software Development as categories that seem relevant, and removes the 
other three categories. She then checks the knowledge areas for each of the chosen categories and chooses the areas 
that she believes to be relevant for her, resulting in Figure 5.6. 
 



Computing Curricula 2020   Computing Curricula Report  
CC2020   2020 December 31 

Page 61 of 203 

 
Figure 5.6   Result of knowledge areas selection 

 
 
The user is now able to indicate for each of the selected knowledge areas to, either or both, indicate what skill level 
would be required, and what dispositions are relevant. Suppose that the user indicates that she is willing to provide 
specifications for the knowledge area Software Fundamentals. In Figure 5.7, the skill level is specified by using a 
slider, and the disposition is specified by choosing from a menu. 
 

 
 

Figure 5.7.   Detailing skill and disposition 
 
 
When all relevant specifications for the selected knowledge areas have been provided, the system generates a radar 
chart comparing the knowledge level for selected curricula. The distance from the center indicates the skill level 
related to each knowledge category. Figure 5.8 compares the curriculum of CS and IT. The radar chart has been 
augmented with the specification from the user. In the example, it seems CS is the best match for the user’s required 
knowledge levels. This is because there is a complete coverage of the user's specifications and the curriculum content; 
that is, the blue CS surface completely overlaps the user's green specification surface. 

 



Computing Curricula 2020   Computing Curricula Report  
CC2020   2020 December 31 

Page 62 of 203 

 
Figure 5.8.   Comparison of CS and IT based on knowledge level 

 
 
These two case examples have also been published [Tak1]. 
 
 
 
5.3:  Knowledge-based Visualization Examples 
 
The procedure used in the following discussion assumes that data is available for use and analysis. From this basis, it 
is possible to visualize knowledge areas for stakeholder use.  
 
 
5.3.1:  Computing Educator 
 
A computing educator has the question “How does my program fit with an international curricular guideline?” Figure 
5.9 shows a comparison of an institution’s evaluation of its program as a solid line to the evaluation based on the 
knowledge areas listed in Table 4.1 from Chapter 4. In this case, the evaluation denotes the weight of each knowledge 
element in the CS subdiscipline. The figure shows how this institution matches the guidelines and where the institution 
differs. For example, compared to the “standard” CS curriculum, this institution has a stronger emphasis on knowledge 
elements such as enterprise architecture and embedded systems, and on hardware related elements such as circuits and 
electronics. 
 
 
5.3.2:  Educational Authority 
 
Educational authorities could also use Figure 5.9 to answer the question “Does this curriculum comply with the 
guidelines for curriculum X?” Figure 5.9 shows that none of the institution’s evaluation falls below the minimum 
value of the “standard” CS curriculum. This outcome suggests that this institution’s CS curriculum complies to the 
standard CS curriculum.  Note that different stakeholders can use the same figure to address different questions. 
 
 
 



Computing Curricula 2020   Computing Curricula Report  
CC2020   2020 December 31 

Page 63 of 203 

 

 
 

Figure 5.9.  Comparison of an institution’s evaluation against the knowledge table evaluation 
 
 
5.3.3:  Visualization of the Landscape of Computing Knowledge T





Computing Curricula 2020   Computing Curricula Report  
CC2020   2020 December 31 

Page 65 of 203 

and infrastructure, software development, software fundamentals, and hardware. The organization of the 
knowledge areas in the final table followed this process. 

 
Many types of visualizations can be made for the data found in Table 5.3. Figure 5.10 presents a radar chart that shows 
the maximum emphasis for the knowledge areas. Section 3 in Appendix G also gives a bar chart and line chart for the 
same data set, as well as a ribbon chart which could also be used for the same data set. 
 
 

 
Figure 5.10. Radar Chart showing maximum emphasis of knowledge areas 

 
  
Please note that the steering committee included these specific six computing disciplines (CE, CS, CSEC, IS, IT, SE) 
in this integrative analysis because they were the ones for which a major computing society had approved an 
undergraduate curriculum recommendation. The seventh discipline, data science, was not included since there was 
not a similar recommendation available at the time of this analysis. The same applies to other new computing 
disciplines for which curriculum recommendations emerge. In fact, the process should repeat regularly after new 
versions of existing recommendations become available. 
 
 
5.3.4:  Other Visualizations 
 
Other knowledge-based visualizations including the visualization of a whole curriculum appear in Appendix G. 
 
 
5.4:  Challenges Concerning Competency Visualization 

 
The ability to visualize aspects of curricula and competencies present several challenges. These challenges can include 
the interpretation of nomenclature and vocabulary or the comparison of two entities.  
 
 



Computing Curricula 2020   Computing Curricula Report  
CC2020   2020 December 31 

Page 66 of 203 

5.4.1:  Consistent Vocabulary 
 
One issue that exists is the issue of standardized or consistent vocabulary for knowledge. For example, “refactoring” 
appears in both CS2013 and SE2014. In CS2013, the word refactoring is part of “software design” and “software 
evolution” knowledge units. In SE2014, refactoring is part of “software process” knowledge unit but is not in the 
“software design” knowledge unit. This suggests that refactoring may have a subtly different meaning between the 
two curricula, or that “software design” has a subtly different meaning.  
 
In a perfect world, one would develop an ontology to which all computing curricular guidelines would adhere. This 
unfortunately may not be feasible in practice as there may be issues such as the following. 

(1) Can one develop such an ontology? 
(2) Would all computing sub-disciplines adhere to it? 
(3) How does one handle emerging sub-disciplines? 

These three issues are interesting topics that future work could consider. 
 
 
5.4.2:  Entity Comparison 
 
There is also an issue of what it means to “compare” entities. A simple comparison would be to check for equality. 
But that may not always be appropriate. For example, as the skill level has an ordering aspect to it, if an element of 
knowledge K is required to be at the skill level of “understand,” then any competency whose knowledge K is at a 
higher skill level, e.g., “apply,” “analyze,” “evaluate,” “create,” should satisfy or be sufficient for comparison purposes 
(for just that knowledge K). 
 
Another issue is the comparison of composite competency specifications. Comparing two atomic competency 
specifications could be straightforward.  The respective knowledge-skill pairs and dispositions of the two atomic 
competency specifications could just be compared, but there could be multiple ways to compare composite 
competency specifications. For example, one possibility is to drill down and compare the leaf competency 
specifications. Another possibility is to compare at the top-level competency specification. 
 
 
5.4.3:  Visualization types 
 
Visualization can take many forms for even the same data set. For example, Section 3 of Appendix G shows several 
visualizations for the same data. Different people may prefer different types of graphs to understand a comparison. In 
fact, although color is 



Computing Curricula 2020   Computing Curricula Report  
CC2020   2020 December 31 

Page 67 of 203 

 

Chapter 6:  Global and Professional Considerations 
 
 
This chapter addresses some of the global issues surrounding computing education. These issues include but are not 
limited to the lack of a common nomenclature among different countries and regions, the different forms of degree 
programs across the world, and the various dynamics that can influence the ability of universities to produce competent 
computing graduates.  
 
Readers should note that it is not possible to include all aspects of a topic, an opinion, a country, a person, or a region. 
They should consider what is presented as examples of different situations and explore further research in such areas. 
 
 
 
6.1:  Global Context and Computing Programs 
 
There is a need to express curricular models and recommendations in a neutral manner that is acceptable and 
understandable by all people. Terminology and nomenclature are one aspect of this. Another is how any 
recommendation reflects the cultural context on a global scale.  
 
The Tower of Babel is a well-known biblical account where people who were building a tower to reach heaven had 
their singular speech confounded so that they could no longer understand each other. In some way, this seems to be 
the situation regarding computing today. It is neither intended nor possible for this report to determine a single 
terminology applicable to computing education worldwide. This report, initially written in English, may not be the 
common language of many countries in the world. Although this report has been written using English terminology, 
it does not presume to tell speakers of other languages which terminology they should use in those languages. 
 
For example, in most countries of Europe, a word that is associated with computing degrees translates directly into 
English as informatics. In 1957 Karl Steinbuck coined the German word Informatik [Ste1] and, subsequently, other 
languages adopted the word. Examples are l’informatique in French, informatica in Italian and other languages, 
informática in Spanish, and informatikës in Albanian. In translating these words into English, they are sometimes 
translated as ‘computing sciences’ in addition to the possible US “computing + x” terminology. However, there is an 
increased tendency to use the word as ‘computing’ as an equivalence to ‘informatics’ lately. The informatics family 
of names developed independently from, and approximately at the same time as the term computer science developed 
in the United States. The term computer science first appeared in print in 1959, and it was another three years before 
the appearance of the first study program called ‘computer science.’ [Ted1] When not used as the name of a degree, 
universities sometimes use informatics as the overarching name for the academic discipline such as the School of 
Informatics at the University of Edinburgh or the Department of Informatics at Sussex University, as well as within 
countries. 
 
In Latin America, a preference exists to include the word ‘engineering’ in degree titles. A working group organized 
to study the ‘computing engineering’ degrees in Latin America and elsewhere concluded that it would be unreasonable 
to expect everyone to use a common set of program names. Instead, it developed a common set of categories to 
describe the content of degrees. For example, applying those categories to the systems engineering degree in Uruguay, 
it found that the degree had good coverage of concepts from computer science and software engineering, lower 
coverage of concepts from information systems and information technology, and, despite its name, weak coverage of 
concepts from computer engineering [Ram1]. This example alone should suffice to make it clear that terminology is 
not uniform even when translated into English. 
 
Australasia (which comprises Australia and New Zealand and some neighboring islands) provides another example, 
this time with ‘information technology’ as its terminology. Australasia uses information technology to refer to the 
whole of the academic field of computing. For example, at the time of writing, the entry to the information technology 
office area at Monash University in Australia bears the following message.  



Computing Curricula 2020   Computing Curricula Report  
CC2020   2020 December 31 

Page 68 of 203 

“Information Technology: algorithm, distributed systems, database, software engineering, network, information systems, 
computation, knowledge management, analysis, mobile computing, design, e-business, model, data mining, interface, 
business decision support”  

 
A comparison of these terms with those found in a typical US or Canada information technology degree should make 
it clear that the same term means quite different things in Australasia compared to the use in US and Canada. 
 
 
 
6.2:  Computing Nomenclature  
 
This report takes a proactive position in attempting to normalize the use of terminology in the computing field. The 
public cannot view computing as a valid profession if professionals within it cannot agree on the meaning of the words 
it uses. Established sciences and professions such as medicine have definitive meanings regarding the words they use. 
This simple understanding does not exist in computing. The computing field is relatively new in comparison to 
stablished sciences and professions, and the meanings of fields and terms have emerged independently. This mixture 
of terminology will only bring more confusion to the field. Fortunately, this CC2020 Report through Appendix H and 
other literature on global interpretations of computing education terminology [Sim1] have helped to dispel such 
misgivings. 
 
This Report necessarily uses specific terminology. The companion reports for identified subfields of computing 
necessarily use specific terminology. Unfortunately, there is no universal terminology in computing or in computing 
education, even within the English-speaking world. To some individuals, in a specific context, terms such as computer 
engineering, computer science, information systems, information technology, software engineering, and informatics 
have reasonably clear meanings. However, to other individuals in other contexts, these terms (especially informatics) 
can have quite different meanings, and those different meanings have just as much legitimacy.  
 
People need to be conscious of all this variation when writing about degrees, especially within a strictly local audience 
or when reading about degrees that are not from one’s own region. For these reasons, the terminology used in this 
report is for convenience. It generally aligns with the terminology used in US and Canada. It is not a prescription on 
how people and universities around the world should name their degrees, majors, or individual courses of study.  
 
To disrupt this misunderstanding, the CC2020 Report suggests that the public use the word ‘computing’ to describe 
the entire field. Such an adoption will take some time to become universal. However, using the word judiciously will 
eventually begin a convergence to a computing profession. For example, the word ‘engineering’ has relatively good 
universal understanding. Computing should come to have a similar universal understanding.  
 
There are many other words that require clarification. Appendix H provides an equivalence table of terminology. The 
table should provide some guidance in trying to understand the meaning of computing words and how people use 
them in a global context.  
 
 
6.2.1:  Degree Names, Job Positions and Job Titles  
 
Differences in computing degree names (as discussed in 6.2.2) and job titles can lead to confusion. The concept of 
licensure can be similarly affected.  
 
In today’s world, there is often confusion regarding what a person does and what a job position entails. For example, 
the phrase “software engineer” is a generic name used by many to identify someone who creates or develops software. 
That person may be a mathematician, a physician, a civil engineer, or even a practitioner without any specific 
university degree or title. In English, the phrase normally refers to the people that occupy a job position. In other 
languages such as in Spanish, it is common to address people based on the title they received when they finished their 
undergraduate studies. As an example, in English there may be an announcement that “Company X seeks to hire three-
thousand software engineers” to fulfill a large government contract. In this case, the reference is for people prepared 
to create or develop software, regardless of the title of the degree they obtained. In this case, it would be a mistake to 
assume that Company X is looking for people with a specific software engineering university degree title. 



Computing Curricula 2020   Computing Curricula Report  
CC2020   2020 December 31 

Page 69 of 203 

 
Licensure provides proof that a person is licensed by a branch of government to work in a profession. For example, 
for the privilege driving an automobile, almost all developed countries require a driver’s license. To practice medicine, 
dentistry, nursing, or law, a government agency requires a person to have a license to practice a profession. For 
professions such as medicine, this licensure occurs after a person completes formal studies and attains a degree such 
as a medical degree. 
 
Some universities in different parts of the world issue a “licentiate” degree. It refers to a degree below a doctoral 
degree. Terms such as “licentia docendi” refer to permission or license to teach; the term “licentia ad practicandum” 
refers to someone having permission (license) for professional practice. The use of “license” can create much 
confusion in computing, and it is best to avoid the term except when issued for licensed practice such as a licensed 
professional engineer, a licensed computer engineer, or a licensed software engineer. Such professional licensure 
requires stringent legal regulations involving formal examinations, acquired university degrees, and years of 
professional practice.  
 
 
6.2.2:  Degree Names and the Workplace 
 
Degrees are not the only type of qualification that students can attain in computing. Around the world, colleges of 
various sorts offer certificates, diplomas, and advanced diplomas in different aspects of computing. For example, a 
micro-credential can certify competence in a specific skill through evidence created by practice. In some cases, these 
qualifications offer their holders entry to a traditional university degree; in others, they offer their graduates direct 
entry into professional employment. While these qualifications are typically vocational qualifications, it would be a 
mistake to think of them as inferior to university degrees [Tan1]. 
 
It should suffice to mention that ‘a computing degree’ is not a unique qualification for employment. Degrees and other 
qualifications in computing are astonishingly diverse in their duration, the extent of their focus on computing, and the 
scope of other material studied. Degrees are diverse in their terminology with the same name used for quite different 
learning experiences; likewise, a variety of different names can correspond to similar degrees.  
 
The inconsistency of naming computing degrees has reached the level that in some job markets, the terms are more 
confusing than descriptive of any competence that graduates can offer in the workplace. In fact, many employers tend 
to ignore the value of a degree name. That is, although possession of a baccalaureate degree is important, the name of 
degree is of little consequence. Employers are more interested in a graduate’s technical skill set and the human 
temperament that the graduate possesses. From the viewpoint of students and prospective students, it is best for them 
to enter a computing program they desire and have an ability in which to excel rather than enter a computing program 
that sounds trendy.  
 
 
6.2.3:  Use of the Word “Engineer”   
 
The word “engineer” has diverse meanings in different parts of the world. In some places, it has a prestigious meaning, 
reputationally equal to, for example, "doctor" or other important professional. In other places, it is a just a normal 
expression used in a degree title or a job position. In some instances, universities unnecessarily force the word into 
degree titles to suggest an element of prestige, often as a scheme to attract students into their programs. In these cases, 
the use of “informatics engineering” or “systems engineering” may not have the program quality commensurate with 
its actual meaning. Hence, a university that renames a typical computer science program as an informatics engineering 
program would naturally attract more students because of a more appealing or more “prestigious” name. In Latin 
America, for example, the reason that programs have a degree name of “systems engineering” is largely due to 
corporate positions promoted by industry.  
 
The use of the term "civil" can be equally confusing. Specifically, in Chile, “civil engineering” contrasts with “military 
engineering.”  The word civil refers to people or engineering for the good of people.  Hence a “civil computer 
engineer” is really a “computer engineer” rather than a civil or construction engineer who has a computing 
background.  These types of traditions may cause confusion and unnecessary problems especially for international 
understanding and processes such as student exchange and accreditation.   



Computing Curricula 2020   Computing Curricula Report  
CC2020   2020 December 31 

Page 70 of 203 

 
 
6.3:  Worldwide Computing Degree Structures  
 
Differences in the terminology and nomenclature in computing education cause confusion because of the wide variety 
of computing degrees around the world. This section provides a few samples reflecting worldwide degree structures. 
Establishing a complete list of such structures is beyond the scope of this report. 
 
 
6.3.1:  Computing Education in Africa 
 
Computing programs presented in Africa are mostly bachelor programs in science with specializations in computer 
science. Older institutions tend to present a wider variety of computing programs. In many cases these programs are 
within the same department. Very few universities have departments dedicated to computer science and information 
systems (also referred to as informatics). Computer science programs typically confer “Bachelor of Science” degrees 
where the curriculum includes mathematics, possibly statistics and a science. Information systems results in a 
“Bachelor of Commerce” degree, conferred where the curriculum includes studies in economic and management 
sciences. When the distinction between computer science and information systems is not clear, the program becomes 
an information technology degree. These programs may include study from disciplines outside computing. 
Universities presenting engineering degrees may have a program in computer engineering. A focus in software 
engineering tends toward inclusion within a sciences program.  
 
Disparate degree structures exist throughout Africa. There is, understandably, a movement to formulate a mapping 
between these structures. The main difference is the presentation of a bachelor’s program. In some countries, a 
bachelor’s degree takes four years; in other countries, a four-year degree program is seen as a professional program. 
All other degree programs are three years followed by one year of honors study. 
 
 
6.3.2:  Computing Education in Australasia  
 
Degrees in Australasia have hybrid names that correspond in some way to majors in US and Canada and three-year 
programs in Europe. Degree names such as Bachelor of Computer Science, Bachelor of Information Science, and 
Bachelor of Software Engineering are common. Students choose a specific degree program before beginning 
university study, rather than choosing a major once on their way into a more generic degree program. Some of the 
degrees are tightly focused,  those described for the United Kingdom, but there are also broader degrees where perhaps 
one-third of the courses studied are outside computing.  
 
For example, consider the Bachelor of Information Technology degree at the University of Newcastle [New1]. Of the 
twenty-four courses that make up the degree, ten are core and must be taken by all students. Students typically use 
their major and/or their electives to supplement their computing studies with knowledge from non-computing areas to 
prepare them for their future computing work in those areas.  
 
 
6.3.3:  Computing Education in China  
 
According to the China National Higher Education Catalog, there are six categories related to computing. They include 
the following: computer science and technology, software engineering, network engineering, information security, 
Internet of Things engineering, and digital media technology. The curriculum usually consists of general education in 
the areas of politics, English, and liberal arts, foundation course for mathematics, physics and electronics engineering 
and computing curriculum. Compulsory courses and elective courses make up all the courses for a major. The Chinese 
education system includes junior colleges which offer two- and three-year degrees that have lower requirements than 
universities. These junior colleges offer vocational programs as well as programs that allow transfer to a university.  
 
There is a parallel classification system issued by Ministry of Education of China from the perspective of graduate 
level education for university evaluation. There are three first-level disciplines for computing: computer science and 



Computing Curricula 2020   Computing Curricula Report  
CC2020   2020 December 31 

Page 71 of 203 

technology, software engineering and cyberspace security. Recently, the ministry has approved artificial intelligence 
to be the fourth first-level discipline. Under computer science and technology, there are six second-level subcategories: 
information security, software engineering, computer software and theory, computer system structure, computer 
application technology and computer technology. There are some other inter-discipline second-level categories such 
as electronic and computer engineering, information systems management, information and communication 
engineering, health informatics, bioinformatics, and geographic information science.  
 
Additionally, China and its education ministry have embraced competency as an important element in the development 
of computing and engineering programs. Appendix I summarizes China’s “Blue Book” project [Blu1] that addresses 
the need for competency in university environments, particularly as it applies to computing and engineering education 
programs.  
 
 
6.3.4:  Computing Education in Europe  
 
Degrees in the United Kingdom and parts of Europe focus on a specialist area of study from the outset. Students do 
not begin a general degree and subsequently choose a specialization; they enroll from the outset in a specialist degree. 
For example, the three-year BSc Computer Science program at Exeter University [Exe1] includes required computing 
and mathematics courses, a choice of optional courses, and a major project accompanied by optional experiences. 
 
The Bologna process ensures comparability in the standards and quality of higher-education qualifications. The 
process has 48 participating countries. The Bologna framework [Bol1] specifies three higher education qualification 
cycles: bachelor’s (three years), master’s (two years) and doctoral (three years). An important part of the European 
approach is the framework for qualifications of the European Higher Education Area. The so-called Dublin 
Descriptors provide “generic statements of typical expectations of achievements and abilities associated with 
qualifications that represent the end of each of a Bologna cycle” [Bol2 p65] in relation to five categories: knowledge 
and understanding; applying knowledge and understanding; making judgments; communication skills; and learning 
skills. These descriptors provide discipline-independent descriptions of what each of the degree cycles require.  
 
“Informatics for All” is a new coalition involving ACM Europe, Informatics Europe, and the Council of European 
Professional Informatics Societies (CEPIS). Its purpose is to promote the advancement of informatics education within 
Europe, primarily at the level of primary and secondary high school education. Following a survey of the state of 
informatics education throughout Europe, “Informatics for All” developed a two-level strategy: (1) the view of 
informatics must be an important foundational discipline taught to all pupils, and (2) informatics integrated into the 
teaching of other disciplines in a manner leading to a deeper form of education in those other disciplines [Acm18]. 
These activities are gaining much support within Europe. 
 
 
6.3.5:  Computing Education in India 
 
In India, the University Grants Commission (UGC) mainly regulates education in India [Ind1] and defines the 
framework within which universities operate, including the names of degrees that they may award. The university 
system structure contains two levels: the university itself, and a set of colleges affiliated with it. The university 
determines the curriculum and assessment of most degree programs conducted at affiliated colleges with the colleges 
serving as the “delivery” mechanism. There are mainly two broad strategies followed in designing degree programs 
for bachelor level computing education in India. Four-year programs are the norm in computer engineering (CE) and 
information technology (IT) degree programs. The first year is devoted to physical sciences, mathematics, and 
statistics for engineering. Most courses are common between CE and IT with business courses forming the main 
difference that distinguishes IT from CE. On the other hand, three-year programs are the norm in computer science 
and computer application programs, with some institutions offering an additional fourth year of study typically called 
an “honours” program. Most three-year computer science programs focus on applied aspects.  Further, the master’s in 
computer applications program is also typically a three-year program since the university envisions it as the first 
program for students who have a bachelor’s degree from other streams. Therefore, although named as a “master’s 
program,” it often becomes a first-level degree in computing.  
 



Computing Curricula 2020   Computing Curricula Report  
CC2020   2020 December 31 

Page 72 of 203 

India operates 895 universities, 42,338 colleges, and 3,225 engineering institutes [Ind1,Ind3]. Table 6.1 illustrates 
enrollment figures for three categories of study.  
 

Table 6.1. Enrollment data for university studies in India (2017) 
 Male (x100,000) Female (x100,000) Total (x100,000) 

UGC (All inclusive) 15.27 14.16 29.43 
UGC (Non-Engineering CS) Not Available Not Available 9.68 

AICTE 5.30 2.20 7.50 
 
The National Assessment and Accreditation Council (NAAC) [Ind2] is an autonomous institution under the UGC that 
is responsible for quality assurance of higher education institutions in India. Additionally, the All India Council for 
Technical Education (AICTE) regulates technical streams like technology, engineering, and pharmacy [Ind3]. The 
National Board of Accreditation (NBA), which is an autonomous institution with the AICTE, promotes international 
standards of technical education in India [Ind4]. 
 
 
6.3.6:  Computing Education in Japan 
 
In Japan, computing related bachelor’s degree programs are of two types: those that focus on computing such as 
computer science, and those whose primary focus is on other fields. Most of the former type come under the broad 
umbrella of either a Bachelor of Engineering degree or Bachelor of Science degree. Some universities have more 
specific names, such as a Bachelor of Informatics or a Bachelor of Computer Engineering [Bac1]. For those of the 
second type, the degree name may be, for example, Bachelor of Business and Informatics, but the actual focus of the 
degree may be in fields such as business and design. In those cases, computing (informatics) would be a comparatively 
minor part of the degree. This situation is also described in a published survey [Kak1], whose results found that nearly 
half of the students in a “computing” department are learning computing domains other than those defined in CC2005. 
Such students belong to interdisciplinary departments such as a department focusing on business with a computing 
component. 
 
Even for the first type degree, there is a wide difference between universities on how students achieve a degree, 
especially at the beginning. At some universities, students start with a basic set of courses such as physics, chemistry, 
mathematics, and informatics in their first year of study. They then begin their actual major in their second year. At 
other universities, students will start their actual major in their first year. Computer programming, which is a basic 
requirement for any computing related degree, accentuates this difference; some universities have their first 
programming course in the student’s first year while others have it in the second year.  
 
 
6.3.7:  Computing Education in the Middle East 
 
The Middle East and North Africa (MENA) is a complex region consisting of twenty countries with a population of 
almost 600 million people. Most universities of the MENA countries follow the ACM/IEEE computing curricular 
guidelines. For example, since the mid-2000s, most countries have followed the Curriculum Guidelines for 
Undergraduate Degree Programs in Information Technology, known as IT2017 [Acm07] and formerly IT2008 [Lun1]. 
These reports recommend computing areas beyond programming and provide the potential to conduct projects, 
internships, and research together with an emphasis on components to enhance the practical experience of students. 
Such degree programs also foster adaptability to change in job market needs by providing in-depth knowledge through 
specific concentrations that are easily interchangeable. Hence, respected IT programs in the Middle East have enjoyed 
success with these principles, and they serve as models for IT programs in the region. 
 
Computing in the MENA region is important for development and modern technology. The region needs computing 
specialists due to the penetration of computers in all aspects of life. In response to the reality of the projected need for 
national competence in the field of computing, countries are creating futuristic and specialized academic computing 
programs. For example, in Saudi Arabia, the futuristic approach has generated innovative programs in computer 
engineering and computer science with great demand and it has led to three additional programs in information 
systems, software engineering and information technology. Several universities in the country are following these 
innovations and the concept is spreading to other universities in the region. As another example, for more than twenty 



Computing Curricula 2020   Computing Curricula Report  
CC2020   2020 December 31 

Page 73 of 203 

years, high schools in Israel have taught computer science just like physics, biology, and chemistry. In recent years, 
elementary and junior high schools have introduced computer science in an extended piloting stage. For non-
computing teachers, the government has established a teachers’ center, so no teacher feels isolated. The center serves 
as a vehicle where teachers can contact their colleagues, find materials, and receive invitations to attend workshops 
and conferences.  
 
Many computing programs in the MENA region also seek accreditation from Western-type agencies such as ABET 
in addition to local or governmental accrediting agencies. Furthermore, many MENA countries have started efforts to 
make computing a core or compulsory course in the secondary schools. Such courses would cover fundamental topics 
in the computing field, an introduction to programming, as well as technologies and programing for smart devices. 
Some countries have begun to implement digital transformation plans to become an educational component for 
intermediate and elementary schools to produce a technologically advanced generation.  
 
 
6.3.8:  Computing Education in Latin America  
 
In Latin America, a typical degree requires a duration from four to five years, with some extra content devoted to 
general subject matter such as literature, writing, mathematics, logic, and other related subjects. The subsequent years 
are more focused on computing topics. Additionally, degrees in Latin America have several hybrid names mostly 
oriented on teaching ways to use technology. Students in Latin America choose a degree path before beginning 
university studies. Most of the tightly focused degrees begin computing with the very first semester. The best example 
following international recommendations is Brazil where clear groups of well-defined programs are offered. Almost 
all computing programs orient themselves to guidelines presented in computing curricula from ACM and IEEE-CS. 
Furthermore, because of historical reasons, degrees in Chile distinguish between civil (people) engineers and military 
engineers. Similar situations occur in Peru, Colombia, Equator, and Venezuela. Decades ago, IBM had influenced the 
early computing programs with the degree designation for computing programs called “systems engineering” 
according to IBM’s job position, a mistake that continues even today after several decades. Mexico has also worked 
to reduce the nomenclature of its programs to computer engineering, computer science, information systems, and 
software engineering, which people often call “informatica” in the region. 
 
 
6.3.9:  Computing Education in North America  
 
Two-year degrees and four-year degrees encompass all possible degree structures in the US and Canada. Most of these 
four-year degrees in the US and Canada have the designation of Bachelor of Science (BS) degree, Bachelor of Arts 
(BA) degree, Bachelor of Engineering (BE) degree, or other baccalaureate degree descriptors. Computing topics 
within a community college program should be equivalent to at least one full year of study in the four-year program 
of study. It also includes relevant mathematics and science as other important components of a computing program. 
Additional program requirements, often called general education requirements, depend on the characteristics and 
mission of the program and the institution. Almost half the undergraduates in the United States are enrolled in two-
year colleges and more than half of all first-time college first-year students attend community and technical colleges. 
Students in two-year community college programs often earn associate degrees [Aac1]. Articulation agreements often 
exist between institutions of the two-year programs and the four-year programs to facilitate seamless transfer from 
two-year programs to four-year programs.  
 
 
6.3.10:  Computing Education in the United Kingdom  
 
In the United Kingdom, computing is well embedded in primary and secondary school education, with mandatory 
standards set at country level. In England, the UK Government’s Department for Education defines these. In Wales 
and Northern Ireland, the local governments set the standards, but they are broadly comparable to England. In 
Scotland, the government specifies the Curriculum for Excellence (CfE) covering primary and secondary education. 
Education Scotland defines the four-year CfE taken by all later year primary and early year secondary students. 
Computing and cognate disciplines are available in all UK universities, which are overwhelmingly public bodies. The 
independent Quality Assurance Agency (QAA) for higher education specifies post-school national benchmarks for 
computing curricula. For example, the computer science benchmark [6] explicitly follows the ACM/IEEE curricula. 



Computing Curricula 2020   Computing Curricula Report  
CC2020   2020 December 31 

Page 74 of 203 

The British Computer Society (BCS) accredits UK computer science programs; its guidelines follow the QAA 
statement [Bri1]. See [Com1,Com2,Dep1,Edu2] for more comprehensive overviews of the national computing 
curricula. 
 
 
 
6.4:  Global Economics and Computing Education  
 
The global digital economy continues to drive job creation and sustainment. The expansion of this digital economy 
has resulted in substantial demand for an increased volume within the labor pipeline. This situation has resulted in 
labor shortages, whereby the output of baccalaureate programs has been insufficient to meet the demands of the 
workforce. The education community has adapted to these forces by creating alternative pathways to education and 
training based on shorter duration programs. Community (two-year) college programs (programs generally unique to 
the United States) have seen substantial increases in student enrollments.  
 
Furthermore, the idea of micro-credentials through short-term and online programs (or self-studies) are becoming 
increasingly popular, as are coding “bootcamps” and “academies” devoted to focused, short-term training. The effect 
of these market forces on the various computing disciplines is not fully clear. Generally, these shorter-term programs 
have areas of emphasis that are based on “just-in-time” market situations related to the various computing disciplines. 
However, no standard expected outcome, or competency, exists that has universal acceptance for these short-term 
programs.  
 
 
6.4.1:  Innovation Spaces  
 
The digital revolution has provided the world with a plethora of new technologies that have improved people’s lives. 
Smart phones, medical imagery, aviation and aerospace, contemporary automobiles, communication infrastructure 
and tools, and complex video games are just a few applications touched by computing and digital technology. 
Computing affects all people in some way with new and emerging technologies still in their infancy.  
 
The future promises even greater expectations on the ways computing innovations will affect people’s lives and 
computing education. Computing education must be agile enough to address the rapid changes of the field. Acceptance 
of a status quo attitude would quickly make such programs either obsolete or ones whose graduates would lack the 
necessary skills and human temperament for gainful employment. Modern curricula must change to match any 
increase in technological innovation.  
 
One activity that seems to be universally emerging in colleges and universities is the creation of makerspace 
laboratories, especially for engineering and business environments. Makerspaces, such as those used in New Zealand 
[Min1], are part of a constructivist movement that allows students, especially first-year students, open access to readily 
available materials that provide exposure to modern technology, availability to items for invention and innovation and 
human inquiry. Makerspaces are now emerging in elementary schools and in high schools worldwide. They change 
the emphasis from teaching to learning. Computing educators could take heed in this global movement and consider 
creating makerspace laboratories and making their use an initial and integral part of their computing programs. Figure 
6.1 illustrates two examples of makerspace laboratories—Figure 6.1 (a) shows Africa’s Maker Movement by Open 
Air [Ope1], Figure 6.1 (b) shows a makerspace lab at Lindenwood University, St. Charles, Missouri, USA [Lin1]. 
 
 

  



Computing Curricula 2020   Computing Curricula Report  
CC2020   2020 December 31 

Page 75 of 203 

 
 
6.4.2:  Forces Shaping Academic Programs 
 
This CC2020 Report describes seven basic categories of baccalaureate computing degree programs: computer 
engineering, computer science, cybersecurity, data science (under development), information systems, information 
technology, and software engineering. Few academic institutions offer more than three of these programs, although 
that situation might change over the next decade. As was the case when CC2005 was written, universities offering 
baccalaureate degree programs tend to be cautious and conservative. The complex nature of academic degree programs 
makes it difficult to implement significant changes quickly. The COVID-19 pandemic has further complicated the 
ability to promote change. 
 
Baccalaureate programs at universities usually compete for prospective computing students, sometimes within the 
same institution. Such external and internal academic forces might affect the quality of computing programs because 
some programs could lower their academic standards to enroll more students. Some institutions of higher learning 
even create entities within the institution (e.g., schools of continuing education) that offer abridged courses similar to 
those offered in an academic program in the institution that may not apply toward an academic degree.  
 
Depending on the goals and content of a computing program, prospective students should make judicious choices in 
selecting which program best serves their aspirations. Students who are weak in mathematics might not want to 
undertake a computer engineering degree or one in data analytics. Students considering computer engineering or data 
analytics curricula should be aware of the emphasis on mathematics that these courses of study normally require. 
Programming skills and computer language fluency seem to be the norm in computer science and software engineering 
programs. The set of competencies that become optimal to any career field could span a sample of many sub-
disciplines of computing. 
 
 
6.4.3:  Innovation in Computing  
 
The computing field abounds with invention and innovation. Innovation means “the process of translating an idea or 
invention into a good or service that creates value or for which customers will pay.” [Dic1] Innovators often combine 
information, imagination, and initiative. Innovative ideas should satisfy a specific need, become a benefit for society, 
and be economically replicable.  
 
In a computing context, innovation helps students and professionals to create inventive ways to solve computing 
problems. Often innovation is a continuous process. Such dynamic innovation occurs by many incremental advances 
in technology or processes such as the incremental improvement of hardware or software. When computing innovation 
is radical or revolutionary, its application may become a disruptive technology. Examples of recent disruptive 
innovations include blockchain technologies and the Internet of Things.  
 

  
(a) Makerspace at OpenAir-Africa’s Maker Movement  (b) Makerspace Lab at Lindenwood University  

 
Figure 6.1. Examples of Makerspaces 

 



Computing Curricula 2020   Computing Curricula Report  
CC2020   2020 December 31 

Page 76 of 203 

 
People often believe that risk-taking is synonymous with innovation. Those who create revolutionary technologies 
should be ready to undertake risks. Students in baccalaureate programs may find it difficult to become innovators 
during their studies, although there are counterexamples. Nevertheless, faculty members should encourage possible 
innovators in their programs and make allowances for students who show genuine promise toward innovative careers.  
 
 
6.4.4:  Entrepreneurship in Computing 
 
Entrepreneurship is becoming an important area of study, including in the field of computing. Entrepreneurship is the 
“capacity and willingness to develop, organize and manage a business venture along with any of its risks in order to 
make a profit.” [Dic2] The key element for success is the entrepreneurial spirit driving toward innovation, risk-taking, 
and success in a rapidly changing global marketplace. 
 
An infusion of entrepreneurial experiences into computing programs is very possible. Business schools usually teach 
such courses. In its simplest form, computing faculty members could advise students to take an entrepreneurial course 
as a substitute for an elective course. The same action is possible with technical electives; some, although not all, 
students are likely to benefit more from entrepreneurial experiences and an additional technical elective. A more 
aggressive approach is to construct a minor or cluster for computing students in harmony with business school 
offerings. For example, a student taking two entrepreneurial courses, two business courses (e.g., marketing and 
management), and a two-course major project computing experience could suffice in establishing a formal minor 
experience.  
 
In today’s world, business acumen may be as important as technical computing knowledge. Faculty advisors may have 
opportunities to encourage students who are inclined to be risk takers to take some combination of courses for an 
entrepreneurial educational environment. The experience would likely benefit them throughout their lives and offer 
positive contributions to society.  
 
 
 
6.5:  Professionalism and Ethics  
 
Professionalism and ethics should be a permanent element of any computing curriculum. The following discussions 
(6.5.1 and 6.5.2), taken from the IT2017 report, shed some light on ways these elements can be part of a computing 
program of study.  
 
 
6.5.1:  Ethics in the Curriculum  
 
The incorporation of professionalism and ethics must be a conscious and proactive effort in the context of every 
computing program because much of the material blends into the fabric of existing curricula. For example, the 
introductory courses in the major could include discussion and assignments on the impact of computing and the 
internet on society and the importance of professional practice. As students proceed in their second-year courses, they 
could start to keep records of their work, as a professional might, in the form of requirements, design, test documents, 
and project documents such as charters and project reports. 
 
Additional material such as computer history, digital libraries, techniques for tackling ill-defined problems, teamwork 
with individual accountability, real-life ethical issues, professional standards and guidelines, legal constraints and 
requirements, and the philosophical basis for ethical arguments may also appear either in a dedicated course or 
distributed throughout the curriculum. The distributed approach has the advantage of presenting this material in the 
context of a real application area. On the other hand, the distributed approach can be problematic in that faculty often 
minimize professionalism and ethics in the scramble to find adequate time for the technical material. Projects, 
however, may provide a natural outlet for much of this material particularly if faculty can recruit external clients 
needing non-critical systems. When they engage in service-learning projects in the community or work with external 
clients, students begin to see the necessity for ethical behavior in quite different terms. As a result, those students learn 



Computing Curricula 2020   Computing Curricula Report  
CC2020   2020 December 31 

Page 77 of 203 

much more about ways to meet the needs of a client’s ill-defined problem. However, no matter how teachers integrate 
professional practice into the curriculum, it is critical that they reinforce this material with appropriate assessments. 
 
For departments with adequate numbers of faculty members and resources, courses dedicated to teaching professional 
practice may be appropriate. For those with limited resources, this content should be covered in courses like 
professional practice, ethics, and computer law, as well as senior capstone and other appropriate courses. Additionally, 
more advanced courses on project management, financial management, quality, safety, and security may be part of 
the experience. These courses could come from disciplines outside of information technology and they would still 
have a profound effect on the professional development of students.  
 
 
6.5.2:  Professional and Ethical Work  
 
Learning environments that support students in acquiring professional practice experiences include the following 
elements [Acm07]. 

• Assessments 
• Appropriate inclusion of professional practice in traditional course assessments (assignments, projects, 

exams, presentations, reports, etc.) 
• Sound measurements of student work to show student progress and improvement 
• Student involvement in the review and assessment process  
• Participation of professionals from industry, government, or other employers of IT graduates to assess student 

performance in internships, co-op programs, and on projects with outside clients 
• Standardized tests validated by professional societies 
• Post-graduation alumni surveys of alumni to see how well alumni thought their education prepared them for 

their careers 
• Program accreditation to demonstrate compliance with certain educational standards for professional practice 
• Course labs that meet employer needs to make sure students acquire professional experiences 

 
The assessment process should encourage students to employ good technical practice and high standards of integrity 
and ethics. The assessment process should hold students accountable on an individual basis even if they work 
collectively in a team. It should have a consistent set of measurements, so students become accustomed to using them 
and they learn how to associate them with their progress. 
 
 
6.5.3:  Cultural Sensitivity and Diversity 
 
One should understand computing degree programs within the global contexts. Thinking that “our program” is the 
only way a computing program should exist can be counterproductive, especially when trying to engage in cooperation 
and understanding with different people. It is important to be aware that cultural similarities and differences do exist 
between people and the computing programs they represent.  
 
Universal acceptance of global diversity is essential in all fields of endeavor, particularly in the computing field that 
is so diverse. Those who may not be sensitive to cultural diversity should explore ways to acquire more knowledge of 
the situation. Computing graduates will likely interact with professionals on a global scale, so developing a sensitivity 
to global customs and traits, communicating effectively with peers, listening carefully, and being sensitive to time 
zones and holidays go a long way in bridging cultural sensitivity gaps. Graduates of computing programs can benefit 
greatly by learning more about global customs and etiquette of the people with whom they will be working.  
 
Computing should be accessible to all people, especially those with disabilities. Assistive technology centers with a 
focus on computing technology are becoming more common on a worldwide scale. The goal of such centers is to 
make all humans capable of living a normal life. Sensitivity to people with special needs is important. Therefore, 
educators should ensure that curricula and educational systems allow full inclusion of people with disabilities. They 
should also teach students the necessary skills, so computer systems and applications enable full inclusion as well. 
There are policies on these issues in most countries. 
 



Computing Curricula 2020   Computing Curricula Report  
CC2020



Computing Curricula 2020   Computing Curricula Report  
CC2020   2020 December 31 

Page 79 of 203 

 

 Chapter 7:  Curricular Design – Challenges and Opportunities 
 
This chapter highlights some of the contemporary challenges for the development of modern computing programs. It 
also addresses ways in which industry and government can play a special role in generating modern programs through 
professional advisory boards, work-study programs, and internships. Academic institutions must also be proactive in 
supporting strong, contemporary computing programs for the benefit of its graduates.  
 
 
 
7.1:  Transforming to Competencies  
 
The CC2020 Report has provided an overview of the computing education landscape related to undergraduate, 
(baccalaureate) programs. This overview is global in scope. Furthermore, the Report encompasses many perspectives 
with the goal of providing a modern update to its predecessor, CC2005. The Report also presents possible frameworks 
for future curricular reports. 
 
 
7.1.1:  Distinguishing Competency from Knowledge  
 
The central theme of the CC2020 Report is that competency should be the standard for describing computing curricula. 
Whether intentionally or not, the tradition of knowledge-focused descriptions of curricula has over-emphasized 
information for information’s sake. Competency composes an expanded perspective on education that augments 
knowledge (knowing what) with its skilled application (knowing how) motivated by purpose (knowing why) to 
accomplish a task, an outcome of value. This expanded perspective elevates the aspect of student learning in education 
to align the graduate’s capacity to act effectively, proficiently, and ethically as a professional practitioner. 
Triangulating curriculum on competency (what, how, why) reorients education to enfold the effective and ethical use 
of knowledge not only for the student but also in service to the welfare of society.  
 
Knowledge (as in the body of knowledge) is no less important in the success of education, but it is the conscious 
treatment of that knowledge in performing professional activities that yield valuable benefits to all forms of 
communities that sets competency-based curriculum description apart. Skills define knowledge applied in relevant 
situations, environments, with a particular level of proficiency requisite to successful practice. Success is knowledge 
skilfully applied characterized by dispositions that instil the practitioner’s actions with value. The intertwining 
dimensions of competency (knowledge, skills, and dispositions) offer a comprehensive vocabulary with which to 
describe a curriculum that enfolds the objectives of learning natural to the teacher, the student, and the respective 
profession that the educational enterprise aspires to serve. 
 
In this sense, the CC2020 Report encourages computing programs to establish a proper environment and to call for 
future curricula and curricular reports incorporate competency as part of their structure and recommendations. 
 
 
7.1.2:  Curricular Dynamics  

 
Computing curricula are always in a state of flux. The continually changing field of computing is dynamic with new 
ideas and inventions developing almost daily. Hence, computing curricula must be agile and able to respond to change. 
Students and graduates of computing programs must be able to face change and become inventive in contributing to 
that change.  
 
One way to address this challenge is to include experiences in innovation, entrepreneurship, and makerspace activities 
within computing programs. While foundation or core courses are important, what might be equally important is to 
have students experience new technologies, inventive creations, and even space to imagine what new directions they 
might like to undertake. Engineering disciplines have been doing this for some time with their introduction to 
engineering exploration laboratories in the very first semester of study. Non-engineering computing programs are just 
experimenting with this proven idea. Computing programs should have a solid conceptual foundation and be 



Computing Curricula 2020   Computing Curricula Report  
CC2020   2020 December 31 

Page 80 of 203 

responsive to meet the challenge of developing modern and futuristic student experiences if they expect the graduates 
of their programs to succeed in a quickly changing world of computing. Regular accreditation of programs, including 
all subjects where practical skills are developed, is recommended. 
 
 
7.1.3:  Conveying Computing Competencies  
 
The role of academics and the way academics enable computing competencies are important in producing capable 
graduates of computing programs. As discussed in Chapter 4, computing competency is a triad of computing 
knowledge, skill, and disposition. There is no single method to develop competency that is a combination of these 
three elements. The goal is to produce graduates of computing programs that are proficient at the time of graduation 
to enter the workplace, to attend graduate school, or to contribute constructively in some way to society. The following 
discussion provides some suggestions in transferring competency to students, building on the brief description in 
Section 4.3.2. 
 
 
7.1.4:  Knowledge Transfer  
 
The transfer of knowledge is the cornerstone of academia and universities. Academician



Computing Curricula 2020   Computing Curricula Report  
CC2020   2020 December 31 

Page 81 of 203 

 
Because of the uniqueness of individual computing programs, it may not be possible to specify how their academic 
units would develop these dispositions. Notwithstanding, computing academic units (e.g., departments) should specify 
the set of human behaviors—broader than the eleven dispositions stated—expected of their students by the time of 
graduation. Computing academicians and academic units could provide instruction on ways students acquire these 
traits as an important element of computing competency. Students may do so by personal and peer examples, by 
viewing workplace attitudes, or by attending seminars on behavior as professionals.  
 
Students could take courses offered in other academic units such as social science and psychology that could be useful 
in developing dispositions. Although courses in these areas may cover conceptually (at a knowledge level) topics 
related to these dispositions, it does not mean that they help students develop them. Additionally, some of dispositions 
may not transfer well across contexts; a disposition demonstrated in one class may not transfer to the authentic context 
in another. Only through repeated practice across domains will students learn. Furthermore, people learn dispositions 
through modeling and enculturation. Institutions purposely need to build and develop these traits over time through 
"collaborative" or "responsive" activities, course experiences, internships, and other interactive experiences.  
 
 
7.1.7:  Need for Local Adaptation  
 
The task of designing any curriculum is a difficult one, in part because so much depends on the characteristics of an 
individual institution and the interests and expertise of its faculty members. Even if every institution could agree on a 
common set of knowledge, skills, and dispositions for undergraduate education, many additional factors would 
influence curriculum design. These factors include the following. 

• Type of institution and the expectations for its degree programs: Institutions vary in mission, structure, and 
scope of undergraduate degree requirements. A curriculum that works well at a small institution in one 
country may be completely inappropriate for a research university elsewhere in the world. 

• Range of postgraduate options that students pursue: An institution whose primary purpose is to prepare a 
skilled workforce for a profession is likely to have different curricular goals than one seeking to prepare 
students for research and graduate study. Each individual school must ensure that the curriculum it offers 
allows students the necessary preparation for their eventual academic and career paths including those outside 
their current interest. 

• Preparation and background of entering students: Students at different institutions—and often within a 
single institution—vary substantially in their level of preparation. For this reason, computing departments 
often need to tailor their introductory offerings so that they meet the needs of their students. 

• Faculty resources: The number of faculty members supporting a computing program may vary from fewer 
than five to a hundred or more at 



Computing Curricula 2020   Computing Curricula Report  
CC2020   2020 December 31 

Page 82 of 203 

development processes. 
• Take positions as part-time instructors to strengthen a university's course offerings by conveying material 

through a practical approach. 
• Conduct site visits. 
• Provide in-house training materials and/or classes to faculty and students in specialized research, process, or 

software tool areas.  
• Explore industry-sponsored capstone experiences.  
• Serve on industrial advisory boards, service that allows them to provide valuable feedback to the department 

and institution about the strengths and weaknesses of the students. 
In each of these ways, enterprises in the private and public sectors can establish important lines of communication 
with the educational institutions that provide them with their future employees. 
 
In addition to the various opportunities that take place on campus, industry and government also contribute to the 
development of strong professional practice by bringing students and faculty into environments outside of academia. 
For example, students and faculty may take field trips to local firms and begin to establish good relationships.  
 
For faculty, their cooperation with industry and government can serve as a vehicle for developing student 
competencies in their courses. Such connections also provide opportunities for mutual benefit and they create a higher 
level of trust between the faculty member and the company. Because of these initiatives, employers, students, and 
faculty know more about each other and are more willing to promote the program. 
 
Over a longer term, cooperative, practicum, and internship opportunities give students a better understanding of what 
life on the job will be like. In addition, students may become more interested in their studies and use that renewed 
interest to increase their market potential. Students may also form a bond with specific employers and be more likely 
to return to that firm after graduation.  
 
 
7.2.1:  Professional Advisory Boards  
 
The experience of the members of the Task Force has shown that professional or industrial advisory boards are 
essential for the development of strong and meaningful computing programs. Professionals from industry and 
government are a great resource for insight on the needs of the workplace. These groups can become strong catalysts 
for bridging the computing program to needs of industry and government. They also establish personal connection 
between the computing program, its students, and the professional world.  
 
Therefore, the Task Force members recommend that every computing program have a professional advisory board. 
Ideally, advisory boards should meet once each semester, but an annual meeting is also sufficient. Its chairperson 
should not be a faculty member from the program. It is important to capture board activities by taking minutes of all 
meetings. Updates by email or other electronic media are also possible. A professional advisory board should also 
monitor the goals of the computing program to ensure they are in harmony and in balance with the mission of the 
institution and the requirements of the workplace.  
 
 
7.2.2:  Work-Study and Cooperative Programs  
 
All computing programs should consider the possibilities of including a work-study or cooperative (co-op) program 
as part of their curricula. Typically, these programs allow students to enter industry or government before they 
graduate. The experience could be one or two semesters when the student is academically mature, usually during the 
third year of a four-year program. These programs often provide student credit and they also allow students to earn 
wages as they contribute to the company or government. Some universities make cooperative experiences a 
requirement and they tailor their sequence of courses accordingly. 
 
Cooperative programs do have challenges, as well as benefits. One challenge is that students will likely graduate 
beyond the normal period (e.g., four years). Those students who undertake a one-semester cooperative experience 
might lose two semesters of time if the program does not offer required courses every semester. Each computing 



Computing Curricula 2020   Computing Curricula Report  
CC2020   2020 December 31 

Page 83 of 203 

program should evaluate whether a cooperative work-study program is suitable for its needs and the benefit of its 
students.  
 
 
7.2.3:  Internship Programs  
 
In contrast to cooperative programs that usually last an entire semester, computing programs should seriously consider 
internship programs as a required component of the computing curriculum. Internships are experiences that take place 
over a short period such as during summer when regular classes are not in session. Internships could also be part-time 
experiences: in this case, students could join a company one day a week or two half-days a week during a semester. 
Internships are rather popular and many computing programs around the world require them as part of student learning. 
Students usually receive credit for an internship, and, in most cases, industry pays students for their services.  
 
 
 
7.3:  Institutional Resource Requirements  
 
The CC2020 Report and the related curricular volumes provide significant resources for colleges and universities 
seeking to develop or improve their undergraduate programs. Implementing a curriculum successfully, however, 
requires each institution to consider broad strategic and tactical issues. This section enumerates some of these issues 
and illustrates ways to address these issues.  
 
 
7.3.1:  Attracting and Retaining Academic Educators  
 
One of the most daunting challenges that computing departments face is the problem of attracting, and then retaining, 
qualified faculty members. In computing, there are sometimes more advertised positions than the number of highly 
qualified candidates. The shortage of faculty applicants, coupled with the fact that computing people command high 
salaries outside academia, make it difficult to attract and retain faculty members. Institutions should develop 
aggressive plans to both recruit and retain faculty members; incentives such as hiring packages and modified teaching 
responsibilities may prove helpful in this effort. Additionally, active participation in professional organizations 
provides networking opportunities with leaders of peer programs, which, in turn, may result in greater visibility and 
access to potential faculty candidates. Other possible strategies include collaborative and/or interdisciplinary efforts 
with other programs and/or institutions. 
 
While a computing program may draw on faculty from related disciplines, as a professional field there must be a core 
faculty with appropriate professional training and experiences. Additionally, faculty members must maintain currency 
with developments in the field. Institutions must make appropriate accommodations for the professional development 
of faculty, whether achieved through research, conference participation, sabbaticals (perhaps in industry), consulting, 
or other activities. Institutions must also recognize, respect, and reward teaching faculty members in the same way it 
does for research faculty members.  
 
 
7.3.2:  Need for Adequate Laboratory Resources  
 
It is important for educational institutions to recognize that the financial resources required to support computing 
programs are significant. Software acquisition and maintenance can represent a substantial part of the overall cost of 
computing, particularly if one includes the development costs of courseware. Acquisition and maintenance of the 
hardware and instrumentation infrastructure required for experimentation and hands-on system development by 
students is costly. Providing adequate support staff to maintain the laboratory facilities as well as technical assistants 
and tutoring support represent other expenses. To be successful, computing programs must receive adequate funding 
to support the laboratory needs of both faculty and students and to provide an atmosphere conducive to learning. 
 
Because of rapid changes in technology, computer hardware generally becomes obsolete long before it ceases to 
function. The useful lifetime of computer systems, particularly those used to support advanced laboratories and state-



Computing Curricula 2020   Computing Curricula Report  
CC2020   2020 December 31 

Page 84 of 203 

of-the-art software tools, may be as little as two or three years. Planning and budgeting for regular updating and 
replacement of computer systems is essential. Computing curricula typically include many required laboratories. The 
laboratory component leads to an increased need for staff to assist in both the development of materials and the 
teaching of laboratory sections. This development will add to the academic support costs of high-quality computing 
programs. Close contacts with relevant industries can lead to the ready availability of interesting and up-to-date case 
study material; it also offers opportunities for students to engage in internships. Refreshing laboratory material on a 
regular basis serves to motivate and excite new students. 
 
Finally, with the availability of up-to-date reference materials on the internet, institutions should provide access to 
such resources as the IEEE Xplore Digital Library, the ACM Digital Library, and the AIS e-library. Webinars, e-
books, online tutorials, MOOCs, and other resources are all increasingly available and relevant; these are available 
through, for instance, the ACM Learning Center. 
 
 
 
7.4:  Program Quality Assurance and Accreditation  
 
Academic accreditation is a process used to support continuous improvement of institutions and their degree programs. 
Accredited degree programs must meet certain external requirements to increase the level of confidence the public 
has in them.  
 
 
7.4.1:  Accreditation Overview  
 

Accreditation can occur at different levels of an academic institution. In these cases, institution-wide accreditations 
certify that a university meets minimum standards for resources (e.g., laboratories or libraries) and operating 
procedures (e.g., admissions policies) required of any legitimate institution of higher learning. Similar guidelines may 
exist for an administrative unit within the institution (e.g., a business school) that encompasses degree programs in 
related fields. Accreditation for an academic unit that houses a group of programs models institutional accreditation 
but with greater specificity. 
 
The most detailed form of accreditation concerns the evaluation of individual degree programs. This involves the 
participation of independent organizations or government agencies that establish quality standards and criteria for 
degree programs in a specific discipline. Program-specific accreditation involves an evaluation of specific degree 
programs and certifies that a degree program meets established criteria and has rigorous processes for ongoing 
improvement. Accreditation does not exist for every discipline, but it does exist for computing degree programs. The 
accreditation as well as the standard accreditation criteria normally includes such other aspects as student satisfaction, 
facilities to offer the program and quality assurance procedures.  
 
In nations where accreditation can occur at different levels, an organization (e.g., a government-related entity) may 
accredit a university, but not its computing degree programs. For example, a university in the United States may have 
unaccredited degree programs even though the university itself has been accredited. A different organization would 
conduct accreditation of computing programs. The distinction to keep in mind is that the accreditation of a college or 
university does not imply that its computing degree programs meet the standards of quality established for the 
computing disciplines unless the computing programs have a program-specific computing accreditation. 
 
 
7.4.2:  Benefits of Program-Specific Accreditation  
 
Discipline-specific or program-specific accreditation provides two important benefits for programs and for the 
institutions in which they reside. These include the following. 

• It certifies that a degree program meets minimum quality standards established by independent professional 
or scientific societies or by government agencies. This helps an institution market its programs, and it gives 
the public and prospective students reason to be confident in a degree program’s quality. 

• The program receives an onsite consultation by a visiting team that provides expert opinions about a 
program’s strengths and weaknesses and about its specific needs for improvement. This interaction helps an 



Computing Curricula 2020   Computing Curricula Report  
CC2020   2020 December 31 

Page 85 of 203 

institution have full understanding of how its programs are performing and what institutions must do to 
improve their quality. 

Thus, accreditation provides the benefits of both a marketing aid for attracting students and an expert consultation 
focused on improving quality. Notwithstanding, some institutions may not need or desire the former benefit. 
 
Some institutions commit to accreditation solely because the accreditation process helps them maintain and improve 
the quality of their programs which, in turn, further cements their reputation. In some nations, institutions have no 
choice because accreditation is a requirement for program existence. Discipline-specific accreditation processes 
determine whether a candidate degree program meets certain criteria. Not only does accreditation determine whether 
the program provides enough qualified teachers with acceptable workloads, it also determines how the program uses 
materials and assignments, how it evaluates assignments and examinations, and how it engages itself in continuous 
evaluation and improvement. 
 
Professional bodies also use program accreditation to ensure that degree programs meet, at least in part, the 
requirements for membership in their profession. In some cases, graduation from an accredited degree program is a 
requirement for individuals before they can practice in a profession. This means that it is not sufficient for students 
who wish to practice a profession simply to earn a degree in the appropriate discipline; rather, they must have earned 
that degree from an accredited degree program. A given degree program does not choose whether its accreditation 
status has such professional elements; instead, the accreditation process determines what is customary for its discipline 
in its nation.  
 
Perhaps the greatest misconception about accreditation is the belief that institutions pursue program accreditation only 
to obtain a credential for public image. Those unfamiliar with discipline-specific accreditation often do not understand 
the important role that the accreditation process plays in helping a program know what it must do to improve the 
quality of both its offerings and its graduates. 
 
 
7.4.3:  Quality Assurance  
 
Program-specific accreditation is a means of demonstrating that a degree program meets an independent standard of 
quality, but the meaning of that standard varies. Its rigor is determined by the accrediting body’s policies and practices 
and by any government regulations that might apply. In some cases, accreditation certifies that a degree program has 
met a minimum quality standard. In other cases, there exist both minimum standards and higher standards. 
 
While discipline-specific accreditation addresses program quality, it is important not to reach unwarranted conclusions 
about the relationship between accreditation and quality. One must be familiar with both the discipline and the national 
context in order to reach appropriate conclusions. Lack of program accreditation does not mean a program is of low 
quality. Conversely, an accredited program does not mean a program is of high quality. All accredited programs must 
meet minimal requirements according to a given set of criteria; there is no ranking according to quality.  
 
Notwithstanding, there are several aspects that reflect high quality. These include good teachers, a faculty workload 
that permits teachers to focus adequately on their classes and remain current in their field, as well as sufficient faculty 
support and infrastructure. Additionally, it is important to have evidence of rigorous procedures for monitoring and 
improving quality in an ongoing way.  
 
For strong programs, integrating quality monitoring processes with initiatives for improving quality should form a 
continuous cycle. Activities include monitoring effort for effect, planning and implementing new improvement efforts, 
and evaluating the results; the cycle then repeats. Doing this properly is not difficult. However, it requires a measure 
of commitment, discipline, and information sharing to be successful. 
 
 
7.4.4:  Global Recognition  
 
Many countries have embraced accreditation. Although the details vary, there is a common belief that a panel of 
experts who represent a profession evaluates a program’s quality against established standards and criteria produces 
strong computing programs. The circumstances vary with respect to whether accreditation is mandatory, strongly 



Computing Curricula 2020   Computing Curricula Report  
CC2020   2020 December 31 

Page 86 of 203 

encouraged, or completely voluntary. Some countries have rigorous program criteria and require that accreditation 
standards apply to every program offered at any college or university. At the other end of the spectrum, in some 
countries, accreditation is voluntary.  
 
The administration of the accreditation process also varies. In some countries (e.g., Australia, Canada, and the U.K.), 
professional societies conduct program accreditation for their respective fields. In other countries (e.g., the U.S.) a 
designated organization monitors and/or performs accreditation. In some countries (e.g., Estonia and the United Arab 
Emirates), a government agency conducts the accreditation process. 
 
In some computing disciplines, accreditation agencies also cooperate across their national borders. Mutual recognition 
of evaluation and accreditation processes has encouraged a range of international agreements such as the Washington 
Accord for engineering programs, the Seoul Accord for computing programs, and the Sydney Accord and the Dublin 
Accord for technology programs. Other accords include the European Federation of National Engineering 
Associations (FEANI) and the International Register of Professional Engineers (IRPE). Such agreements have a range 
of signatories, but they share a common goal to facilitate the movement of professionals across nations. That is, they 
recognize the substantial equivalence of programs accredited by these bodies. For example, the Australian Computer 
Society (ACS) accredits computing programs in Australia; ABET accredits computing programs in the United States 
and elsewhere. Graduates from ACS accredited programs and graduates from ABET accredited programs enjoy a 
mutual recognition for employment and other professional benefits.  
 
Accreditation in the U.S. is voluntary in the sense that no law or regulation requires a degree program to acquire 
accreditation. As a practical matter, it is more voluntary in some computing disciplines than in others. In computer 
engineering, for example, a strong sense of a professional community exists, and state-regulated licensing of engineers 
can require applicants to hold an engineering degree from an ABET accredited program. In contrast, the computing 
community outside engineering is more of a loosely organized network of scientists and researchers than a tightly 
organized body of practicing professionals. Historically, there has been no compelling professional pressure for 
accreditation of non-engineering computing programs.  
 
 
 
7.5:  Digest of Chapter 7 
 
This chapter addressed some of the challenges faced by institutions in adapting their computing curricula to the current 
environment. It emphasized the move from knowledge-based teaching to competency-based learning, accepting that 
this move will need to be managed differently in different educational contexts. It made clear the need for universities 
to engage with industry in adapting their curricula and outlined ways in which this engagement might take place. It 
explained what institutions must do to maintain currency in their programs and suggested some ways in which 
institutions might deal with the ever-changing needs and expectations of the people for whom the degree programs 
are designed.  It concluded with a review of emerging future technologies that are likely to have a major impact on 
the future computing education. 
 
 
  



Computing Curricula 2020   Computing Curricula Report  
CC2020   2020 December 31 

Page 87 of 203 

 

Chapter 8:  Beyond the CC2020 Report 
 
The CC2020 Report surveys the computing discipline and provides a structural view of computing that incorporates 
several sub-disciplines, including some that have recently emerged.  This view of computing is based on ACM and 
IEEE-CS approved computing curricula that exist in 2020, that now includes cyber security and the data science 
curricula currently under development.  However, the important contribution here is not a definition of the discipline 
as it currently stands, but the establishment of a foundation for curricular specification that is based on competencies.  
This competency-based view of computing intensifies prior work; a direction has been defined whereby competencies 
will be commonly used in the future.  The pivot toward competencies in future computing curricular work is likely to 
be the most important contribution of this work.  For this pivot to have impact, dissemination of these ideas is critical.  
Aspects of this dissemination and pivot toward competencies are discussed in this chapter. 
 
 
 
8.1:  Technology Trends for CC2020 and Beyond 
 
This section addresses technology trends that are heavily dependent on computing and increasingly strongly integrated 
with a broad variety of types of human activity.  
 
 
8.1.1:  Current and Emerging Technologies  
 
Current and emerging technologies have a potential of affecting society very significantly—the way in which 
computing professionals communicate or interact with each other, conduct commercial activities, organize decision 
making, and the way people learn. Some well-established technologies exist as independent areas of study within 
computing with their own curriculum recommendations (e.g., cybersecurity, data science) while others are barely out 
of research laboratories (e.g., DNA computing).  
 
The curricula for “cybersecurity” and “data science” are already specialized areas of study.  They are closely affiliated 
with computing and either have their own curriculum report (CSEC2017) [Acm08] or have one in preparation [Dat2].  
 
The emerging technologies addressed in section 8.1.3 reflect trends and reports by major global technology 
consultancies and the World Economic Forum (WEF). They include Accenture [Acc1], Deloitte [Del1], Gartner 
[Gar1], Info-Tech [ITec], KPMG [Kpm1], and the WEF [Wef1].  
 
 
8.1.2:  Existing Computing Areas with No Endorsed Curriculum  
 
The four areas of computing-driven systems and technology infrastructure discussed in this section are already in 
existence, but they have not yet reached the status of an academic discipline with a globally recognized curriculum. 
Curricula may exist within a region or country, but not endorsed by recognized institutions such as ACM or IEEE. 
 
Internet of Things (IoT) refers to a “system of interconnections between digital technologies and physical objects that 
enable such (traditionally mundane) objects to exhibit computing properties and interact with one another with or 
without human intervention.” [Bai1] IoT technologies give physical objects capabilities that allow them to measure 
and communicate their states to other similar objects and provide centralized data collection mechanisms to enable 
coordinated data-driven action. Some countries such as China have robust IoT degree programs at the undergraduate 
and graduate levels. 
 
Cloud computing refers to the practice of offering computing capabilities (particularly data storage and processing 
power) on the internet or other shared networks as a service, typically charged based on usage and managed by the 
service provider. Cloud computing essentially implements the idea of providing computing power and storage 
capabilities (infrastructure as a service), infrastructure integrated with platform services (platform as a service), or 
applications (system as a service) as a commodity service.  



Computing Curricula 2020   Computing Curricula Report  
CC2020   2020 December 31 

Page 88 of 203 

 
Narrow artificial intelligence, also known as weak AI, supports specific tasks in a narrow, well-defined context. Weak 
AI already exists on a broad variety of systems to enable and support human decision making. General artificial 
intelligence (strong AI) and artificial super intelligence (forms of AI that mimic and generally exceed human 
capabilities) do not currently exist. However, the area is already under fierce debate from ethical and moral 
perspectives. 
 
High-performance computing (HPC) refers to processing data and performing complex calculations at quadrillions of 
calculations per second, orders of magnitude faster than ordinary high-speed computers [Raj1 p2]. HPC is essential 
for today’s popular computing areas such as artificial intelligence (AI), cyber analytics (CA), data science and 
engineering (DSE), and the internet of things (IoT). The diversity of HPC domains makes teaching HPC difficult. 
HPC education is commonly needed from undergraduate to post-graduate levels because of HPC’s importance, from 
computing to non-computing disciplines. A variety of practice based HPC teaching and talent training methods have 
been widely recognized and implemented in recent years [Che1,Che2,Che3]. But there are still many challenges for 
incorporating HPC into computing and engineering curricula [Che3 p2,Raj1 p5]. Creating competencies that 
incorporate the wide range of HPC knowledge, skills, and dispositions may further serve as a useful guide to 
curriculum development [Raj1 p7]. 
 
 
8.1.3:  Emerging Computing Areas  
 
Digital experience refers to the practice of providing various organizational stakeholders (such as customers) a 
personalized and consistent set of experiences across a range of different digital platforms from small form factor 
wearable devices to large workstations and across a variety of situations. The terms used to describe this set of 
technologies include digital experiences (as used by Accenture to refer to augmented reality with 5G), multi-
experience (as used by Gartner to refer to multiple channels for interacting with the digital world), and digital 
experience (as defined by Deloitte as human experience platforms), such as customized, emotionally intelligent digital 
experiences based on individuals’ behaviors, preferences, and emotions using an integrated array of AI capabilities. 
Other innovative computing areas include distributed ledger technology, artificial intelligence, extended reality, and 
quantum computing (DARQ) as Accenture’s “key set of new tech” as well as digital reality (identified by Deloitte as 
one of its macro forces). 
 
In addition, the area of interactive technologies is quickly moving from the traditional forms of point/click/swipe 
interfaces to those that most users will find more natural (such as speaking and gesturing, in the future potentially also 
thinking). Many of these technologies integrate with other capabilities that allow augmentation of the human 
experience with capabilities that naturally would not exist, often referred to with terms such as augmented reality, 
virtual reality, or mixed reality.  
 
Ambient computing refers to contexts where the interaction experience between humans and technology has a tight 
integration with natural human experience that the technology as a separate entity becomes invisible. Various ways to 
describe this phenomenon include human augmentation (by Gartner) and digital reality as used by Deloitte to refer to 
augmented reality/virtual reality (AR/VR), mixed reality, voice interfaces, speech recognition, ambient computing, 
360° video, and immersive technologies. Other technologies include ambient experience as described by Deloitte as 
input evolving from unnatural to natural (e.g., speaking, gesturing, and thinking) and the interactions between humans 
and technology moving from reactive (e.g., answering questions) to proactive (e.g., making unanticipated suggestions) 
as well as wearables, identified as major trends by KPMG and by WEF. 
 
The area of cognitive technologies is a label frequently used to refer to a variety of artificial intelligence capabilities 
for addressing complex organizational and societal problems. For example, Deloitte specifies categories of these 
capabilities to include robotic process automation, textual and auditory natural language processing, machine learning, 
and computer vision. Other articulations of these categories include “AI and me” by Accenture and hyper automation 
supported by AI and machine learning by Gartner. Other related technologies include cognitive technologies, 
consisting of machine learning, neural networks, robotic process automation, bots, natural language processing, neural 
nets, and the broader domain of AI by Deloitte, as well as Artificial Intelligence as part of DARQ technologies by 
Accenture. 
 



Computing Curricula 2020   Computing Curricula Report  
CC2020   2020 December 31 

Page 89 of 203 

Blockchain or Distributed Ledger refers to a set of technologies that allows a set of actors to maintain a distributed 
record of transactions in a shared data storage environment in a way that is verifiable and permanent. Blockchain 
became first well-known as the technology underlying cryptocurrencies, but its potential areas of usage have expanded 
to financial services, management of contracts, health records, supply chain logistics, educational achievements, and 
many more. Sample reports refer to distributed ledger technologies with various names such as one of the DARQ 
technologies by Accenture, practical blockchain by Gartner, blockchain as a distributed ledger technology by Deloitte 
macro force, and distributed ledger by the WEF. 
 
Robotics, developed over the last few decades, now brings together a broad range of areas of expertise to create non-
human artifacts (both physical and intangible) to perform a variety of tasks in an increasingly rich set of contexts. The 
best-known contexts for robotics are probably in manufacturing, but the advances have been very rapid recently in 
many other contexts, including warehouses, medical work, military operations, and even business processes. The 
reports refer to robotics with expressions such as broad expansion of context for the use of robotics by Accenture, 
autonomous things by Gartner, and symbiotic robots by Info-Tech. 
 
Quantum computing incorporates a broad range of activities across a broad range of academic disciplines and industry 
research laboratories towards a new type of computing model. The process harnesses quantum phenomena at the level 
of subatomic particles to solve complex problems at a scale that would not be possible with traditional computing 
models. Deloitte has selected quantum computers as one of its macro forces and defines its core contribution as its 
ability to solve certain highly complex problems that are too large and messy for current supercomputers in a broad 
range of areas from data to material sciences. 
 
While data privacy and digital ethics are not technologies per se, it is important to note that each new generation of 
digital technologies, and all mentioned in this subsection, raise important questions about the relationship between 
humans and technology. Privacy is often the first context for these questions, but the range of questions is, in practice, 
much broader [Mar4]. Transparency and traceability by Gartner and data equity by Info-Tech are two aspects in 
support of privacy and ethics. 
 
 
8.2:  Public Engagement and the CC2020 Project  
 
It is important that the efforts of the CC2020 project be available to the public worldwide. And for the CC2020 project 
to be a success, it must engage the public.  One means for accomplishing this goal is through an interactive website. 
Another is through a vigorous dissemination program sponsored by professional organizations, industry, and 
government.  
 
 
8.2.1:  CC2020 Project Website  
 
The CC2020 project has established a preliminary website [Ccw1] where the public can obtain information regarding 
the project. Such information includes a current copy of this CC2020 report, information about the structure of the 
CC2020 project, samples of competencies and visualizations, and other accompanying material.  
 
An important addition to the project website will be its ability for students, parents, industry and government 
professionals, and faculty members to have a dynamic interaction with the project website. This includes comparisons 
of programs in different computing disciplines, comparison of programs within the same computing discipline, 
contrasting competencies, and other interesting activities. This dynamic dimension of the project is and will be a work 
in progress beyond the publication of the CC2020 Report. 
 
 
8.2.2:  Relating Curricula and Competencies  
 
As noted in earlier chapters of the CC2020 Report, the notion of competency is the distinguishing feature of the 
CC2020 project, in contrast with the CC2005 project that focused on knowledge and knowledge-based learning. It is 
important that future curricular activities and development of curricular reports consider embracing the use of 



Computing Curricula 2020   Computing Curricula Report  
CC2020   2020 December 31 

Page 90 of 203 

competency in their work. The members of the Task Force are aware that such future work will require greater effort 
in reaching a proper balance of dispositions, skills, and knowledge. However, since the majority (perhaps 99%) of 
graduates from computing programs will enter industry, government, or other workplace institutions, it is appropriate 
for all future curricula developers to embrace the competency-based approach.  
 
 
8.2.3:  Project Dissemination  
 
The CC2020 project requires dissemination on a global scale. Such an undertaking requires the support of professional 
organizations and societies as well as educational institutions to underwrite this effort, which should be an ongoing 
undertaking several years after the publication of this CC2020 Report.  
 
The dissemination activity should spur new interest in competency-based learning and curricular structures. The 
activity should generate new research for grant opportunities in achieving graduates who are competent to enter 
industry as well as being prepared for graduate or post-baccalaureate education. The CC2020 project should become 
a catalyst for these endeavors. 
 
 
 
8.3:  The Role of Competency in Future Curricular Guidelines 
 
The CC2020 Report highlighted competency as one of the salient features of the CC2020 project. It also examined 
various competency statements. Such statements may be useful in developing a uniform formalization of various 
disciplines. As presented, the competency-based approach makes it possible to compare computing disciplines and 
facilitate those comparisons. Recall that competency implies attaining a level of professional excellence and 
performance that goes beyond having only knowledge in a field. These extensions include technical skills and human 
attributes to function in the workplace at an acceptable level of performance. It is now important to extend the 
competency-based concept toward the development of future curricular guidelines within a common frame of 
reference.  
 
 
8.3.1:  Recent Curricular Development 
 
The members of CC2020 Task Force believe that the use of competency in current and future computing curricular 
reports will be an important outcome of the CC2020 Report. In today’s world, graduates must be able to perform in 
the workplace with appropriate technical skills and human qualities in addition to subject knowledge.  
 
The cybersecurity curricula project called CSEC2017 [Acm08], was published by ACM in December of 2017. The 
project used the traditional knowledge area, knowledge unit, learning outcome approach to develop its 
recommendations and its learning outcomes. Another effort parallel to the CC2020 project is the ACM data science 
curriculum project. The leaders of this effort have made a commitment to adopt competency as an ongoing theme. 
The curricular recommendations for information systems are currently undergoing a revision with a planned 
completion in 2021. This report will be presented in the competency-based format. 
 
 
8.3.2:  Future Curricular Development 
 
Given that most graduates of computing programs enter the workplace, it is especially important that all computing 
programs prepare their graduates properly so they can perform as professionals and engage in productive careers. 
While the CC2020 Report can only recommend, the members of the Task Force are confident that computing 
professionals,  organizations, and programs worldwide will heed the recommendations in the Report and transform 
their activities so that  competency becomes central to their future undertakings.  
 



Computing Curricula 2020   Computing Curricula Report  
CC2020   2020 December 31 

Page 91 of 203 

Naturally, other curricula such as software engineering, computer science, and computer engineering will continue to 
be revised and updated in the future. The members of the Task Force are hopeful that all future curricular endeavors 
will adopt the competency-based approach.  
 
 
 
8.4:  Competency Advocacy 
 
The concept of using a common competency language to specify curricula, jobs, and careers provides an opportunity 
to bring all computing education stakeholders under a common umbrella. For this effort to be successful, all the 
stakeholders should reach consensus on the details of this language. For new curricular efforts that will emerge, authors 
should develop techniques that will support the deployment of a uniform competency-based approach. Industry, 
academia, and professional societies will need to develop these techniques together. The effort should incorporate a 
community of interest to oversee this development. 
 
It will be necessary for the computing professional societies to take the leadership needed to develop model curricular 
standards using competencies. The members of the Task Force recommend that computing professional societies be 
part of any coalition of stakeholders, and that the professional societies mandate the use of competencies in developing 
future model curricula.  The members also recommend that the development of competencies use a structure like the 
one advocated in this report, with both a prose statement and explicit knowledge, skills and dispositions components 
that can contribute analytically for visualization and comparison. 
 
The CC2020 project has planted the seeds for a high-quality public website that enables appropriate analysis of 
competency targets and provides career exploration and advice. This website should provide information about 
different types of computing careers as well as information on different types of degree programs that could prepare 
someone for a computing career. A variety of capabilities can be part of this site such as the ability to compare 
university programs in terms of their degree of similarity, and the degree of similarity between a program and a 
standard curriculum (such as the model curriculum for information systems), and the degree of similarity between an 
educational program and particular jobs and careers.  
 
The efficacy of using competencies will occur as users gain experience with the approach. Once competency-based 
specifications of the various computing disciplines exist, then it would be possible to generate a comparative visual 
analysis among them—similar to the ad hoc visual representations of the CC2005 report, but with formal structural 
foundations.  
 
 
 
8.5:  Future Activities 
 
The following list summarizes activities for curriculum-related developments that should take place over the next few 
years. 

• Include the CC2020 report as an additional volume of the Computing Curricula Series. 
• Establish new timetables for revision of each volume in the Computing Curricula Series.  
• Strongly encourage a competency-based approach (rather than just knowledge-based learning) as part of 

all future computing curricular endeavors. 
• Consider more frequent revisions of computing curricular reports rather than the current approach, perhaps 

every six years instead of every ten to twelve years, given the rapid pace of change in computing  
• Solicit improved support for more frequent updating of curricula. 
• Continue processes for capturing feedback about each volume in the Computing Curricula Series.  
• Establish new processes for ongoing evaluation of the adequacy of each curricular volume in the 

Computing Curricula Series. 
• Improve current tools for visualizing computing programs.  
• Develop new tools for visualizing computing programs.  
• Become innovative in capturing new computing curricular areas to add to the Computing Curricular 

Series.  



Computing Curricula 2020   Computing Curricula Report  
CC2020   2020 December 31 

Page 92 of 203 

 
Consideration of the above projected activities will enhance computing education worldwide. The benefactors are the 
students who will enter those computing programs and the graduates of those programs who will find themselves 
competent professionals to enter the workplace or pursue further studies.  
 
 
 
8.6:  Digest of Chapter 8 
 
Computing and computing education are more important now than ever before.  This chapter emphasized the need for 
the global dissemination of this CC2020 Report with the support of professional organizations and educational 
institutions.  The project further advocated that all current and future computing curricula adopt a competency 
approach to better prepare the computing professionals of the future.  Lastly, future activities for curriculum-related 
developments that should take place over the next few years were presented. 
  



Computing Curricula 2020   Computing Curricula Report  
CC2020   2020 December 31 

Page 93 of 203 

 
Acknowledgments 
 
 
The CC2020 project acknowledges organizations and people who have contributed to this important effort. The project 
acknowledges the Association for Computing Machinery (ACM), the IEEE Computer Society (IEEE-CS), the 
Association for Information Systems (AIS), the Education Special Interest Group of Information Systems and 
Computing Academic Professionals (EDSIG/ISCAP), and ACM SIGCHI. It also recognizes project collaborators such 
as the Information Processing Society of Japan (IPSJ), the Chinese Computing Federation (CCF), the Latin American 
Center on Computing (EL Centro Latinoamericano de Estudios en Informática (CLEI)), ACM India, GRIN (Italian 
Association of Computer Scientists) ACM Europe, Informatics Europe, I4All, and the West Texas A&M University.  
 
The CC2020 Project is indebted to Yan Timanovsky from ACM, Jane Prey and Mehran Sahami (Co-Chairs of the 
ACM Education Board), and Chris Stephenson at Microsoft for their assistance and support in making this project 
possible.   The CC2020 Project also thanks the National Strategic Planning and Analysis Research Center (NSPARC) 
at Mississippi State University for its support of the Web development for this project, as well as its support of some 
of the publication costs associated with this project. 
 
The CC2020 project also acknowledges the many people who participated in this project including the CC2020 Task 
Force and its steering committee as well as those listed in Appendix J who have contributed content to the project and 
volunteered their time to review the CC2020 Report as it progressed.  
 
 
 



 

 

Appendix A:  Poster Explaining CC2005 Curricular Visuals 
 

 
 

(Courtesy of Filipe de Sá-Soares, PhD - University of Minho, Portugal) 



 

 
Appendix B:  Computing Skills Frameworks  
 
 
Different technology and informational skills are presented in a report by the IEEE Computer Society [Cos1]. This 
Guide to the Enterprise Information Technology Body of Knowledge (EITBOK) [Ent1] is a compendium of high-level 
knowledge areas typically required for the successful delivery of computing services vital to all enterprises. EITBOK 
defines the key knowledge areas for the IT (computing) profession, and it embodies concepts recognized as good 
practice in the IT domain and that are applicable to most IT efforts. The report emphasizes competence on a global 
scale. Frameworks enable the identification of skills and competencies required to perform duties and fulfill 
responsibilities in an enterprise IT workplace. Among the frameworks discussed are the Skills Framework for the 
Information Age (SFIA) [Sfi1], the European Competency Framework (e-CF) [Eur1], and the i Competency 
Dictionary (iCD) [Icd1] of Japan. SFIA and e-CF had a major influence on the MSIS2016 report.  
 
 
	
B.1:  Skills Framework for the Information Age  
 
The SFIA skills and competency framework was first published in 2000 and for the last 15 years has been truly global 
with use in over 180 countries. It is available in 10 languages: English, German, Spanish, Arabic, Japanese, Chinese, 
French, Polish, Italian and French Canadian. Originally developed for the UK and built on initiatives from the 1980s, 
SFIA was designed, from the very beginning, specifically to address the needs of industry and business and enable 
them to plan, acquire and develop the skills and competencies they need. The SFIA Framework is a global common 
language for skills and competencies and underpins the skills and competency management processes that 
organizations use to ensure they have the skills and competencies they need (Figure B.1). 
 
 

 
 

Figure B.1. The Context for SFIA – Supporting Skills and Competency Development in Industry 
 
The not-for-profit SFIA Foundation was formed to maintain the SFIA Framework and support the global SFIA 
Ecosystem. There is a Governance Board that includes the British Computer Society and Institute of Engineering and 
Technology, an international SFIA Council that has industrial representation to lead the Foundation activities, and an 
international Design Authority Board to oversee and approve updates to the SFIA Framework and its support assets. 

Plan and organise                      Acquire                                                                                                                                  
        

       
      

     
     

     
    

    
    

    
    

    
    

    
    

    
    

    
    

  R
ew

ard

      
       

        
               

                                                                                                                                   

      Design roles and structure                Source/recruit the right skills                                                                                                                                                                             
          

        
       

      
      

     
     

     
     

    
    

    
    

    
    

    
    

    
    

    
    

    
    

    
    

  C
om

pe
ns

ate
 an

d re

ward    Conduct workforce planning

                                                                                                Develop                              Analyse                                   A
ssess      

     
     

     
    

    
    

 D
ep

lo
y

                                                                              Build capability and performance       Identify gaps and opportunities         Assess skills and perfo
rm

ance
     

    
    

    
As

sig
n 

w
or

k 
by

 ca
pa

bi
lit

y

                                                                         Provide career pathways
Complete resource

strategy & skills management

The common language
integrating these processes



Computing Curricula 2020   Computing Curricula Report  
CC2020   2020 December 31 

Page 96 of 203 

SFIA receives no central funding from government or commercial stakeholder groups. It is funded through a license 
model which allows the majority of users (organizations and individuals) to use SFIA under a free-of-charge license. 
There is a modest annual license fee for large, distributed organizations and for commercial exploitation. The SFIA 
Framework and all SFIA support assets are visible and available from the SFIA website [Sfi1]. 
 
The SFIA Framework is updated using a well-established open consultation process involving volunteers throughout 
industry, throughout the world, for the benefit of the IT (computing) industry and IT professionals. As an example, 
the IEEE Computer Society were significant contributors to the software engineering updates in 2018. A release is 
delivered every 3 years to reflect the changing skills and competency needs of industry through this open consultation 
process. SFIA 7, the most recent release, was delivered in 2018. Consultation for SFIA 8 is in progress and release is 
scheduled for 2021Q3. Anyone, from any technical domain or country can contribute to the update of the SFIA 
Framework. 

 
The SFIA skills and competency framework brings together a number of elements that industry needs including 
Professional Skills, Behaviors, Knowledge, Qualifications and Certifications with a focus on experience of performing 
a skill or competence as that is what industry values (Fig B.1.).  Individuals have skills at specific levels because they 
have demonstrated experience of performing a specific skill (skill, behavior, and knowledge) at that level in a real-
world situation. 
 
The SFIA Framework has 7 Levels of Responsibility (as one dimension), each characterized by 5 Generic Attributes 
(Autonomy, Influence, Complexity, Knowledge and Business Skills) each described at every SFIA Level (as a second 
dimension) (Figure B.2). SFIA then identifies and defines 102 Professional Skills across the breadth of IT and 
supporting areas (as a third dimension) at each appropriate SFIA Level (Fig B.3.). 
 

 
 

Figure B.2. The SFIA Context – Experience at the core 
 
The SFIA Framework explicitly recognizes knowledge but does not define the specific knowledge required because 
it is highly context sensitive (technologies, domain, tools and methodologies, approaches and national requirements 
such as local legal requirements); knowledge also changes rapidly. SFIA, therefore, in addressing knowledge, links to 
many bodies of knowledge that might be appropriate, depending on the context. Currently, links to 37 BoKs are 
provided on the SFIA website including the EITBOK, SWEBOK, SEBOK, NIST, CYBOK etc.) 
 

You have a skill or competence because 
you have experience of practicing the 

skill in a real-world situation.

Experience at the Core

The Levels of Responsibility are 
straightforward, progressive, generic 

and universally applicable.

7 Levels of Responsibility

The 7 SFIA level are  described 
using a common set of

Generic Attributes.

5 Generic Attributes



Computing Curricula 2020   Computing Curricula Report  
CC2020   2020 December 31 

Page 97 of 203 

The SFIA Framework recognizes the importance and place for qualifications and certifications but does not list 
specific requirements. This is because they are highly context sensitive and may only reflect knowledge recall (rather 
than verification of experience). While SFIA does not specify particular qualifications and certifications, many 
professional bodies use SFIA as the basis of their professional certification schemes, usually at two levels—
Technician, SFIA Level 3 and Chartered or Certified at SFIA Level 5; one professional body also uses SFIA Level 7 
for their CIO certification. 
 
The SFIA skills and competencies are commonly grouped by category and sub-category (Figure B.3) but these 
groupings are purely for ease of navigation throughout the framework. A consistent structure and style is also adopted 
to further aid navigation: a skill, for instance, is described with a Skill Name, a Skill Code, a Skills Description 
(independent of the level), and then Skill Level Descriptors to describe that skill at each appropriate level. 
 
The standard view of SFIA (Figure B.3) is what would be widely recognized globally. The SFIA Foundation has also 
published alternative SFIA Views for specific contexts that include: Digital Transformation View, Software 
Engineering View, DevOps View, Information/Cyber Security View, Big Data/Data Science View. Other SFIA Views 
are in preparation. These SFIA Views are available from the SFIA website. 
 

 
 

Figure B.3. The 102 SFIA Professional Skills – Skills and Competencies Performed by a Role or Individual 
 
A key aspect of the SFIA Framework and the global SFIA Ecosystem is its openness—all SFIA assets are readily 
available from the SFIA website and these include the core documentation set, the Complete SFIA Reference, the 
SFIA Summary Chart, and the SFIA Framework in an Excel file (in the 10 languages). This access enables 
organizations to build their own internal skills and competency support portals or upload SFIA into their corporate 
human resources or learning and development systems. 
 



Computing Curricula 2020   Computing Curricula Report  
CC2020   2020 December 31 

Page 98 of 203 

The SFIA Framework is easily extendable to cover other areas (outside of EIT/ICT) and many organizations do this 
internally or make suggestions during each SFIA refresh. SFIA’s openness works both way—just as the SFIA 
Foundation makes the SFIA Framework available, it also welcomes ideas for enhancement and refresh and efforts to 
contribute to content authoring, review, and support. 
 
 
 
B.2:  Skills and the European Competency Framework  
 
The European e-Competence Framework (e-CF) from the European Union provides a reference of 40 competencies 
required for performance in the ICT workplace, using a common language for competencies, knowledge, skills, and 
proficiency levels that can be understood across Europe. The use of the e-CF by companies and organizations 
throughout Europe supports the transparency, mobility, and efficiency of ICT-sector-related human resources planning 
and development. 
 
As the first sector-specific implementation of the European Qualifications Framework (EQF), the e-CF can be used 
by ICT service, demand, and supply organizations, and by managers and human resources departments. Additionally, 
they are useful for educational institutions and training bodies, including higher education, professional associations, 
trade unions, market analysts and policy makers, and other organizations and parties in public and private sectors. The 
structure of the framework is based on four dimensions shown in Figure B.4. 
 
There are five e-CF proficiency levels, e-1 to e-5, which relate to EQF learning levels 3 to 8. Table B.1 shows a 
description of the EQF levels [Eur3].  
 
 

Dimension 1 Five e-Competence areas derived from the ICT business macro-processes PLAN – BUILD – RUN – ENABLE – 
MANAGE. The main aim of dimension 1 is to facilitate navigation through the framework. 

Dimension 2 A set of reference e-Competences for each area, with a generic description for each competence. Forty 
competences identified in total provide the European generic reference definitions of the framework. 

Dimension 3 Proficiency levels of each e-Competence provide European reference level specifications on e-Competence levels 
e-1 to e-5, which are related to EQF levels 3-8. 

Dimension 4 Samples of knowledge and skills relate to e-Competences in dimension 2. They are provided to add value and 
context and are not intended to be exhaustive. 

Figure B.4. Four dimensions of e-CF framework 

 
 

Table B.1 

e-Competence Level EQF Level 

5 (highest) 8 

4 7 

3 6 

2 4 and 5 

1 3 

 
 
As in SFIA, not all skills are subject to all five levels. Figure B.5 shows the spread of competency levels for each skill. 
 
  



Computing Curricula 2020   Computing Curricula Report  
CC2020   2020 December 31 

Page 99 of 203 

 

 
 

Figure B.5. The European Competency Framework Overview 
 
 
 
B.3:  Skills and the i Competency Dictionary 
 
The i Competency Dictionary (iCD) [Icd1] was developed and is maintained by the Information Technology 
Promotion Agency (IPA) in Japan. It consists of a comprehensive Task Dictionary and a corresponding Skill 
Dictionary. The Task Dictionary contains all the tasks that EIT (Enterprise Information Technology) outsourcers or 
EIT departments are expected to accomplish, while the corresponding Skill Dictionary provides the skills required to 
perform those tasks.  
 
The diagrams in Figures B.6 through B.11 show how the task and skill dictionaries are structured to be used together. 
The skills needed to become competent at each task are enumerated in a Task vs. Skill table. The diagrams indicate 



Computing Curricula 2020   Computing Curricula Report  
CC2020   2020 December 31 

Page 100 of 203 

the number of tasks and skills that are included in the full iCD. It is possible to obtain the complete iCD Task 
Dictionary (Layers 1–4) and Skill Dictionary (Layers 1–4) from the IPA website [Ipa1].  
 
 
B.3.1:  Task Dictionary 
 
The Task Dictionary is intended to be used and applied by companies and organizations to determine tasks in line 
with their organizational strategies or organization plans. Tasks are used to define their organizational functions and 
the roles of personnel. The structure of the dictionary assumes a wide range of corporate activities, so that companies 
with any kind of business model can use and apply it. The Task Dictionary is comprised of four layers divided into 
three task layers plus the Task Evaluation Items layer, shown in Figure B.6. 
 

 
 

Figure B.6. The iCD Task Dictionary Structure 
 
 
 
B.3.2:  Task Dictionary Chart 
 
The Task Dictionary Chart (Figure B.7) can be used to obtain a bird’s-eye view of the entire Task Dictionary on the 
1st Layer Task level. This chart presents a task structure composed of the organization lifecycle as vertical line 
(Strategy, Planning, Development, Utilization, Evaluation & Improvement) and tasks associated with entire lifecycle 
as horizontal line (Planning & Execution, Management & Control, Promotion & Support).  
 



Computing Curricula 2020   Computing Curricula Report  
CC2020   2020 December 31 

Page 101 of 203 

 
 

Figure B.7. The iCD Task Dictionary Chart 
 
 
 
B.3.3:  Examples of Task Evaluation Diagnostic Level and Criteria 
 
Figure B.8 associates the task Diagnostic Level with Diagnostic Criteria. Diagnostic Criteria can be applied to task 
evaluation items or appropriate layer’s tasks to evaluate one’s task performance capability. The levels are from L0 to 
L4. This Diagnostic Criteria can be applied to individuals and the total task performance capability is obtained for 
each department by aggregating all department members’ results.  
 
 

 
 

Figure B.8. Examples of Task Evaluation Diagnostic Level and Criteria 
 
 
 



Computing Curricula 2020   Computing Curricula Report  
CC2020   2020 December 31 

Page 102 of 203 

 
 
 
B.3.4:  Skill Dictionary 
 
Skills are capabilities required to handle associated knowledge items to execute a task. The Skill Dictionary is 
comprised of four layers divided into three skill layers plus Associated Knowledge Items, shown in Figure B.9. The 
Skill Dictionary refers and sorts the items from the major Body of Knowledges/processes and skill standards in the 
world.  
 

 
 

Figure B.9. The iCD Skill Dictionary Structure 
 
 
 
 
B.3.5:  Skill Dictionary Chart 
 
The Skill Dictionary Chart (Figure B.10) can be used to obtain a bird’s-eye view of the entire Skill Dictionary on the 
1st and 2nd skill layers. The Skill Dictionary is divided into five categories based on the skill characteristics: 
methodology, technology, related knowledge, IT (human) skills, and specific skill (optional). This chart represents a 
skill structure on the perspectives of the IT orientation (Horizontal line: High-Low) and the application area (Vertical 
line: Wide-Narrow).  
 



Computing Curricula 2020   Computing Curricula Report  
CC2020   2020 December 31 

Page 103 of 203 

 
 

Figure B.10. The iCD Skill Dictionary Chart 
 
 
 
B.3.6:  Skill Proficiency Level 
 
The chart in Figure B.11 measures the skill proficiency level using seven levels of skill proficiency criteria. Level 1 
to 4 criteria differ according to contents of technology/methodology/related knowledge. Skill proficiency level 4 is 
the highest acquisition level for the skill of accomplishing tasks. Level 5 to 7 criteria are defined across the categories 
and are evaluated based on the degree of social contribution as a professional.  
 



Computing Curricula 2020   Computing Curricula Report  
CC2020   2020 December 31 

Page 104 of 203 

 

 
Figure B.11. Skill Proficiency Level 

 
B.4:  Skills via Enterprise Information Technology 
 
The emphasis on competence has become international as Enterprise IT (EIT) and ICT in general have become 
indispensable across the globe. EIT and ICT derive from a growing understanding of the need for a common language 
for competencies, knowledge, skills, and proficiency levels that can be understood across national borders. A common 
framework enables the identification of skills and competencies that may be required to successfully perform duties 
and fulfill responsibilities in an EIT workplace. They provide a common basis for the selection and recruitment of EIT 
staff, as well as forming the basis for employment agreements, professional development plans, and performance 
evaluation for ICT professionals. 
 
Many national and regional governments have come to require certification of EIT practitioners. Accordingly, they 
have had to develop their own definitions of ICT competencies. Given the increasingly international composition of 
the EIT workforce, the EITBOK has included information from three major frameworks that are emerging as inter-
regional. In general, these frameworks work towards a common understanding of competence, defined by the e-CF, 
for example, as “demonstrated ability to apply knowledge, skills and attitudes to achieve observable results." 
 
 
  



Computing Curricula 2020   Computing Curricula Report  
CC2020   2020 December 31 

Page 105 of 203 

 
Appendix C:  Preliminary Draft Competencies – Examples  
 
 
At the onset of the CC2020 project, subgroups of task force experts explored the development of competency 
statements for different computing disciplines. To accomplish this task, these experts used an implied process to 
generate draft competencies. The IT2017 report already specified competencies by vacating the knowledge area/unit 
approach and by eliminating learning outcomes and topics. It published these competencies within sets of essential 
and supplemental domain clusters.  
 
This appendix provides a first-pass approach to generate draft competencies for computer engineering, computer 
science, information systems, and software engineering. It also includes the published competencies from the IT2017 
report as well as draft competencies for a master’s program in information systems. These competencies, which task 
force subgroups created in 2017-2018, did not use the cluster model as described in Chapter 4. Instead, task force 
subgroups used a “common sense approach” as described in Section C.1 below.   
 
 
 
 
C.1: Initial CC2020 Explorations of Competencies   
 
For each of the established computing reports (IS2010, CS2013, SE2014, CE2016), the respective experts on the 
project teams had used knowledge-based strategies rather than competency approaches. The combined output resulted 
in thousands of learning outcomes derived from these published reports. Mastering all learning outcomes in a 
discipline is unattainable.  
 
 
C.1.1: Drafting Competencies 
 
By using a structured or algorithmic approach, some members of the CC2020 task force transformed essential learning 
outcomes from the four undergraduate curricular reports into competencies. This activity was not easy because of the 
novelty of the meaning of competency and because of the innovative use of competency in computing education. 
Notwithstanding, the CC2020 steering committee created a focus group and partitioned them into subgroups, each 
identified with one of the computing disciplines mentioned above.  
 
In 2017-2018, each subgroup used the IT2017 canonical definition that  

Competency = Knowledge + Skills + Dispositions in context. 
Over six months, the subgroups prototyped competencies for their respective computing disciplines. The number of 
draft competency statements for each discipline varied; three-dozen was a target number. The IT2017 report already 
had 47 stated competencies so it was not part of these subgroup activities, although its published competencies are 
part of this appendix. 
 
The subsections in section C.2 describe the results of the work from the competency subgroups for computer 
engineering, computer science, information systems, and software engineering, as well as those published for 
information technology. It also includes generated competencies from a master’s in information systems (MSIS2016) 
report. Before summarizing the generated competencies, what follows describes the procedure or “algorithm” used to 
formulate draft competency statements. 
 
 
C.1.2: Strategy for Generating Competencies 
 
Since the CC2020 report focuses on undergraduate programs, it is best to use non-related curricular guidelines to serve 
as a model or example for this task. In this case, the MSIS2016 report was a good candidate. From it, the curricular 



Computing Curricula 2020   Computing Curricula Report  
CC2020   2020 December 31 

Page 106 of 203 

area “Business Continuity and Information Assurance (BCIA)” can serve as an example. Page 16 of the MSIS2016 
report has a stated area described as follows.  

The Business Continuity and Information Assurance competency area mainly concerns the continuity, 
auditing, and assurance of information systems. It generally covers areas such as risk avoidance, security 
management, and quality auditing. The challenging issues related to business continuity and information 
assurance span from tactical and strategic to technical and operational levels. They often involve a range of 
processes from management, such as policy and standard-setting, to hands-on skills, such as system 
contingency and recovery planning.  

From this description, a first attempt to generate BCIA draft competencies could be the following set.  
A. Analyze policies and standards for business continuity and information assurance and present the 

findings to a group of peers.  
B. Plan procedures, operations, and technologies for managing security and safety in a disaster recovery 

situation.  
C. Monitor the protection and growth of hardware and software within an information system for a small 

company.  
Note that for each competency, the action verbs (analyze, plan, and monitor) depict the skills needed. The knowledge 
needed is in the content of the activity. The notion of dispositions occurs in the context of the activities such as 
presenting to a group of peers, producing useful procedures, or monitoring activities in a small company.  
 
Of course, many other possibilities exist, and competency sets are not absolute or unique. The set of draft competencies 
for BCIA must consider the context of development. Hence, two different graduate programs could easily have 
different sets of competencies. 
 
Also note that in 2018, to generate competencies for BCIA or any computing area requires that the competencies 
satisfy the canonical definition of competency, which is Knowledge + Skills + Dispositions in context or task. 
Knowledge derives from the corpus of IS content. Skills are the activities taken with knowledge to create an 
accomplishment. Dispositions are the collective human attributes or characteristics expected of a professional who 
practices computing and information systems in the workplace.  
 
A simple search on “dispositions” produces dozens of attributes, including the eleven dispositions stated in Table 4.3 
of Chapter 4. The assumption made by the authors of the IT2017 report and the members of the four subgroups is that 
each person (graduate) possesses these innate characteristics, but with different emphases or proportions. For example, 
for the “punctuality” dispositional attribute, both Graduate X and Graduate Y possess this attribute. However, 
Graduate X may be more inclined to be punctual while Graduate Y may be a better team player.   
 
 
 
C.2: Draft Competencies by Discipline 
 
This section describes the results of the work from the four competency subgroups for computer engineering, computer 
science, information systems, and software engineering completed in 2018 May. It also includes the area of 
information technology and a graduate program in information systems. It does not include cybersecurity because the 
subgroups began their work before that project concluded.  
 
  
  



Computing Curricula 2020   Computing Curricula Report  
CC2020   2020 December 31 

Page 107 of 203 

 
C.2.1:  Computer Engineering Draft Competencies 
 
The computer engineering material that follows contains two versions of the same CE competencies. The CE subgroup 
had several discussions on whether it should include the dimension of “disposition” as a self-contained statement or 
embed dispositions within each competency statement. The left column shows the former version with (human) 
disposition in Item B. The right column shows the latter version with embedded dispositions. The CE task force is 
neutral on which is the preferred representation.  
 
 

Self-contained Disposition Version Embedded Disposition Version 
For each Knowledge Area: 
A. Communicate the essential elements of the history of 

computer engineering, including the development of 
tools, standards, and constraints to a technical audience. 
[History & overview; relevant tools, standards, constraints] 

B. Exercise all CE competencies in a contextually 
appropriate manner, demonstrating proper consideration 
of ethics, cultures, background, and human relationships. 
[Dispositions - the human element] 

 
 
CE-CAE — Circuits and Electronics 
1. Analyze and design circuits using electronic devices and 

innovate in the context of new and existing systems 
using those components to create new functions on 
varying levels of complexity bearing in mind the 
tradeoffs involved.  
[History & Overview; Tools & standards; electrical 
quantities, elements & circuits; electronic materials & 
devices; MOS transistors; data storage cells] 

 
CE-CAL — Computing Algorithms   
1. Design and/or implement classic and application-

specific algorithms including parallel in multi-threading 
ones by relevant tools within engineering, marketing, 
commercial or legal constraints in the respectful and 
meaningful interaction with users and customers.  
[Relevant tools; algorithms - common ones, analysis, 
strategies]  

2. Analyze correctness, efficiency, performance, and 
complexity of the algorithms using order of complex 
terms and present honestly and comprehensively the 
results of the analysis for either a professional or non-
professional audience.  
[Algorithmic complexity; scheduling algorithms; 
computability theory] 

 
CE-CAO — Computer Architecture & Organization   
1. Manage the design of computer hardware components 

and integrate such components to provide complete 
hardware systems that function reliably and efficiently 
demonstrating sensitivity for the context of the design 
envelope within which they were conceived.  
[Measuring performance; Processor organization; 
Distributed systems architecture; Multi/Many-core 
architectures; Peripheral subsystems] 
 

2. Simulate and evaluate the performance of parallel and 
sequential hardware solutions and tradeoffs involved in 
designing complex hardware systems considering the 

For each Knowledge Area: 
A. Communicate the essential elements of the history of 

computer engineering, including the development of 
tools, standards, and constraints to a technical audience. 
[History & overview; relevant tools, standards, constraints] 

 
 
 
 
 
 
CE-CAE — Circuits and Electronics 
1. Analyze and design circuits for a local engineering 

company using electronic devices and innovate in the 
context of new and existing systems using those 
components to create new functions on varying levels of 
complexity bearing in mind the tradeoffs involved.  
[History & Overview; Tools & standards; electrical 
quantities, elements & circuits; electronic materials & 
devices; MOS transistors; data storage cells] 

 
CE-CAL — Computing Algorithms   
1. Design and/or implement classic and application-

specific algorithms including parallel in multi-threading 
ones by relevant tools within engineering, marketing, 
commercial or legal constraints in the respectful and 
meaningful interaction with users and customers.  
[Relevant tools; algorithms - common ones, analysis, 
strategies]  

2. Analyze correctness, efficiency, performance, and 
complexity of the algorithms using order of complex 
terms and present honestly and comprehensively the 



Computing Curricula 2020   Computing Curricula Report  
CC2020   2020 December 31 

Page 108 of 203 

Self-contained Disposition Version Embedded Disposition Version 
design of memory and arithmetical units as well as 
characterizing system performance using appropriate 
metrics.  
[Processor organization; Memory system organization 
& architecture; Computer arithmetic; Input/Output 
interfacing and communication] 

 
CE-DIG — Digital Design   
1. Using appropriate tools, design digital circuits including 

the basic building blocks of Boolean algebra, computer 
numbering systems, data encoding, combinatorial and 
sequential elements.  
[Tools & standards; numbering systems & data 
encoding; Boolean algebra; digital logic, combinatorial 
& sequential] 
 

2. Design a control or datapath circuit using programmable 
logic and considering relevant system design constraints 
and testability concerns.  
[Control & datapaths; programmable logic; system 
constraints; fault models & testing] 

 
CE-ESY — Embedded Systems   
1. Design and/or implement basic and advanced I/O 

techniques, both synchronous and asynchronous and 
serial/parallel, including interrupts and time 
considerations.  
[Parallel/ serial I/O; synchronous/asynchronous I/O; 
interrupts and timing] 

2. Design and implement an example of an embedded 
system in a non-electronic device, including sensor 
feedback, low-power, and mobility.  
[Data acquisition & sensors; embedded systems 
characteristics; low-power operation] 

 
 
CE-NWK — Computer Networks   
1. Develop, deploy, maintain, and evaluate the 

performance of wireless and wired networking solutions 
in the context of relevant standards and the needs of 
stakeholder groups and demonstrating awareness of the 
foundations and history of the area.  
[History and overview; Relevant tools, standards] 

2. Relate general networking competence to integrated 
solutions in the Internet of Things considering security 
and privacy aspects and the impact of solutions on 
citizens and society.  
[Network architecture; Local and wide-area networks; 
Network protocols; Network applications; Network 
management; Data communications; Performance 
evaluation; Wireless sensor networks] 

 
CE-PPP — Preparation for Professional Practice 
1. Analyze the importance of communication skills in a 

team environment and within a computer engineering 
group setting, discuss and determine how these skills 
contribute to the optimization of organization goals.  
[Communication and teamwork] 

2. Evaluate the philosophical and cultural attributes 
necessary for maintaining a global relationship in 
solving a computer engineering problem that involves a 

complex hardware systems considering the design of 
memory and arithmetical units as well as characterizing 
system performance using appropriate metrics.  
[Processor organization; Memory system organization 
& architecture; Computer arithmetic; Input/Output 
interfacing and communication] 

 
CE-DIG — Digital Design   
1. Manage the design of a computer system for a 

manufacturer using appropriate tools, design digital 
circuits including the basic building blocks of Boolean 
algebra, computer numbering systems, data encoding, 
combinatorial and sequential elements.  
[Tools & standards; numbering systems & data 
encoding; Boolean algebra; digital logic, combinatorial 
& sequential] 

2. Design a control or datapath circuit for a small company 
using programmable logic and considering relevant 
system design constraints and testability concerns.  
[Control & datapaths; programmable logic; system 
constraints; fault models & testing] 

 
CE-ESY — Embedded Systems  
1. Present to a group of peers the design and 

implementation of basic and advanced I/O techniques, 
both synchronous and asynchronous and serial/parallel, 
including interrupts and time considerations.  
[Parallel/ serial I/O; synchronous/asynchronous I/O; 
interrupts and timing] 

2. Design and implement for a professional seminar an 
example of an embedded system in a non-electronic 
device, including sensor feedback, low-power, and 
mobility.  
[Data acquisition & sensors; embedded systems 
characteristics; low-power operation] 

 
CE-NWK — Computer Networks   
1. Develop, deploy, maintain and evaluate the performance 

of wireless and wired networking solutions for a 
manufacturer in the context of relevant standards and the 
needs of stakeholder groups and demonstrating 
awareness of the foundations and history of the area.  
[History and overview; Relevant tools, standards] 

2. Relate general networking competence to integrated 
solutions in the Internet of Things considering security 
and privacy aspects and the impact of solutions on 
citizens and society.  
[Network architecture; Local and wide-area networks; 
Network protocols; Network applications; Network 
management; Data communications; Performance 
evaluation; Wireless sensor networks] 

 
CE-PPP — Preparation for Professional Practice   
1. Analyze the importance of communication skills in a 

team environment and within a computer engineering 
group setting, discuss and determine how these skills 
contribute to the optimization of organization goals.  
[Communication and teamwork] 

2. Evaluate the philosophical and cultural attributes 
necessary for maintaining a global relationship in 
solving a computer engineering problem that involves a 



Computing Curricula 2020   Computing Curricula Report  
CC2020   2020 December 31 

Page 109 of 203 

Self-contained Disposition Version Embedded Disposition Version



Computing Curricula 2020   Computing Curricula Report  
CC2020   2020 December 31 

Page 110 of 203 

Self-contained Disposition Version Embedded Disposition Version 
CE-SRM — Systems Resource Management   
1. Analyze the role of single user, mobile, networked, 

client-server, distributed, and embedded operating 
systems, interrupts, and real-time support in managing 
system resources and interfacing between hardware and 
software elements considering economic, environmental, 
and legal limitations.  
[History and overview of operating systems, Managing 
system resources, Operating systems for mobile devices, 
Support for concurrent processing] 

2. Design and implement an appropriate performance 
monitoring procedure for standard and virtual systems. 
[Real-time operating system design, System performance 
evaluation; Support for virtualization] 

 
 
CE-SWD — Software Design 
1. Evaluate and apply programming paradigms and 

languages to solve a wide variety of software design 
problems being mindful of trade-offs including 
maintainability, efficiency, and intellectual property 
constraints.  
[Programming constructs & paradigms; problem-
solving; history & overview; relevant tools, standards, 
constraints] 
 

2. Design software tests for evaluating a wide variety of 
performance criteria on subsystems (including usability, 
correctness, graceful failure, and efficiency) within the 
context of a complete hardware-software system.  
[Software testing & quality] 

 

CE-SRM — Systems Resource Management   
1. Analyze the role of single user, mobile, networked, 

client-server, distributed, and embedded operating 
systems, interrupts, and real-time support in managing 
system resources and interfacing between hardware and 
software elements considering economic, environmental, 
and legal limitations.  
[History and overview of operating systems, Managing 
system resources, Operating systems for mobile devices, 
Support for concurrent processing] 

2. Preset to an organization the design and implementation 
of appropriate performance monitoring procedures for 
standard and virtual systems. 
[Real-time operating system design, System performance 
evaluation; Support for virtualization] 

 
CE-SWD — Software Design 
1. Write a report for a manufacturer regarding the 

evaluation and application of programming paradigms 
and languages to solve a wide variety of software design 
problems being mindful of trade-offs including 
maintainability, efficiency, and intellectual property 
constraints.  
[Programming constructs & paradigms; problem-
solving; history & overview; relevant tools, standards, 
constraints] 

2. Design software testing procedures for an engineering 
team that evaluates a wide variety of performance 
criteria on subsystems (including usability, correctness, 
graceful failure, and efficiency) within the context of a 
complete hardware-software system.  
[Software testing & quality] 

 
 
 
Number of Draft Competencies = 24 
 
 
Task Force Members on the CE Subgroup 

Barry Lunt (Leader) 
Olga Bogyavlenskaya 
Eric Durant 
John Impagliazzo 
Arnold Neville Pears 

 
  



Computing Curricula 2020   Computing Curricula Report  
CC2020   2020 December 31 

Page 111 of 203 

 
C.2.2:  Computer Science Draft Competencies 
 
 
AL-Algorithms and Complexity   
A. Present to a group of peers the data characteristics of conditions or assumptions that can lead to different behaviors of specific 

algorithms and from the analysis, illustrate empirical studies to validate hypotheses about runtime measures.  
B. Illustrate informally the time and space complexity of algorithms and use big-O notation formally to show asymptotic upper 

bounds and expected case bounds on time and space complexity, respectively.  
C. Use recurrence relations to determine the time complexity of recursively defined algorithms by solve elementary recurrence 

relations and present the results to a group of scholars.  
D. Determine an appropriate algorithmic approach to an industry problem and use appropriate techniques (e.g., greedy approach, 

divide-and-conquer algorithm, recursive backtracking, dynamic programming, or heuristic approach) that considers the trade-
offs between the brute force to solve a problem.  

E. 



Computing Curricula 2020   Computing Curricula Report  
CC2020   2020 December 31 

Page 112 of 203 

B. Analyze and evaluate a user interface that considers the context of use, stakeholder needs, state-of-the-art response interaction 
times, design modalities taking into consideration universal access, inclusiveness, assistive technologies, and culture-sensitive 
design.  

C. Design and develop an int



Computing Curricula 2020   Computing Curricula Report  
CC2020   2020 December 31 

Page 113 of 203 

B. Write a program for a client that correctly terminates when all concurrent tasks terminate by considering actors and/or reactive 
processes, deadlocks, and properly synchronized queues. 

C. Write a test program for a company that reveals a concurrent programming error (e.g., missing an update when two activities 
both try to increment a variable).  

D. Present computational results of the work and span in a program by identifying independent tasks that may be parallelized and 
determining the critical path for a parallel execution diagram.  

E. Implement a parallel divide-and-conquer (and/or graph algorithm) for a client by mapping and reducing operations for the real 
industry problem and empirically measure its performance relative to its sequential analog.  

 
PL-Programming Languages  
A. Present the design and implementation of a class considering object-oriented encapsulation mechanisms (e.g., class 

hierarchies, interfaces, and private members).  
B. Produce a brief report on the implementation of a basic algorithm considering control flow in a program using dynamic 

dispatch that avoids assigning to a mutable state (or considering reference equality) for two different languages. 
C. Present the implementation of a useful function that takes and returns other functions considering variables and lexical scope 

in a program as well as functional encapsulation mechanisms.  
D. Use iterators and other operations on aggregates (including operations that take functions as arguments) in two programming 

languages and present to a group of professionals some ways of selecting the most natural idioms for each language.  
E. Contrast and present to peers (1) the procedural/functional approach (defining a function for each operation with the function 

body providing a case for each data variant) and (2) the object-oriented approach (defining a class for each data variant with 
the class definition providing a method for each operation).  

F. Write event handlers for a web developer for use in reactive systems such as GUIs.  
G. Demonstrate program pieces (such as functions, classes, methods) that use generic or compound types, including for 

collections to write programs.  
H. Write a program for a client to process a representation of code that illustrates the incorporation of an interpreter, an expression 

optimizer, and a documentation generator.  
I. Use type-error messages, memory leaks, and dangling-pointer to debug a program for an engineering firm.  
 
SDF-Software Development Fundamentals  
A. Create an appropriate algorithm to illustrate iterative, recursive functions, as well as divide-and-conquer techniques and use a 

programming language to implement, test, and debug the algorithm for solving a simple industry problem.  
B. Decompose a program for a client that identifies the data components and behaviors of multiple abstract data types and 

implementing a coherent abstract data type, with loose coupling between components and behaviors.  
C. Design, implement, test, and debug an industry program that uses fundamental programming constructs including basic 

computation, simple and file I/O, standard conditional and iterative structures, the definition of functions, and parameter 
passing.  

D. Present the costs and benefits of dynamic and static data structure implementations, choosing the appropriate data structure 
for modeling a given engineering problem.  

E. Apply consistent documentation and program style standards for a software engineering company that contribute to the 
readability and maintainability of software, conducting a personal and small-team code review on program component using 
a provided checklist.  

F. Demonstrate common coding errors, constructing and debugging programs using the standard libraries available with a chosen 
programming language.  

G. Refactor an industry program by identifying opportunities to apply procedural abstraction. 
 
SE-Software Engineering  
A. Conduct a review of a set of software requirements for a local project, distinguishing between functional and non-functional 

requirements, and evaluate the extent to which the set exhibits the characteristics of good requirements. 
B. Present to a client the design of a simple software system using a modeling notation (such as UML), including an explanation 

of how the design incorporated system design principles. 
 
SF-Systems Fundamentals  
A. Design a simple sequential problem and a parallel version of the same problem using fundamental building blocks of logic 

design and use appropriate tools to evaluate the design for a commercial organization and evaluate both problem versions.  
B. Develop a program for a local organization that incorporated error detection and recovery that incorporates appropriate tools 

for program tracing and debugging.  
C. Design a simple parallel program for a corporation that manages shared resources through synchronization primitives and use 

tools to evaluate program performance. 
D. Design and conduct a performance-oriented, pattern recognition experiment incorporating state machine descriptors and simple 

schedule algorithms for exploiting redundant information and data correction that is usable for a local engineering company and 
use appropriate tools to measure program performance.  



Computing Curricula 2020   Computing Curricula Report  
CC2020   2020 December 31 

Page 114 of 203 

E. Calculate average memory access time and describe the tradeoffs in memory hierarchy performance in terms of capacity, 
miss/hit rate, and access time for a local engineering company.  

F. Measure the performance of two application instances running on separate virtual machines at a local engineering company and 
determine the effect of performance isolation.  

 
SP-Social Issues and Professional Practice  
A. Perform a system analysis for a local organization and present the results to them in a non-technical way.  
B. Integrate interdisciplinary knowledge to develop a program for a local organization. 
C. Document industry trends, innovations, and new technologies and produce a report to influence a targeted workspace. 
D. Present to a group of professionals an innovative computer system by using audience-specific language and examples to 

illustrate the group's needs. 
E. Produce a document that is helpful to others that addresses the effect of societal change due to technology.  
F. Adopt processes to track customer requests, needs, and satisfaction. 
G. 



Computing Curricula 2020   Computing Curricula Report  
CC2020   2020 December 31 

Page 115 of 203 

 
C.2.3:  Information Systems Draft Competencies 
 
 
Identifying and designing opportunities for IT-enabled organizational improvement 
1. Analyze the current fit between IT strategy and organizational strategy and take corrective action to align the two, when 

necessary. 
2. Understand General Systems theory, including its key principles and applications. 
3. Model organizational processes with at least one modern business process modeling language.  
4. Extract information systems requirements from future state process models. 
5. Build on the foundation of risk-based management theory, apply risk analysis to real organizations. 
6. Determine information systems requirements based on demonstrated needs for organizational controls. 
7. Identify process performance indicators and monitors, applying industry recommendations like ITIL. 
8. Understand emerging technologies to identify innovative business opportunities based on these technologies. 
9. Develop business proposals based on the use of emerging technologies in an organization. 
10. Apply entrepreneurial and creative thinking to transform organizations using emerging technologies. 
11. Analyze and document various business stakeholders’ information requirements for a proposed system. 
12. Apply modern industrial practices and techniques on system documentation and user interviewing (i.e., ITIL and PMBOK). 
13. Apply foundational knowledge of human-computer interaction principles to systems and user interface design. 
14. Apply knowledge of data visualization and representation for an application related to analytics and complex data 

representation. 
 
Analyzing trade-offs 
15. Identify and design the technology alternatives and manage risk across various options within an information systems project 

to select the most appropriate options based on the organizational needs and implement a solution that solves key business 
problems. 

16. Justify an information systems project in terms of technical feasibility, business viability, and cost-effectiveness to 
demonstrate the project's feasibility.  

17. Analyze and compare solution options according to a variety of criteria and policies to evaluate the different possible solutions 
according to how well they promote the organizational needs. 

18. Create a budget for IT-based solutions and sourcing options to enable the organization to determine the financial impact of 
each option. 

19. Analyze the cultural differences that affect a global business environment to show how cultural standards and expectations 
can have a positive impact on business success to support the process of selecting between options. 

 
Designing and implementing information systems solutions 
20. Design an enterprise architecture (EA) using formal approaches by identifying EA change needs and by addressing domain 

requirements and technology development.  
21. Apply a systematic methodology for specifying system solution options based on the requirements for the information systems 

solution, considering in-house development, development from third-party providers, or purchased commercial-off-the-shelf 
(COTS) packages. 

22. Design and implement a high-quality UX (user experience) for target users to enable effective support for the users’ goals in 
their environment.  

23. Design principles of information technology security and data infrastructure at the organizational level that enable them to 
plan, develop, and perform security tasks and apply them to organizational systems and databases.  

24. Design and implement an IT application that satisfies user needs in the context of processes that integrate analysis, design, 
implementation, and operations.  

25. Identify data and information management alternatives and suggest the most appropriate options based on the organizational 
information needs. 

26. Design data and information models aligned with organizational processes and compatible with data and information security 
management criteria. 

27. Select the suitable outsourcing contractors based on the external procurement selection criteria and manage people in 
development teams including selected contractors in multiple projects and complex situations.  

28. Understand the processes, methods, techniques, and tools that organizations use to manage information systems projects.  
29. Implement modern project management approaches to information systems project, demonstrating an understanding of 

complex team-based activities are an inherent part of the project management. 
 
Managing ongoing information technology operations 
30. Develop and implement plans of action for optimizing the use of enterprise technology resources. 
31. Develop indicators to assess application performance and scalability. 
32. Monitor application performance indicators and implement corrective actions.  
33. Establish practices for optimized use of information systems and plan for a long term IS viability. 



Computing Curricula 2020   Computing Curricula Report  
CC2020   2020 December 31 

Page 116 of 203 

34. Monitor and control an IS to track performance and fit with organizational needs. 
35. Implement corrective actions by modifying the system, as necessary.  
36. Negotiate and enforce contracts with providers of technology service to maintain the operational integrity of the technologies 

and services provided and be compliant with the roles and responsibilities of all parties involved. 
37. Develop, implement, and monitor a security plan strategy based on a risk management model. 
38. Implement corrective security actions, as necessary. 
39. Plan and implement procedures, operations, and technologies for managing security and safety ensuring business continuity 

and information assurance from a disaster recovery situation. 
 
Leadership and collaboration 
40. Manage interpersonal relationships in a cross-cultural, cross-functional team.  
41. Provide a clearly articulated vision for the team so that it will be able to work towards a common goal. 
42. Support each member of the team in their effort to achieve their best possible level of individual performance.  
43. Specify sufficiently challenging goals for the team. 
44. Create a work breakdown structure, a task dependency model, and a project schedule for a globally distributed project.  
45. Ensure that the project has sufficient resources and manage those resources in a context-appropriate way.  
46. Allocate project tasks to project resources in an equitable and achievable way.  
47. Monitor the progress the project is making. 
48. Respect different viewpoints between team members.  
49. View differences between team members as richness and a resource.  
50. Listen and consider carefully to the viewpoints of all team members.  
51. Establish and support decision structures that ensure equal opportunity to participate by all team members. 
52. Align the structure of an organization so that it supports the achievement of its goals.  
53. Select the organizational form based on criteria known to be effective.  
54. Execute the transformation of an organization's structure so that it does not unnecessarily disrupt its work.  
55. Monitor the effectiveness of an organizational structure continuously. 

 
Communication 
56. Acquire facts and opinions regarding the domain of interest from various stakeholders in relevant organizational contexts 

using appropriate communication methods. 
57. Extract information from digital archives using modern data retrieval tools. 
58. Communicate effectively in writing in a broad range of organizational contexts.  
59. Select the appropriate form of written communication for a specific organizational situation. 
60. Use state of the art virtual collaboration tools (such as wikis, blogs, and shared collaboration spaces) effectively in a variety 

of organizational situations. 
61. Communicate effectively orally with different audiences and using different channels in a variety of organizational situations. 
62. Identify and articulate the key elements of a persuasive presentation to support a specific viewpoint. 
 
Negotiation 
63. Apply a detailed problem analysis to determine the interests of each party in the negotiation to provide a clear proposal of the 

funding, time, and staff required. 
64. Articulate and justify service levels for an IT service in terms of metrics that guarantee a description of the service being 

provided, the reliability, the responsiveness, the procedure for reporting problems, monitoring, and reporting service level, 
consequences for not meeting service obligations, and escape clauses or constraints. 

65. Demonstrate the specification and measurements for each area in the level of service definitions to allow the quality of service 
to be benchmarked. 

66. Identify and apply a more positive and confident approach to negotiating for each provider to support the quality enhancement 
of the project design as well as to ensure quality project preparation and implementation. 

67. Classify the key decision points, identify who is involved in making those decisions, and understand the actions and 
information that will be required for such decisions to be made within an information systems team in the context of competing 
internal interests. 

 
Analytical and critical thinking, including creativity and ethical analysis 
68. Interpret and comply with legislative and regulatory requirements governing IT practices as well as industry standards for IT 

practices. Understand how culture and ethics shape compliance behavior. 
69. Analyze privacy and integrity guide for all IT practices. 
70. Identify complex situations and analyze the practices guide to ensure the ethical and legal corporate requirements are met. 
71. Identify the value of the systems. 
72. Identify the system's vulnerabilities. 
73. Identify the occurrence of a threat that may exploit a system vulnerability aimed at compromising the systems. 
74. Identify a complex problem in, but separate from, its environment. 
75. Apply knowledge and understanding to solve the identified problem. 



Computing Curricula 2020   Computing Curricula Report  
CC2020   2020 December 31 

Page 117 of 203 

76. Apply creative problem solving to technology-related issues. 
77. Select appropriate data collection methods and techniques for the investigation of domain activities. 
78. Capture and structure data and information requirements using appropriate conceptual modeling techniques. 
79. Reason effectively with a learned audience based on the results of quantitative analyses. 
80. Apply adequate quantitative analysis techniques according to the data analysis goal. 
81. Develop innovative and creative models that rely on new uses of existing technology or new technologies themselves. 
82. Develop a plan to exploit new and emerging methods and technologies for new purposes within an organization. 
83. Devise new ways of structuring and performing domain activities at different levels (individual, team, process, and 

organization) while considering the enabling and enhancing effects of information technology applications. 
84. Estimate the benefits of the new designs, assess the consequences of their implementation, and anticipate potential adverse 

consequences. 
. 
Mathematical foundations 
85. Identify those domains of interest problems that can be addressed mathematically and find a mathematical formulation for 

those problems.  
86. Use logical thought processes to divide a problem into smaller components and make inferences based on problem 

components.  
87. Select and implement an effective mathematical strategy.  
88. Communicate mathematical results effectively to a variety of stakeholders.  
 
 
Number of Draft Competencies = 88  
 
 
Task Force Members on the Information Systems Subgroup 
 

Eiji Hayashiguchi (Leader) 
Hala Alrumaih  
Teresa Pereira  
Ariel Sabiguero  
Heikki Topi 
John Impagliazzo  

 
 
 
  



Computing Curricula 2020   Computing Curricula Report  
CC2020   2020 December 31 

Page 118 of 203 

 
C.2.4:  Information Technology Competencies 
 
 
ITE-CSP   Cybersecurity Principles  
A. Evaluate the purpose and function of cybersecurity technology identifying the tools and systems that reduce the risk of data 

breaches while enabling vital organization practices.  (Cybersecurity functions)  
B. Implement systems, apply tools, and use concepts to minimize the risk to an organization’s cyberspace to address cybersecurity 

threats. (Tools and threats) 
C. Use a risk management approach for responding to and recovering from a cyber-attack on a system that contains high-value 

information and assets such as an email system. (Response and risks) 
D. Develop policies and procedures needed to respond and remediate a cyber-attack on a credit card system and describe a plan 

to restore functionality to the infrastructure. (Policies and procedures) 
 
ITE-GPP   Global Professional Practice  
A. Analyze the importance of communication skills in a team environment and determine how these skills contribute to the 

optimization of organization goals. (Communication and teamwork) 
B. Evaluate the specific skills necessary for maintaining continued employment in an IT career that involves system development 

in an environmental context. (Employability) 
C. Develop IT policies within an organization that include privacy, legal, and ethical considerations as they relate to a corporate 

setting. (Legal and ethical) 
D. Evaluate related issues facing an IT project and develop a project plan using a cost/benefit analysis including risk 

considerations in creating an effective project plan from its start to its completion. (Project management) 
 
ITE-IMA   Information Management  
A. Express how the growth of the internet and demands for information have changed data handling and transactional and 

analytical processing and led to the creation of special-purpose databases. (Requirements) 
B. Design and implement a physical model based on appropriate organization rules for a given scenario including the impact of 

normalization and indexes. (Requirements and development) 
C. Create working SQL statements for simple and intermediate queries to create and modify data and database objects to store, 

manipulate, and analyze enterprise data. (Testing and performance) 
D. Analyze ways data fragmentation, replication, and allocation affect database performance in an enterprise environment. 

(Integration and evaluation) 
E. Perform major database administration tasks such as create and manage database users, roles and privileges, backup, and 

restore database objects to ensure organizational efficiency, continuity, and information security. (Testing and performance) 
 
ITE-IST   Integrated Systems Technology  
A. Illustrate how to code and store characters, images, and other forms of data in computers and show why data conversion is 

often a necessity when merging disparate computing systems. (Data mapping and exchange) 
B. Show how a commonly used intersystem communication protocol works, including its advantages and disadvantages. 

(Intersystem communication protocols) 
C. Design, debug and test a script that includes selection, repetition, and parameter passing. (Integrative programming and 

scripting) 
D. Illustrate the goals of secure coding and show how to use these goals as guideposts in dealing with preventing buffer overflow, 

wrapper code, and securing method access. (Defensible integration) 
 
ITE-NET   Networking  
A. Analyze and compare the characteristics of various communication protocols and how they support application requirements 

within a telecommunication system. (Requirements and Technologies) 
B. Analyze and compare several networking topologies in terms of robustness, expandability, and throughput used within a cloud 

enterprise. (Technologies) 
C. Describe different network standards, components, and requirements of network protocols within a distributed computing 

setting. (Network protocol technologies) 
D. Produce managerial policies to address server breakdown issues within a banking system. (Risk Management) 
E. Explain different main issues related to network management. (Network Management) 
 
ITE-PFT   Platform Technologies  
A. Describe how the historical development of hardware and operating system computing platforms produced the computing 

systems we have today. (Computing systems) 
B. Show how to choose among operating system options and install at least an operating system on a computer device. (Operating 

systems) 



Computing Curricula 2020   Computing Curricula Report  
CC2020   2020 December 31 

Page 119 of 203 

C. Justify the need for power and heat budgets within an IT environment, and document the factors needed when considering 
power and heat in a computing system. (Computing infrastructure) 

D. Produce a block diagram, including interconnections, of the main parts of a computer, and illustrate methods used on a 
computer for storing and retrieving data. (Architecture and organization) 

 
ITE-SPA System Paradigms  
A. Justify the way IT systems within an organization can represent stakeholders using different architectures and the ways these 

architectures relate to a system lifecycle. (Requirements and development) 
B. Demonstrate a procurement process for software and hardware acquisition and explain the procedures one might use for testing 

the critical issues that could affect IT system performance. (Testing and performance) 
C. Evaluate integration choices for middleware platforms and demonstrate how these choices affect testing and evaluation within 

the development of an IT system. (Integration and evaluation) 
D. Use knowledge of information technology and sensitivity to the goals and constraints of the organization to develop and 

monitor effective and appropriate system administration policies within a government environment. (System governance) 
E. Develop and implement procedures and employ technologies to achieve administrative policies within a corporate 

environment. (Operational activities) 
F. Organize personnel and information technology resources into appropriate administrative domains in a technical center. 

(Operational domains) 
G. Use appropriate and emerging technologies to improve the performance of systems and discover the cause of performance 

problems in a system. (Performance analysis) 
 
ITE-SWF Software Fundamentals  
A. Use multiple levels of abstraction and select appropriate data structures to create a new program that is socially relevant and 

requires teamwork. (Program development) 
B. Evaluate how to write a program in terms of program style, intended behavior on specific inputs, correctness of program 

components, and descriptions of program functionality. (App development practices) 
C. Develop algorithms to solve a computational problem and explain how programs implement algorithms in terms of instruction 

processing, program execution, and running processes. (Algorithm development) 
D. Collaborate in the creation of an interesting and relevant app (mobile or web) based on user experience design, functionality, 

and security analysis and build the app’s program using standard libraries, unit testing tools, and collaborative version control. 
(App development practices) 

 
ITE-UXD   User Experience Design  
A. Design an interactive application, applying a user-centered design cycle and related tools and techniques (e.g., prototyping), 

aiming at usability and relevant user experience within a corporate environment. (Design tools and techniques) 
B. For a case of user-centered design, analyze and evaluate the context of use, stakeholder needs, state-of-the-art interaction 

opportunities, and envisioned solutions, considering user attitude and applying relevant tools and techniques (e.g., heuristic 
evaluation), aiming at universal access and inclusiveness, and showing a responsive design attitude, considering assistive 
technologies and culture-sensitive design. (Stakeholder needs) 

C. For evaluation of user-centered design, articulate evaluation criteria and compliance to relevant standards (Benchmarks and 
standards) 

D. In design and analysis, apply knowledge from related disciplines including human information processing, anthropology and 
ethnography, and ergonomics/human factors. (Integrative design) 

E. Apply experience design for a service domain related to several disciplines, focusing on multiple stakeholders and 
collaborating in an interdisciplinary design team. (Application design) 

 
ITE-WMS   Web and Mobile Systems  
A. Design a responsive web application utilizing a web framework and presentation technologies in support of a diverse online 

community. (Web application development) 
B. Develop a mobile app that is usable, efficient, and secure on more than one device. (Mobile app development) 
C. Analyze a web or mobile system and correct security vulnerabilities. (Web and mobile security) 
D. Implement storage, transfer, and retrieval of digital media in a web application with appropriate file, database, or streaming 

formats. (Digital media storage and transfer) 
E. Describe the major components of a web system and how they function together, including the webserver, database, analytics, 

and front end. (Web system infrastructure) 
 
 
Number of Draft Competencies = 47 
 
 



Computing Curricula 2020   Computing Curricula Report  
CC2020   2020 December 31 

Page 120 of 203 

 
C.2.5:  Software Engineering Draft Competencies 
 
 
Software Requirements 
1. Identify and document software requirements by applying a known requirements elicitation technique in work sessions with 

stakeholders, using facilitative skills, as a contributing member of a requirements team.  
2. Analyze software requirements for consistency, completeness, and feasibility, and recommend improved requirements 

documentation, as a contributing member of a requirements team.  
3. Specify software requirements using standard specification formats and languages that have been selected for the  project and 

be able to describe the requirements in an understandable way to non-experts such as end-users, other stakeholders, or 
administrative managers, as a contributing member of a requirements team. 

4. Verify and validate the requirements using standard techniques, including inspection, modeling, prototyping, and test case 
development, as a contributing member of a requirements team.  

5. Follow process and product management procedures that have been identified for the project, as a contributing member of the 
requirements engineering team. 

 
Software Design 
1. Present to business decision-makers architecturally significant requirements from a software requirements specification 

document. 
2. Evaluate and compare tradeoffs from alternative design possibilities for satisfying functional and non-functional requirements 

and write a brief proposal summarizing key conclusions for a client. 
3. Produce a high-level design of specific subsystems that is presentable to a non-computing audience by considering 

architectural and design patterns. 
4. Produce detailed designs for a client for specific subsystem high-level designs by using design principles and cross-cutting 

aspects to satisfy functional and non-functional requirements. 
5. Evaluate software testing consideration of quality attributes in the design of subsystems and modules for a 

developer/manufacturer. 
6. Create software design documents that communicate effectively to software design clients such as analysts, implementers, test 

planners, or maintainers. 
 
Software Construction 
1. Design and implement an API using an object-oriented language and extended libraries, including parameterization and 

generics on a small project.  
2. Evaluate a software system against modern software practices such as defensive programming, error and exception handling, 

accepted fault tolerances, in a runtime mode that considers state-based table-driven constructions on a large project, as a 
member of a project team. 

3. Develop a distributed cloud-based system that incorporates grammar-based inputs and concurrency primitives for a medium-
size project and then conduct a performance analysis to fine-tune the system, as a member of a project team. 

 
Software Testing 
1. Perform an integrative test and analysis of software components by using black-box and use case techniques in collaboration 

with the clients.  
2. Conduct a regressive test of software components for a client that considers operational profiles and quality attributes specific 

to an application following empirical data and the intended usages.  
3. Conduct a test utilizing appropriate testing tools focused on desirable quality attributes specified by the quality control team 

and the client.  
4. Plan and conduct process to design test cases for an organization using both clear- and black-box techniques to measure quality 

metrics in terms of coverage and performance.  
 
Software Sustainment 
1. Describe the criteria for transition into a sustainment status and assist in identifying applicable systems and software 

operational standards.  
2. Relate to the needs of operational support personnel for documentation and training and help develop software transition 

documentation and operational support training materials. 
3. Help in determining the impacts of software changes on the operational environment.  
4. Describe the elements of software support activities, such as configuration management, operational software assurance, help 

desk activities, operational data analysis, and software retirement.  
5. Perform software support activities; and interact effectively with other software support personnel.  
6. Assist in implementing software maintenance processes and plans and make changes to software to implement maintenance 

needs and requests.  
 



Computing Curricula 2020   Computing Curricula Report  
CC2020   2020 December 31 

Page 121 of 203 

Software Process and Life Cycle 
1. Engage with a team to translate a software development process into individual areas of responsibility.  
2. Commit to and perform tasks related to assigned or agreed-upon areas of responsibility.  
3. Propose and justify software lifecycle process improvements based on team capacity, project progress data, and quality 

analysis as part of a software development team's retrospective activities. 
 
Software Systems Engineering 
1. Provide a description of system engineering concepts and activities to identify problems or opportunities, explore alternatives, 

create models, and test them.  
2. Develop the big picture of a system in its context and environment to simplify and improve system architectures for supporting 

system designers. 
3. Develop interfaces, which interact with other subsystems. Use information hiding to isolate the contents and collaborations 

within subsystems, so that clients of the subsystem need not be aware of the internal design of subsystems. 
4. Work effectively with engineers and developers from other disciplines to ensure effective interaction. 
 
Software Quality 
1. Distinguish quality attributes that are discernable at run-time (performance, security, availability, functionality, usability), 

from those not discernable at run-time (modifiability, portability, reusability, integrability, and testability) and those related 
to the intrinsic qualities of architecture and detailed design (conceptual integrity, correctness, and completeness).  

2. Design, coordinate, and execute, within a project team, software quality assurance plans for small software subsystems and 
modules, considering how quality attributes are discernable. Correspondingly, measure, document, and communicate 
appropriately the results. 

3. Perform peer code reviews for evaluating quality attributes that are not discernable at run-time. 
4. Explain the statistical nature of quality evaluation when performed on software execution; develop, deploy, and implement 

approaches to collect statistical usage and testing outcome data; compute and analyze statistics on outcome data. 
5. Interact with external entities including clients, users, and auditing agencies in conveying quality goals for processes and 

products. 
 
Software Security 
1. Apply the project’s selected security lifecycle model (e.g., Microsoft SDL), as a contributing member of a project team. 
2. Identify security requirements by applying the selected security requirements method, as a contributing member of a software 

project team. 
3. Incorporate security requirements into architecture, high-level, and detailed design, as a contributing member of a software 

project team. 
4. Develop software using secure coding standards. 
5. Execute test cases that are specific to security. 
6. Adhere to the project’s software development process, as a contributing member of a software project team. 
7. Develop software that supports the project’s quality goals and adheres to quality requirements. 
 
Software Safety 
1. Describe the principal activities with the development of software systems, which involve safety concerns (activities related 

to requirements, design, construction, and quality).  
2. Create and verify preliminary hazard lists; perform hazard and risk analyses, identify safety requirements.  
3. Implement and verify design solutions, using safe design and coding practices, to assure that the hazards are mitigated, and 

the safety requirements are met.  
4. Be aware of the consequences of the development of unsafe software, that is, the negative effect on those who use or receive 

services from the software. 
 
Software Configuration Management 

[None] 
 
Software Measurement 
1. Develop and implement plans for the measurement of software processes and work products using appropriate methods, tools, 

and abilities.  
 
Human-Computer Interaction 

[None] 
 
Project Management 
1. Explain the principal elements of management for a small project team.  
2. Assist in the managerial aspects of a small project team, including software estimation, project planning, tracking, staffing, 

resource allocation, and risk management.  



Computing Curricula 2020   Computing Curricula Report  
CC2020   2020 December 31 

Page 122 of 203 

3. Develop and implement plans for the measurement of software processes and work products using appropriate methods and 
tools. 

4. Work effectively with other team members in project management activities. 
 
Behavioral Attributes 
1. Engage with team members to collaborate in solving a problem, effectively applying oral and/or written communication skills. 

Work done towards team effort is accomplished on time; it complies with the role played in the team: it uses established 
quality procedures; and it advances the team effort. 

2. Assist in the analysis and presentation of a complex problem, considering the needs of stakeholders from diverse cultures, 
needs, and/or geographic locations. Help in developing a solution for the problem and presenting it to stakeholders, explaining 
the economic, social, and/or environmental impact of the proposed solution. Identify areas of uncertainty or ambiguity and 
explain how these have been managed. 

3. Analyze software employment contracts from various social and legal perspectives, ensuring that the final product conforms 
to professional and ethical expectations, and follows standard licensing practices.  

4. Locate and make sense of learning resources, and use these to expand knowledge, skills, and dispositions. Reflect upon one’s 
learning and how it provides a foundation for future growth. 
 

 
Number of Draft Competencies = 56 
 
 
Software Engineering Subgroup Members who are Task Force Members 
 

Nancy Mead (Leader) 
Hala Alrumaih 
Marisa Exter 
Rich LeBlanc 
John Impagliazzo 
Barbara Viola 

  
 
Software Engineering Subgroup Members who are not Task Force Members (Contributors) 
 

Kai H. Chang, Auburn University  
Dick Fairley, Software and Systems Engineering Associates  
Kevin Gary, Arizona State University  
Thomas Hilburn, Embry-Riddle Aeronautical University  
Gabriel Tamura, Universidad Icesi, Colombia  
Chris Taylor, Milwaukee School of Engineering  
Jim Vallino, Rochester Institute of Technology  
Norha M. Villegas, Universidad Icesi, Colombia  

  
 
  



Computing Curricula 2020   Computing Curricula Report  
CC2020   2020 December 31 

Page 123 of 203 

 
C.2.6:  Master’s in Information Systems Draft Competencies 
 
 
Business Continuity and Information Assurance [BCIA]  
A. Analyze policies and standards for business continuity and information assurance and present the findings to a group of peers.  
B. Plan procedures, operations, and technologies for managing security and safety in a disaster recovery situation.  
C. Monitor the protection and growth of hardware and software within an information system for a small company.  
 
Data, Information, and Content management [DATA]  
D. Identify and report data and information management technology alternatives for a small organization and suggest to management the most 

appropriate options based on the organizational information needs.   
E. Identify organizational policies and processes related to data and information management within a team environment and how to address 

information and content management solutions for policy infringement.  
 
Enterprise Architecture [EARC] 
F. Evaluate an enterprise architecture (EA) using formal approaches by identifying the EA change needs and by addressing domain requirements 

and technology development through a written report.  
G. Describe to a group of managers an enterprise architecture (EA) highlighting software development and maintenance by gathering input from 

the enterprise to evaluate the level of maintenance involved.  
  

Ethics, Impacts, and Sustainability [ETIS]  
H. Apply sustainable system approaches by incorporating multiple IT practices for a corporate environment in a manner that ensures personnel 

privacy and integrity.  
I. Develop a policy concerning contracts usable within an enterprise or government that ensures safety and health standards in compliance with 

regulatory statutes and requirements for mutual benefit irrespective of cultural and personal characteristics.  
 
Innovation, Organizational Change, and Entrepreneurship [IOCE]  
J. Report to the management of an organization's new IS methods and trends and suggest innovative activity models that rely on new uses of 

existing technologies.  
K. Explain ways of exploiting emerging technologies at different levels (individual, team, process, and organization) and address the enabling 

or enhancing effects of information technology applications.  
L. Report to peers the benefits of a new information system design and highlight the potential adverse consequences of the system.  
 
IS Management and Operations [ISMO]  
M. Identify the professional management skills needed to design and manage an effective IS organization that ensures operational efficiency in 

service delivery.  
N. Analyze and report IS project management principles that support their use in the organization.  
O. Evaluate the use of information systems and resources and present the finding to the management of an organization.  
 
IS Strategy and Governance [ISSG] 
P. Identify the effect of IS on industries, firms, and institutions and suggest to organizational managers plans for maximizing firm benefits 

associated with IS design, delivery, and use.  
Q. Report to peers some oversight mechanisms by which an organization evaluates, directs, and monitors organizational IT by leveraging one or 

more governance frameworks and organizational decision-making practices.  
R. Recommend to organizational managers some practices for minimizing environmental effects and suggest ways for long-term organizational 

viability.  
 
IT Infrastructure [INFR] 
S. Evaluate an integrated communication network for a medium-size organization that includes local-area and wide-area network technologies 

and specify requirements for a large-scale network expansion.  
T. Analyze and provide a written report of an implementation architecture for organizational data processing system that uses both internal 

hardware resources.  
U. Enhance the financial aspects of a contract that involves providers of several IT infrastructure services.  
 
Systems Development and Deployment [SDAD]  
V. Describe to an audience the requirements for an IT artifact that enhances the way existing domain activities are structured and performed.  
W. Report on an IT artifact that meets specified requirements considering non-functional requirements and organizational constraints.  
X. Deploy an IT application that satisfies user needs in the context of processes that integrate analysis, design, implementation, and operations.  
 
 
 
Number of Draft Competencies = 24 
 
 
  



Computing Curricula 2020   Computing Curricula Report  
CC2020   2020 December 31 

Page 124 of 203 

 
 Appendix D:  Competency-Based Computing Curricula 
!
!
Computing curricula are the educational matter that define the course of study in baccalaureate programs. The CC2020 
project sees a strategic imperative to shape the future of computing education by reshaping the language used for 
defining curricular goals. Within the broader context of industry, professions, and society as a whole a curriculum 
description centered on competency focuses on the individual’s capability to apply their computing education in the 
practical service to society.  
 
An entire curriculum centered on competency informs pedagogy, academic and professional assessment, ethical 
conduct, relevance to industry, and society. Effective computing education must envelop the individual’s knowing 
what, knowing how, and knowing why to engage their computing education. To better effect these ends, the CC2020 
Report proposes a philosophical shift in the format and emphasis of computing curricula through the adoption of a 
competency model for curriculum specification. 
  
Adopting a coherent competency model to define computing curricula will more clearly promote describing the 
practical benefits of computing programs to students, benefactors, faculty, administrators, employers, accreditors, 
lawmakers, and society as a whole. Describing a computing competence in a practical context shifts the focus of 
curricula away from describing a body of knowledge in relation to a disciplinary area toward pragmatic student 
accomplishment. Descriptions of what graduates can do in practical situations replace descriptions of content and 
classroom time. Competency more effectively describes outcome expectations: challenge educators to develop more 
proficient computing professionals and lead society to recognize the purpose and benefits of computing education. 
  
This appendix presents CC2020’s definition of competency and a template for specifying the subject matter of 
baccalaureate computing education. The competency template is composed of a prose statement of task and a 
structured list of components: knowledge, skills, and dispositions. The model structure is elaborated by examining 
each of the components in relation to the others and as a whole in contrast to the time-honored definitions of the 
knowledge area, knowledge unit, learning outcome model.  We will address how competency can be leveraged by 
different stakeholder groups and at different levels in undergraduate/first-cycle computing programs. The chapter 
concludes acknowledging the most recent efforts to incorporate competency in computing curriculum guidelines that 
informed and inspired CC2020’s adoption of competency [Wag5,Fre5,Tak1,Top1]. 
 
 
 
D.1:  Competency in Computing Baccalaureate Education  
 
The genesis of CC2020’s commitment to a competency-based orientation for baccalaureate education is rooted in the 
specific subject matter of computing. However, computing knowledge alone has never been the limit of the preparation 
appropriate for computing graduates. It is only one part, a significant and crucial part, but not the whole of the 
competency relevant to educated, productive, computing professionals. Whether the terminus of formal education, the 
conduit to higher academic degrees, or as is the case most often, a gateway into the workforce of computing 
professionals, a baccalaureate education must address the wider world of competency that interconnects with the 
practice of computing in society. The fundamental tradition of published computing curriculum guidelines has focused 
almost exclusively on the subject matter of computing [Fre2]. This is the case even though most if not all baccalaureate 
computing programs profess to develop practicing professionals who will apply their computing capabilities in a wide 
variety of workplaces [Bai1,Han1,Rad1]. To that end, the scope of competency encompassed by computing curricula 
cannot ignore capabilities that extend far beyond an emphasis on technical computing knowledge.  
 
When leveraged like learning objectives, well-modeled competencies provide a richer language for expressing the 
goals of a learning experience. Competency modeling provides the ability to articulate the connection of learning 
experiences in language that is better connected to both the expectations of graduates and the broader goals of their 
education [Wag5,Fre5]. Other advantages of competency modeling include that it connects knowledge and skills as 
they are expected to be observed in practical tasks. Another is the opportunity to enfold non-technical knowledge 



Computing Curricula 2020   Computing Curricula Report  
CC2020   2020 December 31 

Page 125 of 203 

and/or skills as the goal or outcome of an educational experience, and that, like learning outcomes, competencies 
should be observed at some level of skill preferably with a relevant performance of task.  
 
This appendix presented a brief introduction to the theory and an outline of the structure of CC 2020’s approach to 
competency modeling. We believe this can successfully serve as a foundation for adoption across the computing 
disciplines and their foundational educational enterprise.  While CC2020’s mission ends at conceptually and 
structurally defining competency in service to computing, it is our conclusion that this model of competency should 
underpin other areas of professional capability that are inexorably integral to educating computing professionals. 
These other aspects of competency play significant roles and are highly recommended for future curriculum designers’ 
consideration. The following sections present the CC2020 in more detail competency model and illustrates its 
application using a high-level synthesis of the knowledge areas appropriate to a baccalaureate computing program. 
 
 
 
D.2:  The CC2020 Definition of Competency   
 
CC2020’s definition of competency has evolved from numerous models for competency developed and applied in 
different educational frameworks. A useful overview of competency occurs in the Harvard University Competency 
Dictionary [Har2] which offers the following explanation. 

 Competencies, in the most general terms, are “things” that an individual must demonstrate to be effective in a job, role, 
function, task, or duty. These “things” include job-relevant behavior (what a person says or does that result in good or 
poor performance), motivation (how a person feels about a job, organization, or geographic location), and technical 
knowledge/skills (what a person knows/demonstrates regarding facts, technologies, a profession, procedures, a job, an 
organization, etc.). 

  
CC2020 articulates a notion of competency as a practical means for expressing educational goals [Bai1,Han1,Rad1] 
that refines the Knowledge-Skill-Disposition (K-S-D) framework popularized in the IT2017 Curriculum Report 



Computing Curricula 2020   Computing Curricula Report  
CC2020   2020 December 31 

Page 126 of 203 

Skills refer to the capability and strategy for applying “know-what” to perform a task in context. Competency is 
realized when “know-what” knowledge is applied in action to accomplish a task, hence in application, skills express 
“know-how.”  Skills are most often developed over time and with practice. Consequently, skill development often 
requires engagement in a progressive hierarchy of higher-order cognitive process. CC2020’s definition of competency 
has adopted Bloom’s levels of cognitive process [Acm015] to specify the degree of skill expected in successful task 
accomplishment.  
 
The skills dimension of competency is often assessed indirectly, through observation of the process or quality of work 
produced. The activation of “know-what” animated by “know-how” fuses the knowledge and skills dimensions. For 
that reason, the usefulness of any element of knowledge in a competency specification is only understandable when 
applied at a level of skillfulness, e.g., specified or observed as a level of Bloom’s cognitive process. Therefore, an 
element of knowledge and the level of skill with which it is applied are necessarily and naturally conjoined as paired 
in the specification of a competency. In this way, the CC2020 competency model realizes a performance-based 
epistemology that animates an element of knowledge in achieving a task.  
 
Dispositions 



Computing Curricula 2020   Computing Curricula Report  
CC2020   2020 December 31 

Page 127 of 203 

 
Figure D.2. Conceptual Structure of a Competency Specification 

 
CC2020’s definition of competency integrates knowledge, skills, and dispositions with task, establishing a framework 
designed to comprehensively describe criteria to support both understanding curricular subject matter in pedagogy 
and the requisites of task performance in the workplace from which the subject matter derives. A competency 
statement is a natural language expression of the competency that is more approachable and understandable to the 
general audience of curricula, while the more explicitly expressed component structure facilitates audit and analysis. 
Figure D.2 illustrates the relationship between a natural language (free form) competency statement and the 
component structured representation of knowledge, skills, and dispositions. 
 
In their most simple form, a singular (atomic) competency specification might address the goals for a solitary job 
function or curricular element constructed from a suitable competency statement and K, S, and D components [Wag5] 
as per Figure D.3. That atomic competency might then be assimilated as a constituent of a more complex (composite) 
competency as per Figure D.4. Composite competency specifications unfold as tree structures with branch and leaf 
nodes. Figure D.5 illustrates this situation where a composite competency specification (C) may combine both atomic 
(A) and other composite (C) competencies. Competency specifications are normally considered in the aggregate as 
they are often used to formulate various configurations of educated ability: job descriptions, plans of study, academic 
degrees, training certifications, professional accreditations and licensure, and standards of performance evaluation. In 
this sense, more complex competencies are modeled as composites of other constituent, supporting competencies 
[Fre5].            
 

 

 
Figure D.3. Atomic Competency Specification: (A) 

 



Computing Curricula 2020   Computing Curricula Report  
CC2020   2020 December 31 

Page 128 of 203 

 
Figure D.4. Composite Competency Node: (C) 

 

 
Figure D.5. Competency Tree of Atomic (A) and Composite (C) nodes 

 
In the sections that follow, we survey the anatomy of a competency specification: the competency statement, the 
knowledge component (knowing what), the skills component (knowing how), and the dispositions component 
(knowing why).  
 
 
D.3.1: The Competency Statement’s Role in a Competency Specification 
 
As a whole, a competency specification expresses a model of knowledge that is skillfully and professionally applied 
in some task execution. The competency statement of a competency specification is a colloquial expression that 
succinctly conveys the pertinent ability goals to be attained through a course of study or the capabilities relevant to 
successfully performing a task in the workplace. The competency free-form statement represents the competency in 
terms that are familiar and comprehensible to a wide audience, typically using a vocabulary familiar to, and that 
resonates with, the audience. The competency statement is then structurally augmented and amplified in the 
enumeration of knowledge, skills, and dispositions that complete the competency specification. 
 



Computing Curricula 2020   Computing Curricula Report  
CC2020   2020 December 31 

Page 129 of 203 

D.3.2: Knowledge, “Knowing What,” as a Component of Competency  
 
A single competency expresses knowledge skillfully and professionally applied in some task execution; its vocabulary 
will often draw from other implied or stated competencies, at some skill level, reflected through some task that 
contextualizes what is intended. The key aspect is expression—how to express the components in meaningful ways, 
what knowledge is applied, the expectation of how it is skillfully applied, and what dispositions should be 
demonstrated along with a successful task.  
 
The richest and most expressive aspect is the knowledge that can and should be skillfully applied. The following 
subsections outline three perspectives on knowledge suitable for modeling professional competencies in computing. 
They each play a role in the expectations of computing graduates and practicing professionals. Computing graduates 
are normatively expected to skillfully apply computing disciplinary knowledge (relevant to their academic program), 
foundational knowledge consistent with baccalaureate education, and, lastly, professional knowledge relevant to how 
graduates operate as professionals. The identification of some knowledge areas as ‘disciplinary,’ some as 
‘foundational,’ and others as ‘professional’ may be arbitrary but, in the end, what is needed is an understandable 
vocabulary useful to the audience for clear and consistent competency statements.  
 
"#$#%#&'!()*+,-./0!".12.+3./456!7/)839:09!
 
The encyclopedia of computing knowledge that has accumulated with the efforts of the knowledge area, knowledge 
unit, learning outcome model over the last half century provides a rich foundation upon which to develop computing 
competency catalogs for the various subdisciplines of computing education. These de facto concepts of disciplinary 
competency are in common use but require formulation to facilitate interoperability and reusability among the 
stakeholders both academic and industrial. Employers frequently identify specific technologies or general knowledge 
areas (e.g., networking, cloud computing, systems analysis, and database). As a foundation across the Computing 
Curricula series, disciplinary knowledge is sometimes differently labeled or described among computing sub-
disciplines (e.g., computer science, information systems). CC2020’s efforts to promote competency as an overarching 
framework to describe computing’s role in the classroom and the workplace presents an opportunity to normalize the 
vocabulary for describing computing competency. A normalized vocabulary based upon existing knowledge area, 
knowledge unit, learning outcome curriculum specifications can clarify the terms by which educators identify 
disciplinary knowledge and its skillful application.  
 
Table D.1 presents a representative summary of computing knowledge areas, extracted from the computing 
disciplinary documents published since CC2005. While the table is incomplete, what it provides is a sample high-
level vocabulary for computing knowledge rooted in the collective wisdom of the different computing communities.  
 



Computing Curricula 2020   Computing Curricula Report  
CC2020   2020 December 31 

Page 130 of 203 

Table D.1 Representative Summary of Computing Knowledge Areas 
 

Categorization Computing Knowledge Area 



Computing Curricula 2020   Computing Curricula Report  
CC2020   2020 December 31 

Page 131 of 203 

Table D.2 Semiotic Ladder 

 
 
Although Table D.1 summarizes areas of computing knowledge gleaned and synthesized from the six established 
computing curricula (e.g., [Acm07,Acm05,Kra2]), this vocabulary does not address many knowledge areas integral 
to computing practice. It lacks vocabulary for describing knowledge of a foundational and/or professional nature 
common to many (if not all) computing disciplines. Neither does Table D.1 address functional areas of business, 
science, or government where an understanding of the application context is crucial for effective computing. The 
following sections briefly illustrate these areas that should be given competency attention in baccalaureate education. 
 
"#$#%#%'!;5)<911.)/43!4/:!=),/:4-.)/43!7/)839:09!
 
Computing disciplinary knowledge alone does not suffice to prepare graduates for successful occupations. While 
disciplinary knowledge distinguishes computing professionals among professionals, there are many knowledge areas 
other than computing that are foundational, that is, they are normative in society and the workplace.  Foundational 
knowledge deserves careful delineation in computing programs as it is integral to comprehending and succeeding in 
the full scope of challenges endemic to the computing practitioner.  
 
There are abilities foundational to workplace conduct that are centered in the individual (e.g., basic academic literacy 
in mathematics, physical sciences, language, social sciences). Other typical foundational knowledge includes effective 
communication in written, spoken, and presentational mediums—e.g., self-management of time, decorum, protocols, 
and many others. Although in-depth study in any of these areas may be appropriate in particular programs, 
expectations for the application of foundational knowledge requires some stipulation in baccalaureate computing 
curricula.  
 
Employers are seeking individuals who can apply their knowledge of computing technology in specific, commercial 
tasks and with a level of prudence evidencing a professional insight. It is well-reported that there is a burgeoning 
demand for technology-savvy job applicants as computing’s role in commerce, government, and society continues to 
expand. Computing job advertisements are replete with openings for applicants possessing a variety of computing 
and/or foundational job know-how. However, it is the applicants’ facility to effectively apply their computing 
knowledge to employers’ needs that often predominates in assessment. Beyond specific mentions of applied 
‘professional’ knowledge, this is also evidenced by the common requirements for years-of-experience as a proxy term 
for practical, demonstrated workplace acumen.  
 
Industry managers often agree that professional, not just computing, or foundational acumen is a primary criterion for 
hiring a computing graduate. For example, computing specialists teaming with other professionals from varied 
backgrounds is at the heart of effective technical projects. The idea of teamwork is the “cooperative or coordinated 
effort on the part of a group of persons acting together as a team or in the interests of a common cause.” [Dic2] To be 
professional a practitioner must demonstrate an effective exchange of ideas through coherent and intelligible 
communication. Working in teams is often a normative part of a computing curriculum. Ideally, effective teamwork 
should encompass interdisciplinary opportunities where teams include computing expertise as well as proficiency 
gained from other areas of study. While not unique to computing professionals, development and mastery among 
certain of these abilities is essential to helping a beginner transition from beginner to professional.  



Computing Curricula 2020   Computing Curricula Report  
CC2020   2020 December 31 

Page 132 of 203 

 
Table D.3. Sample Professional and Foundational Knowledge Areas 

 
 
 
Where foundational and professional knowledge areas are relevant in competency description, a consistent vocabulary 
for foundational and professional areas will be essential. Table D.3 presents a sample vocabulary for foundational and 
professional knowledge. These are representative terms, not an exhaustive list. Similar to Table D.1, this vocabulary 
is drawn from IT2017 [Acm07] and MSIS2016 [Acm11], both internationally approved computing curricula. The 
table posits likely candidate domains of workplace acumen proven to be value-added to a computing graduate’s 
portfolio.  
 
"#$#%#$'!>++3.24-.)/!")*4./!7/)839:09!
 
Professional practice in computing is manifested in an organizational or commercial context. Every computing artefact 
resides within some social context—that is, serving the intention of an individual, a community, or both. Knowledge 
of that social context informs the choices the computing practitioner is faced with to be interpreted as appropriate, 
beneficial, or not. To make appropriate choices, a computing professional must possess foundational, professional, 
and application context knowledge and integrate this with knowledge that is otherwise specifically computing. To 
benefit prospective students, employers, legislators, and the citizen electorate, computing curriculum guidelines 
should be as explicit as possible about the foundational, professional, and application domain experience promulgated 
programmatically. 
 
Although computing programs variously focused exclusively on technology for software development (i.e., coding 
bootcamps and academies) have proliferated over the last decade [Wag1], it should be normative for baccalaureate 
programs in computing to include requirements for application domain education and experience that informs the 
professional’s potential in a field of practice. Cultural or societal contexts may also require prescribed education and 
experience—governmental, not-for-profit, non-profit, domestic, or international.  
 
Application domains common to computing include business [Top1], medicine, engineering, transportation, 
entertainment, etc. There are many subdisciplines; some are Computing+X and others are X+ Computing where “X’s” 
position indicates whether “X” is the primary disciplinary focus, or it is computing’s application domain. For example, 
the computing subdiscipline of information systems itself has numerous derivatives, X-IS programs, (e.g., accounting 
information systems, marketing-IS, finance-IS, medical-IS). Each of these X-IS programs is a discipline in its own 
right augmented with computing. Any delineated domain of application entails particulars of knowledge, skills, and 
perhaps, distinctive dispositions instrumental to making informed, astute choices that skillfully apply knowledge in 
artefact design and engagement. 
 
Each of these example areas of computing knowledge deserve the careful categorization and formulation of practice 
and learning goals that can be served by authoring relevant competency specifications. In some cases, knowledge 
among these areas will be integrated in computing competency specifications specific to goals and objectives of a 
program or sub discipline. Others may be distributed among sibling disciplines in an academic setting or among 



Computing Curricula 2020   Computing Curricula Report  
CC2020   2020 December 31 

Page 133 of 203 

particular professional development activities in the workplace. There is mutual benefit to both academia and industry 
when the articulation of the need and value of these knowledge areas associated with computing competency promote 
discussion and the possibility of inter- and intra- disciplinary normalization.  
 
The synthesis of knowledge areas provided in Tables D.1 and D.3 is at a high level of abstraction. These are provided 
here for illustration; in general, practical competency specifications need knowledge stipulated with greater detail.  
 
 
D.3.3:  Skills, “Knowing How,” as Components of Competency 
 
Competency descriptions focus on applying knowledge skillfully, observable knowledge in action. Writing and 
structuring competency statements is significantly simplified by recognizing computing skills as normatively 
cognitive in nature, rather than psychomotor. This simplification correlates with Bloom’s theory of the Cognitive 
Domain in his taxonomy and permits the adoption of a commonly agreed upon vocabulary in the 2001 revisions to 
Bloom’s taxonomy of educational objectives [And5]. This reasoning results in knowing how expressed as a knowledge 
component paired with a skill level observable in practice. Table D.4 lists verbs that signify skill level.  
 

Table D.4. Revised Bloom’s Cognitive Skill list [And5] 
(List not in alphabetical order) 

  
 
This understanding of skills expressed as observable knowledge in action necessitates an expression of a context for 
observing the knowledge skillfully applied, portraying a purpose to be fulfilled. In operational terms K+S is normally 
observed in accomplishing a task, where task conveys a purpose that motivates applying the knowledge with a 
particular level of skill. The task serves as both the circumstance within which to observe K+S as operationalized by 
the actor, but also to animate the dispositions, D, that moderate the actor’s performance to complete a task and to what 
measure of success.  
 
 



Computing Curricula 2020   Computing Curricula Report  
CC2020   2020 December 31 

Page 134 of 203 

D.3.4:  Dispositions, “Knowing Why,” as a Component of Competency 
 
The meta-language of competency, “knowing what,” “knowing how,” and “knowing why,” crisscrosses domains of 
scientific fact, practiced behavior, and cultural norms. Scientific (technically rational) fact and practiced behavior lend 
themselves to a categorical assessment: true or false, present or absent, consistent or inconsistent, it works, or it 
doesn’t. Dispositions enfold intellectual, social, and moral predilections or tendencies that influence behaviors that do 
not lend themselves as easily to a categorical assessment. These predilections reflect value judgements that are not 
amenable to scientific proof. Values may differ or be held differently among individuals or cultures. And value 
judgements are also often mutable over time—affected by the experience of practice!  
 
In the broader cultural domains, dispositions may assert positions regarding virtually any desirable quality that 
motivates human behavior (e.g., ethics, integrity, empathy, accountability, honesty, respectfulness). But in the end, 
the import of disposition is ultimately realized through individual persons applying their knowledge and skills, through 
their behavior—individuals leveraging their intellect through responsible decisions and actions [Gra1]. In this applied 
context, dispositions imply enacted virtues that reflect the values expressed by the actor through their choices, 
decisions, and actions [Ann1]. 
 
An important consideration in the specification of the disposition is the separation of the skilled application of 
professional or foundational knowledge (such as communication clarity, leadership, creative thinking, and time 
management, which include significant components from the "know-how" category) from dispositions ("know why"). 
For example, the development of the disposition categories provided in Table D.5, was accomplished by analyzing 
research on job descriptions [Nwo1,Cle1] and other related sources [Gra1] and then removing those statements which 
were identifiable as a K-S pair, or appear as a competency combining K-S, D, and other components. Hence something 
as complex as leadership is best modelled as a competency because it has implied K-S pairs and one or more 
dispositions. Other items may well be a collection of K-S pairs which then are constituent parts for a competency.  
 
Table D.5 offers a short list of prospective dispositions derived from the literature to round out the knowledge, skills, 
dispositions as components of competency. Disposition as an intrinsic component of competency represents the 
opportunity to clearly express institutional and programmatic values expected in a graduate’s work. Dispositional 
expectations enrich the description/assessment of competency and/or the related pedagogy. Ascribing a disposition to 
a competency indicates a clear commitment to self-reflection and a sober examination of mission, goals, and objectives 
to reach the clarity that enables its effective integration in curriculum design, the agency of pedagogy, and the character 
of professionalism.  
 
Disposition is an area that clearly distinguishes a competency from a learning outcome and is an essential characteristic 
of a well-structured competency. As such it represents a significant extension in the expressiveness of learning goals 
and adds language common to professional expectations. However, when used in free form, such terms may easily 
become vague or difficult to interpret. This is where the specification of a competency—that is the combination of the 
free-form text with its constituent K+S+D in T framing—becomes more valuable.  The competency statement is prose 
that succinctly conveys the essential intention of curricular details, while the structured enumeration of the K-S pairs 
and D elements conveys intention in action. 
 
 



Computing Curricula 2020   Computing Curricula Report  
CC2020   2020 December 31 

Page 135 of 203 

Table D.5. Prospective Dispositions [Nwo1,Cle1,Gra1] 

 
 

What follows is an illustration of constructing well-structured competency statements and their specification. The 
purpose is not so much as to define a particular required or desired competency for all computing graduates, but rather 
to provide a point of discussion about the difficulties and value of such statements and the details contained in their 
modeled components. Relying on the vocabulary provided in Table D.1 (albeit at a high level of abstraction), and 
Tables D.3, D.4, and D.5, these examples provide a plausible illustration of how well-structured competency 
statements can be specified for a program, curriculum, or job description.  
 
 
 
D.4:  Structuring Competency Statements for Competency Specification    
 
Competency statements have not been the most common means of expressing learning goals or outcomes. Properly 
formulated, competency statements should express clear, relevant, and actionable specifications. As such, they differ 
from learning outcomes in that they imply one or all four (K, S, and D in T) components.  In practice, useful, yet 
incomplete, competency statements may only imply some of these components, as their primary purpose is 
communication, not completeness. In the competency explorations carried out by the CC2020 Task Force (presented 
in Appendix C), the free-form competency statements collected rarely included all four components. Indeed, many 
expressions of computing competencies were incomplete, and were only explicit about some but not all components. 
The downside to incomplete competency statements is that they are less useful for assessment, comparison, or other 
forms of analysis. Hence, the pairing of the free-form statement with its elaborated specification of K, S, and D serves 
both purposes and in practice acts as means for assessing consistency. Well-structured statements should imply the 
structured components and in particular communicate a task context where the competency should be observable. 
 
 
D.4.1:  Developing Competency Statements and Specifications 
 
In formulating a good competency statement, the author/designer of a useful statement is best counseled by 
contemplating the results of a task execution that describe desired actor behavior in clear, relevant, and actionable 
ways. The K, S, and D vocabularies in Tables D.1–D.5 provide a sample structure for developing and/or parsing 



Computing Curricula 2020   Computing Curricula Report  
CC2020   2020 December 31 

Page 136 of 203 

competency statements. A particular competency statement can have a number of K and S pair components. Similarly, 
K-S pairs can be moderated by one or more D labels. This concept follows competency theory that provides for a 
hierarchical structure for modelling competencies [Fre5]. In this formulation, a competency can be modeled 
individually as a K, S, and D in T but may also serve as a constituent to other competencies. 
 
In practice, competency statements for curricular use should not be limited to structured language like that in Tables 
D.1–D.5. Such a restriction limits the expression of the competencies in local contexts. Enumerating the meaning of 
a free-form statement with structured language by leveraging the K, S, and D in T structure has significant value. The 
additional work of making implied components more explicit makes the competency statement richer both in 
expression and meaning—clearer, relevant, and actionable. 
 
Modeling a competency statement using structured language improves communication and assessment. For 
communication, the process of structuring a competency statement into structured language documents the explicit 
meanings and helps to uncover the implicit meanings intended in the statement. For assessment, the different K+S and 
D components identified are often assessed in different ways. Identifying and classifying goal components promotes 
clarity in assessing individual competency components. 
 
As Chapter 5 elaborated, analyzing a competency statement for its various K, S, and D in T modeled competency 
enables the comparison of competency statements [Tak1]. Typically, unstructured competency statements taken from 
different computing curricula can be difficult to compare. However, if the constituent parts of the statements can 
employ a common structured vocabulary, competencies can be compared and modeled through visualization using 
automation. 
 
In curricula the concept of disposition observable in a task presents the opportunity to enhance the comprehension of 
knowledge and skills as they related to a computing discipline or academic program. Competency statements offer an 
opportunity for students to realize more synthesis in their computing education. Applying relevant dispositions 
informs the students’ educational experience by providing an approach explicit in purpose to the content they learn. 
Consequently, these stakeholders directly benefit from these qualities instilled in computing graduates.  
 
 
D.4.2:  Elaborating Competency Statements  
 
To illustrate the process of elaborating the competency statement, the work is to enumerate the knowledge, skills, 
dispositions, and task elements of the statement. Here we present first an example statement drawn from the 
System/Software Engineering domain, followed by another example from the Information Systems domain. These 
both are presented as ‘atomic’ examples as per Figure D.3. These two examples (Figures D.6–D.9) are then leveraged 
in an example of a compound competency presented in Figures D.10–D.12. 
 
The goal of these examples is to illustrate how to unpack, in a structured form, phrase decompositions that represent 
the explicit and implicit K-S-D-T components of the three different free-form competency statements. These are 
mapped onto structure vocabulary and analyzed for completeness. This detailed mapping of a competency statement 
serves multiple purposes. To begin with, it very much helps one to understand the completeness of the statement, as 
well as the K-S pairs expressed or implied.  The completeness of the statement suggests the nature of a contextually 
situated example that would have the opportunity of generating multiple and distinctive assessment opportunities. It 
also provides a connection to what is expected to be assessed, e.g., not just what the students did, but how they did it; 
the quality of both their work and the quality of how that work was accomplished.  
  
The most important aspect of this exercise is the support for the actualization of this competency within this program. 
It provides a structured way of expressing what needs to be taught, a framework for determining how best to manage 
the learning activities, and clear discussion points for how best to assess different aspects of this competency within 
the program. For example, learning modules intended to support developing this competency could be inside of a 
single course, or across multiple courses. It could describe a key task within a requirements course, or a project-based 
course, or even in a learning exercise at an internship or other setting. 
 
 



Computing Curricula 2020   Computing Curricula Report  
CC2020   2020 December 31 

Page 137 of 203 

Identify and document system requirements by applying a known requirements elicitation technique in work 
sessions with stakeholders, using facilitative skills, as a contributing member of a requirements  

Figure D.6. Sample Free-form Competency Statement for Systems Requirements 
 
The natural-language text of Figure D.6 can be parsed into three constituent competency phrases for analysis. The list 
that follows suggests one examination of the explicit and implicit K-S pairs, as well as the implied context of the 
statement as a whole.  
 
Leveraging the abstract vocabulary of Tables D.1, D.3 and D.4, this results in the following sets of mappings: 

(i) “Identify and document system requirements” (somewhat) explicitly expects students to be applying [S(B-III)] 
Requirements Analysis and Specification  [K(C-2.3)] knowledge and understanding. It also implies students 
to demonstrate applying [S(B-III)] appropriate Written Communication [K(P-2)] knowledge and skills. 

 
(ii) “applying a known requirements elicitation technique in work sessions with stakeholders” explicitly expects 

students to be applying [S(B-III)] Requirements Analysis and Specification [K(C-2.3)] knowledge and 
understanding and implies students to be applying [S(B-III)] Systems Analysis and Design [K(C-2.2)] 
knowledge and understanding. 

 
(iii) “using facilitative skills, as a contributing member of a requirements team” explicitly expects students to be 

applying [S(B-III)] Requirements Analysis and Specification [K(C-2.3)] knowledge and understanding and to 
be applying [S(B-III)] Collaboration and Teamwork [K(P-5)] knowledge and skills.  

 
Extending this to include the dispositional elements (e.g., Table D.5) implicated adds an additional mapping: 

(iv) In context, this whole statement implies students to demonstrate capability of evaluating [S(B-V)] 
Requirements Analysis and Specification [K(C-2.3)] and Analyzing [S(B-IV)] Collaboration and Teamwork 
(P-5). These behaviors are expected to be moderated by students demonstrating that they are Purposefully 
engaged (D-4), with Judgement (D-6) and demonstrating that they are Collaborative (D-8).  

 
Lastly, completeness warrants including the task specification that is stated or implied: 

(v) The statement is explicit about having a particular (though unspecified) task (T) in which this work which has. 
  
This example statement in Figure D.6 provides an example of a competency-based approach to describing a possible 
program or course-level goal or outcome. The statement appears complete, in that it reasonably captures all four K-S-
D-T elements of a useful competency statement at a level of abstraction consistent with the vocabulary of interest. 
Note that with a more detailed vocabulary (not presented), each of the K elements could be expanded into other 
constituent competencies. Based on this level of analysis, the statement expands into an atomic competency as shown 
in Figure D.7.  
 

!
 

Figure D.7. Example Systems Requirements Competency Specification 
 

 
This competency statement focuses on a central aspect of systems analysis. If employed in a course or program, it sets 
up the opportunity for (and challenges) the educator teaching a systems and/or software requirements unit (or course) 



Computing Curricula 2020   Computing Curricula Report  
CC2020   2020 December 31 

Page 138 of 203 

to set up a learning situation whereby not only will the students be challenged to engage in the context, but also that 
the instructor can observe student behavior for assessing to what extent the students demonstrate the K-S-D 
components. The relationships to program definition and assessment are explored in more detail in Chapter 5. 
 
To illustrate this statement/analysis process for a different domain in computing, Figure D.8 presents a second 
example from the Information Systems (IS) domain related to the area of Enterprise Architecture. 
 

Analyze an enterprise architecture against an organizational business model. Consider several appropriate 
cloud service approaches. Substantiate the recommendation with cost-benefit details to present to 
management decision-makers.  

Figure D.8. Cloud Services in Enterprise Architecture 
 
Leveraging the abstract vocabulary of Tables D.1, D.3 and D.4, this results in the following sets of mappings: 

(i)  “Analyze an enterprise architecture against an organizational business model.” It explicitly expects students 
to be analyzing [S(B-IV)] Enterprise Architecture [K(C-1.4)] leveraging that knowledge and understanding. 
This expectation also leverages understanding [S(B-II)] of IS Management and Leadership [K(C-1.3)]. 

 
(ii) “Consider several appropriate cloud service approaches” explicitly expects students to analyze [S(B-IV)] 

Virtual Systems and Services [K(C-3.1)] knowledge and understanding.  
 
(iii) “Substantiate the recommendation with cost-benefit details to present to management decision-makers” 

explicitly expects students to be evaluating [S(B-V)] leveraging IS Management and Leadership [K(C-1.3)] 
knowledge and understanding. This work includes examining and breaking down the details, i.e., analyzing 
[S(B-IV)] Research and self-starter/learner [K(P-6)]. This information is then communicated by applying 
[S(B-III)] Oral communication and presentation [K(P-1)] knowledge and skills and applying [S(B-III)] 
Written communication [K(P-2)] knowledge and skills. 

 
Extending this to include the dispositional elements (e.g., Table D.5) implicated adds an additional mapping: 

 
(iv) As per items (i) and (iii), this statement implies students to demonstrate the capability of analyzing [S(B-IV)] 

Enterprise Architecture [K(C-1.4)] and evaluating [S(B-V)] leveraging IS Management and Leadership [K(C-
1.3)] knowledge and understanding. In the learning context, these behaviors are expected to be moderated by 
students demonstrating that they are Proactive (D-1) in seeking out the information that is needed in a Self-
Directed (D-2) manner. The purpose of the presentation suitable for management is that they demonstrate 
Professional (D-5) attitudes and behavior. 

 
(v)  Lastly, completeness warrants including the task specification (T) which was stated, but also left open to 

different settings in the application of enterprise architecture. 
 

Similar to the previous example, this presents a reasonably complete statement, given the abstract vocabulary 
employed. Figure D.9 illustrates this statement, coupled with its mapping. 

 



Computing Curricula 2020   Computing Curricula Report  
CC2020   2020 December 31 

Page 139 of 203 

 
Figure D.9. Cloud Services in Enterprise Architecture 

 
Figures D.6–D.9 present atomic competencies (e.g., those not dependent upon previously-stated/modeled 
competencies). Figure D.10 presents a statement that can be modeled as being dependent on these statements. 
This example relates to a competency related to the topic of cloud services and reflects the Information Systems 
domain. 
!

Propose an enterprise architecture based on the organizational business model and consistent with the mission and 
objectives of the organization. The architecture should propose appropriate leading-edge technologies consistent with the 
organizational requirements.   

Figure D.10. Cloud Services in Enterprise Architecture 
!

Leveraging the abstract vocabulary of Tables D.1, D.3 and D.4, and the competencies of Figure D.10 results in the 
following sets of mappings: 

(i) “Propose an enterprise architecture based on the organizational business model” embraces the enterprise 
architecture competency displayed in Figure D.8 and modeled as C-002 in Figure D.9. The phrases “consistent 
with the mission and objectives of the organization” are normatively a part of effective business modeling, so 
are considered within this competency. 

 
(ii) “Propose appropriate… technologies consistent with the organizational requirements” explicitly leverages the 

systems requirements competency displayed in Figure D.6 and modeled as C-001 in Figure D.7. 
 
Extending this to include the dispositional elements implicated (e.g., Table D.5) adds an additional mapping: 
 
(iii) In the learning context, these behaviors are expected to be moderated by students demonstrating that they are 

Meticulous (D-10) in seeking out the information that is needed in an Inventive (D-10) manner. 
 
(iv)  Lastly, completeness warrants including the task specification (T) which was stated, but also left open to 

different settings in the application of enterprise architecture. 
 

  
 



Computing Curricula 2020   Computing Curricula Report 



Computing Curricula 2020   Computing Curricula Report  
CC2020   2020 December 31 

Page 141 of 203 

enable students to attain the required competencies. A curriculum specifies, at a minimum, the topics, pedagogical 
approaches, and learning outcomes for each of the learning experiences.  
 
When described in other contexts, competency statements are often binary; either one has that competency, or one 
does not. However, this is not the nature of competencies as described here or as are useful for computing education. 
Instead, like other types of learning outcomes, they are demonstrated at a specific skill level(s). The purpose of the K, 
S, and D in T formulation is to provide demonstrable goals that can be observed and in an educational context assessed 
for how well the student demonstrates the achievement of those goals. Beyond traditional learning outcomes, 
competency statements encompass the dispositional or ‘enacted value’ aspects of learning. Consequently, competency 
specifications at any level of education both inform pedagogy and situates assessment.  
 
One of the most critical aspects of competency development is the use of consistent vocabulary. The K, S, and D in T 
framework is useful only to the extent that the terminology used for any of the components has a consistent meaning 
for its constituents. Historically, much of the terminology used for describing competencies is highly context-
dependent or ambiguous [Fr5,Per5]. Consequently, the need for both the authors and readers to have useful, juried 
vocabulary particularly for the terminology used to describe Knowledge, Skills, Dispositions is essential both to 
communicate and to comprehend the meaning(s) implied. For example, the vocabulary of Tables D.1 and D.3 are very 
abstract, whereas many of the knowledge area, knowledge unit hierarchies developed since CC2005 are relatively 
detailed. With more detailed vocabulary, more detailed competencies can be described. 
 
This competency-based approach is providing a new mechanism for working with and/or describing curricula 
reflecting what graduates can do, vs. just what they know. One reason to make a transition from the knowledge area, 
knowledge unit, learning outcome model to competency-based learning is the skills gap that exists between the needs 
of industry and the capability of graduates from computing programs. In particular, the competency vocabulary 
leveraged in Tables D.3 and D.4 are all drawn from vocabulary used in computing job descriptions. This connection 
to the workplace, facilitated by a competency-based approach is important. For a typical university, an overwhelming 
majority of computing graduates enter the workplace directly. While universities are not training grounds for industry, 
often there is reported a disconnect between the products produced (computing graduates) by universities and the 
needs of industry [Rad1,Bil1]. Specifying program expectations as competencies will be more easily understandable 
by the employer partners of computing programs as well as graduates and other constituents. These themes (and 
others) are developed in more detail in Appendix E. 
 
The CC2020 project has embraced competency as an underlying theme of its activities and as a principal component 
of this report. The task force believes that every career path in computing, whether industrial, or academic, or 
government, or any other career demands an intentional level of performance in applicable competencies. It observes 
that knowledge is only one component of competency. Adopting competency as the foundational model on which to 
base academic program designs is a more effective bridge between the deliverables achievable by academia and their 
consumption by the society at large. Thus, it is logical that this report should foster competency-based learning instead 
of knowledge-based learning. When used intentionally, this approach ensures that graduates of computing programs 
have a better preparation to be effective in their career paths.  
 
 
 
D.6:  Competency in Future Curricular Guidelines   
 
The CC2020 Task Force is committed to the use of competency in current and future computing curricular reports and 
recommends continued development of competency statements. The competency-based approach makes it possible 
to compare computing disciplines and facilitate detailed comparisons. Competency implies attaining a level of 
professional excellence and performance that goes beyond having only knowledge in a field. These extensions include 
technical and professional skills to function in the workplace at an acceptable level of performance. It is important to 
employ the competency-based approach in the development of future curricular guidelines within a common frame of 
reference. This is a major theme of Chapter 5, with the development of a means of collecting and comparing both the 
results of international curriculum guidelines, but also models that come not from just model curricula, but actual 
curricula around the world. 
 



Computing Curricula 2020   Computing Curricula Report  
CC2020   2020 December 31 

Page 142 of 203 

This report also assumes that specifying the knowledge, skills, and dispositions desirable for computing graduates is 
beyond its scope. Specifying the detailed competencies is the responsibility of discipline-specific curricular reports 
and, more specifically, individual computing programs themselves.  
 
Given that most graduates of computing programs enter the workplace, it is critical that all computing programs 
prepare their graduates properly so they can perform as professionals and engage in productive careers. While the 
CC2020 project can only suggest its beliefs, its task force is confident that computing organizations and programs 
worldwide will heed the suggestions made in this report and transform their activities where competency becomes 
central to their future undertakings. In today’s world, graduates must be able to perform in the workplace with the 
technical and professional knowledge, skills, and better opportunities to develop and understand the dispositions that 
help make their knowledge and skills effective in the workplace.   
 
As the work on CC2020 has progressed, so, also, have other international curriculum development efforts, including 
IS2020. A cyber security project also constituted an ongoing curricular effort in parallel with the CC2020 project. 
ACM published this report, called CSEC2017 [Acm07], in December of 2017. Some projects approaching initiation 
include information systems, with a report pending in 2021. Naturally, other curricular updates include software 
engineering, computer science, and computer engineering. The CC2020 Task Force is hopeful that all future curricular 
endeavors adopt the competency-based approach.  
 
The necessary inclusion of the task component in a competency suggests opportunities for workplace-bound learning 
experiences that engage authentic problems with industrial tools and that encourage employers’ active involvement 
supporting professional development through internships, co-op programs, and expert mentorship. Dispositions 
materialized through task encourage promoting an appreciation for diverse teams, for collaborative norms in project-
based activities, and a deliberate and critical reflective practice fostering effective decision-making and continuous 
learning.  
 
The competency model for computing education presented in the CC2020 Report frames the pattern and philosophy 
for future curriculum guidelines while at the same time a careful consideration has been applied to the interoperability 
of competency-based curricular descriptions. The model facilitates the analysis of curricular specifications through 
comparison to identify the overlap or omissions that may exist between curricula. The potential to represent curricula, 
curriculum fragments, and job descriptions in competency form facilitates a wide variety of study and analysis. The 
mission of CC2020 addressed by the development of the competency model for computing education does not include 
the authoring of computing curricula, a task that must be undertaken by curriculum guideline endeavors followed and 
integrated with the engagement of educational institutions in the shaping and evolution of their computing programs. 
And perhaps the greatest incentive supporting the adoption of competency-based curricular specification is the 
opportunity for a more efficient and effective partnership between academia and industry in addressing the shared 
goals of advancing the benefits of computing to society.  
 
 
 
D.7:  Summary   
 
This appendix dealt with the nature of competency—one of the salient features of the CC2020 project. It presented 
several competency statements to exemplify the application of the theory. Competency-based curricula are more 
expressive in their learning goals, and more easily translated to the language of possible job descriptions for graduates 
and industry needs. Recognizing the knowledge-based approaches taken in many computing curricula to date, recent 
developments in computing curricula imply that the components of computing curricula should include not just 
knowledge and skills but also dispositions, skill levels, and typical (maybe “practical”) tasks expected of graduates.  
The CC2020 Task Force recommends that future curricular reports adopt this competency approach to describing 
computing curricula and expand the theoretical foundation upon which curricula are designed. 
 
  
 
 



Computing Curricula 2020   Computing Curricula Report  
CC2020   2020 December 31 

Page 143 of 203 

  
Appendix E:  From Competencies to Curricula 
 
Chapter 4 introduced and defined the competency concept and briefly discussed how competencies are related to 
graduate outcome expectations for degree programs. Underlying this model is an assumption that graduate 
competency specifications provide a foundation for designing learning experiences that are a foundation to the 
graduates’ ability to execute relevant tasks as computing professionals. In this appendix, we will discuss various 
applications of the competency-based approach. We will outline the stakeholder groups who might benefit from the 
use of a competency-based model and a variety of ways in which these stakeholders, such as employers, students, and 
regulatory/accreditation bodies, in the educational ecosystem can benefit from the competency-based approach and 
utilize it effectively. In addition, we will describe characteristics of the processes with which competencies are 
identified and authored. Furthermore, we will discuss how a curriculum can be derived from a set of competencies.  
 
The fundamental questions we address in this appendix are: a) What are the most appropriate processes and 
information sources for deriving competencies for a specific educational program in a specific context? and b) How 
can competencies be used to guide curriculum design and revision processes?  
 
 
 
E.1:  Competency in Future Curricular Guidelines   
 
This section defines and discusses several key concepts essential for any practical use of the competency-based 
approach: stakeholders, competency targets, and the differences between traditional and a competency-based approach 
for specifying computing subdisciplines. 
 
 
E.1.1:  Stakeholders 
 
The CC2020 project has identified five groups of stakeholders whose members may benefit from the competency-
based approach to specifying outcome expectations. 

• Prospective students and their parents 
• Current students 
• Industry professionals 
• Educators 
• Educational organizations and authorities 

 
Prospective students, supported by their parents or guardians, are considering studying computing at a university. 
They need to understand differences in computing programs when making their choices between universities and their 
programs of study. A prospective student and their parents might have a basic understanding that the student is 
interested in computing as a field of study, but it is likely that few prospective students comprehend the variety of 
computing subdisciplines or the differences between them.  Members of this stakeholder group are going to be 
interested in comparing the various subdisciplines, as well as in understanding the relationship between the 
characteristics of specific programs and curriculum standards for different subdisciplines, as well as the relationship 
between the outcomes of a program and the expectations of one or more jobs, or a program or subdiscipline and a 
career. 
 
Current students are students who are enrolled at an institution of higher education. They might consider a choice 
of courses from their own institute or another institute (in some cases another department when they intend to take a 
hybrid curriculum of multiple subdisciplines), or in another country. Alternatively, they may be interested in moving 
to another educational institution. These students would be particularly interested in comparing programs between 
different institutions. 
 
Industry refers to organizations that (1) are hiring graduates, (2) are collaborating with universities to choose or 
specialize a curriculum or need a tailor-made course, or (3) are collaborating in a curriculum by providing internships. 



Computing Curricula 2020   Computing Curricula Report  
CC2020   2020 December 31 

Page 144 of 203 

Most importantly, industry professionals and recruiters need to understand what prospective incoming employees have 
learned, i.e., which competencies they have acquired during their studies. Computing professionals need various 
specific skills. For example, employers who are looking for software developers might be looking for individuals with 
strong competencies in software development, and thus they might be interested in software engineering graduates. 
On the other hand, if an employer wants individuals who have competencies in understanding and guiding the impact 
of technology on an organization in addition to a foundation in computing, then they might prefer graduates from an 
information systems curriculum. Thus, understanding how particular types of curricula would fit within their employer 
needs would help target which type of graduates they prefer in terms of curriculum studied.  
 
Computing educators are faculty members and staff within a single school or university who are responsible for 
designing and implementing educational experiences, which may include a full curriculum leading to a degree or an 
individual course or module as part of one or more curricula. These people may be individual university faculty 
members or teams that design and teach courses, design educational resources (books, massive open online courses 
(MOOCs), websites, presentation slide decks), manage curricula as taught in their school, or assess student entry or 
exit levels. Computing educators need to understand how their current or prospective curriculum align with standard 
curriculum recommendations, as well as understand how well the competencies of graduates match the needs of the 
industry within their target market. 

 
Educational authorities are organizations that have authority over university education such as (national) ministries 
of education that govern and finance universities and national or international (e.g., European) bodies that rate, assess, 
or accredit (university) education, or define qualifications or certificates. Educational authorities need to understand 
how well a specific program matches the curriculum standards for the field that it purports to teach. In many countries 
or broader regions, educational authorities are responsible for developing local curriculum standards for various 
subdisciplines, so they will have to apply the competency model along the lines of the process described later in this 
appendix. 
 
 
E.1.2:  Competency Targets 
 
A competency target reflects an entity that would be defined by providing a set of competencies. These competency 
targets could be in several categories—curricula, curricular standards, jobs, and careers. Effectively, anything that can 
be specified with a set of competencies is a potential target.  
 
Both pre-college and college students are driven to some degree by the choice of an eventual career. Our competency 
model can be applied not only to subdisciplines and to college programs, but also to careers and jobs. We note that a 
career reflects a broad category of specific jobs, just as a subdiscipline reflects a broad category of specific programs. 
Table E.1 clarifies these concepts.  
 

Table E.1. 
 Education Workforce 
Singular (Degree) Program Job 
Aggregate Subdiscipline Career 

 
Developing competency-based specifications for these targets can enable comparison between various targets. For 
example, a competency-based specification of a career can then form a baseline that can be used to compare against 
various subdisciplines. The relationship between a career and various subdisciplines can drive the choice of the 
subdiscipline that a student should specialize in. One could pragmatically decide on a subdiscipline based on the 
distance between a desired career and a subdiscipline, and a similar distance metric could provide guidance regarding 
the preparation a program provides for either a specific job or a career. 
 
 
E.1.3:  Outcome Expectations and Learning Specifications 
 
This section briefly reviews the differences between the competency-based approach and the traditional approach to 
specifying degree programs. In computing, it has been a long-term tradition to articulate guidance and 



Computing Curricula 2020   Computing Curricula Report  
CC2020   2020 December 31 

Page 145 of 203 

recommendations for educational programs in the form of curricula that specify the number of classroom hours that 
are dedicated to specific knowledge units. Knowledge units are typically further categorized into knowledge areas at 
a higher level of abstraction. In addition to the contact hours dedicated to it, a specification for a knowledge unit has 



Computing Curricula 2020   Computing Curricula Report  
CC2020   2020 December 31 

Page 146 of 203 

computing curricula and explores the interplay between the specification of competencies and ways of working with 
stakeholders in curriculum design and development.  
 
Competency, as described in Chapter 4, is a means of capturing the desirable attributes of graduate performance in 
situations where one’s profession and expectations for professional expertise form the context. From the computing 
education perspective, these are situations in which our graduates act in interaction with computing environments, 
systems, and processes. 
 
Descriptions of competence, albeit sometimes often incomplete, are already in common use in the form of learning 
outcomes and graduate outcomes associated with courses and degrees worldwide. Learning outcomes are an excellent 
starting point in terms of deriving competencies from the academic stakeholder perspective. One shortcoming, 
however, is that such outcomes are often structured as ability to apply knowledge or skill to a problem or situation. 
Aspects of prudential judgement, for instance commitment to ethical standards, personal investment in the quality of 
the outcomes, and dedication to personal standards of quality, communication and collaborative behavior are often 
missing or poorly described.  
 
To address this issue, we highlight several perspectives to the processes of deriving competencies in collaboration 
with stakeholder groups. All these approaches adopt a requirements analysis model familiar to computing practitioners 
and are guided by the definitions and competency component structures presented in Chapter 4. 
 
 
E.2.1:  Free-form Narratives vs. Semi-formal Specifications 
 
Chapter 4 presented a semi-formal component structure for competencies in order to build a strong foundation for 
understanding the competency concept and for analyzing and comparing competency-based program specifications in 
a structured way. As already made clear in Chapter 4, a component-based structural specification is not, however, 
always the best way to specify curricula. For example, the curriculum guidance documents in computing that have 
followed the competency-based approach so far (IT2017, MSIS2016, and SWECOM) have all presented competencies 
without any formal specifications or limitations of the structure or vocabulary of the competency statements.  
 
In the development of IT2017 and MSIS2016, industry and/or government documents (such as SFIA, e-CF 3.0 [Eur3] 
and Clinger-Cohen [Cio]) were consulted as a source of guidance for the form of typical competency statements, in 
addition to academic research. Competency statements typically start with a command verb and are written to express 
an expectation set for an organizational role in a specific task context. The general expectation of a competency 
statement is that it should capture elements of knowledge, skills, and dispositions, but when written in a typical free-
form narrative, those three components cannot necessarily be identified directly as separate elements without further 
analytical work. 
 
Experiences developing competencies as a path to curricula in other disciplines has concluded that it is important that 
the initial process of writing competency statements is not constrained by a fixed component structure or narrowly 
defined lists of options [Cha1,Wei1]. When an employer articulates the competencies that their incoming employees 
are expected to have or gain rapidly after the beginning of employment, it is unrealistic to expect that they would be 
willing to constrain these statements to a limited vocabulary or a tightly specified grammar. In the same way, if the 
purpose of competency statements in a curriculum guidance document (either locally or globally) is to convey them 
to prospective students or prospective employers, limiting the vocabulary or forcing a highly constrained structure is 
unlikely to improve understanding. The competency statements need to be written in a way that they are 
understandable and meaningful for the key stakeholder groups that will be using them. 
 
At the same time, as discussed in Chapter 4, there are good reasons to articulate a formal component structure for 
competencies and limit the set of possible elements for each component type: in practice, it is impossible to analyze, 
compare and visualize competencies effectively unless the free-form narrative is somehow converted into a semi-
structured format. As we will discuss later, it is also possible that the quality of the free-form narratives can be 
improved by using the structural and vocabulary analysis as a way to improve their coverage of the competency 
structure established in Chapter 4.  
 
 



Computing Curricula 2020   Computing Curricula Report  
CC2020   2020 December 31 

Page 147 of 203 

E.2.2:  Eliciting competencies 
 
In many ways, specifying competency statements for a specific context is a requirements specification task. Instead 
of articulating requirements for the performance of a software application or a system, competency statements specify 
performance requirements for individual professionals in a context. Still, the process of eliciting and specifying 
competencies shares many characteristics with a requirements discovery and structuring processes.  
 
First and foremost, specification of competencies is typically a collaborative process among multiple stakeholder 
groups. Competencies should be derived from interaction with stakeholder groups, such as employers, students, and 
regulatory/accreditation bodies, in collaboration with curriculum designers. 
 
To derive expressions of competency a range of strategies can be employed, using approaches that could include all 
the typical tools of multi-method knowledge discovery processes, such as interviews, surveys, observation, face-to-
face and online focus groups, and other collaborative processes.  Regardless of the stakeholder type, the fundamental 
question driving the process typically is: what tasks should the graduates/future employees be able to perform in an 
authentic context at the time when they complete a particular program experience? The discovery process should lead 
to statements of professional expectations.  
 
There is surprisingly little existing literature regarding the process of authoring competency statements. Chambers et 
al. describe a process for deriving competencies, as well as a constrained language with which to describe them [Cha1] 
as does Lenburg [Len1]. Other good examples of how to work with competencies and curriculum design and 
implementation are presented in the work of Squires and Larson in Space Systems Engineering [Squ1]. 
 
While it is impossible for us to provide specific guidance for each of the stakeholder groups and types of competencies 
that might emerge, it is, however, possible to provide general guidance for writing them. Lenburg [Len1] offers the 
following recommendations for writing competency statements. 

• They should be worded as learner-oriented, essential competencies. 
• They should be worded in “clear, specific, unadorned, and concise language,” and they should be measurable. 
• They should be action oriented and begin with “the verb that most precisely describes the actual, preferred 

outcome behavior to be achieved.” 
• They should be consistent with “standards, practice, and real-world expectations for performance,” thus 

reflecting what “the practitioner actually needs to be able to do.” 
• They should contribute to the “cluster of abilities needed by the graduate to fulfill the expected overall 

performance outcomes.” 
 
In a free-form competency statement, the focus is typically on the general outcome of the competency in the context; 



Computing Curricula 2020   Computing Curricula Report  
CC2020   2020 December 31 

Page 148 of 203 

In our approach, we assume for competency design purposes that a learner develops competencies in a progression, 
leveraging competencies she has already attained in the process of developing new ones.  Hence competencies do not, 
in general, stand alone, but coexist in a dependency framework, and each competency may be associated with a set of 
preceding competencies in addition to its knowledge, skill, and disposition learning components. This leads to a 
directed acyclic graph of competencies, where each competency has a unique set of associated learning components.  
Note that the precedence graph is not necessarily a tree, and in most cases will not be, for two reasons— there may be 
no single culminating competency in the progression, and a single competency may be a component of multiple 
competencies later in the progression. 
 
 
E.2.4:  Deriving Semi-formal Specifications from Free-form Narratives 
 
Section E.2.1 discussed the differences between semi-formal competency specifications and free-form competency 
narratives. In this section, we describe the process of deriving the semi-formal specifications based on the free-form 
narratives developed, for example, in discussions with relevant external stakeholders. The purpose of this activity is 
to discover the underlying component structure of the free-form competency statements, the development of which 
we discussed above in E.2.2.  Through this process we not only gain a form of the competencies that can be used for 
analytics or visualization, but we will also gain a significantly more sophisticated understanding of the nuances of the 
competencies.  
 
An example of such a process can be derived from the work of Squires and Larson [Squ1]. They draw on earlier work 
in the Space Systems Engineering community to define a series of competencies in relation to practice in the 
profession. These competencies, as quoted in their paper, are free form and rather abstract in nature. 
 
For example, “Manage systems engineering,” implies a combination of the knowledge base for maintaining complex 
space engineering system solutions, together with skills in space engineering principles and procedures, performed in 
space engineering contexts where commitment to the quality and failsafe nature of the outcomes of the process were 
demonstrably of high value and always palpable in the context of the decision making of the individual in systems 
management and development. 
 
These statements are then analyzed, decomposed, and ultimately regrouped in the form described in Chapter 4, having 
used the original data as a means to derive competency statements that include elements of knowledge, skill combined 
with dispositions related to professionalism in an application context. 
 
In terms of the “manage systems engineering” competency example given above, our recommended process would 
involve a subsequent decomposition and expansion step as the high-level competency evolved into knowledge, skill, 
and contextual dispositional components as shown in the subsequent explanatory text in the same example. Once these 
high-level free form statements are transformed into the structure developed in Chapter 4, curriculum designers and 
instructional designers can transform them into statements describing learning activities and experiences where the 
relevant context can be created in order for the competency to be observed.  
 
 
E.2.5:  Authoring Free-form Narratives from Competency Components 
 
It is also possible to move in the other direction and author free-form narratives by first focusing on the components. 
Identifying the knowledge, skills, and disposition components of a competency first may be a good starting point in 
cases when the full identity of the target competency is not clear and needs to be calibrated at the level of the 
components first. The danger of this approach is that the author may ignore the fact that the whole is typically much 
more than a pure aggregation of the components. Still, if the authors are able to specify the component structure, it 
certainly provides valuable guidance for formulating the competency narrative.  
 
 
 



Computing Curricula 2020   Computing Curricula Report  
CC2020   2020 December 31 

Page 149 of 203 

E.3:  Using Competency Specifications as a Foundation for Curriculum Specifications    
 
One of the essential questions for any academic administrator or faculty member who is developing a degree program 
or other collection of learning experiences based on a competency-based approach is as follows: How do we determine 
a set of educational experiences that, if not guarantee, at least significantly increase the probability of the proposed 
program’s graduates being able to achieve the competency expectations that have been set for them. It is useless to 
specify competencies as program outcomes unless there is a meaningful mechanism for identifying and structuring a 
set of learning experiences that enable the students to achieve the specified competencies [Chy5,Acm11]. In other 
words, a set of competency statements have to be transformed into a curriculum form consisting of educational 
activities that help to scaffold the student’s progression in various types of outcome areas.  
 
In this section, we will discuss several examples of existing models that have been proposed for the purpose of 
converting a set of competency expectations into a curriculum. As you will see, they appear to share some basic 
characteristics. 
 
Just as a reminder, we use the following terminology: Competencies serve as outcome expectations at the level of a 
degree program (or other aggregate structure toward which students are working; for the sake of simplicity, we use 
the term program). Learning experiences are courses, modules, or other similar sets of learning activities that 
collectively constitute a program. Each learning experience leads to a set of learning outcomes, which collectively 
need to enable the students to attain the required competencies. A curriculum specifies, at a minimum, the topics, 
pedagogical approaches, and learning outcomes for each of the learning experiences. 
 
 
E.3.1:  Existing Models 
 
MSIS2016 [Acm11] presents a process for deriving a set of learning experiences (referenced as modules) based on a 
set of competency specifications (see Figure E.1). This process assumes an underlying competency model similar to 
that of MSIS2016, which includes 10 competency areas, 88 competency categories (each associated with one of the 
competency areas), and several detailed competencies within each category. Furthermore, it recognizes five attainment 
levels for each of the competency categories (awareness, novice, supporting, independent, and expert), specifying that 
educational programs are seldom sufficient to help anybody achieve the expert level. 
 
The process of developing the learning experiences in the MSIS2016 model starts with a program needs analysis (Step 
1) combined with the determination of the job roles that the program plans to focus on (Step 2). Based on the outcomes 
of the first two steps, the program determines competency [category] attainment levels that it assumes its graduates to 
achieve (Step 3), including inclusion of potential brand-new competency statements. Next, the model suggests that 
the program should develop or confirm an initial architecture for the learning experiences (Step 4), followed by either 
verification learning experiences at the learning objective level (Step 5; program based on existing courses) or drafting 
a set of new learning experiences with learning objectives (Step 6; new programs). Following this, the model suggests 
that in Step 7, the results of Step 5/Step 6 are mapped with the competency attainment levels specified in Step 3. In 
Step 8, the differences between Step 3 and Step 7 are identified. Step 9 is for determining required modifications to 
the learning experiences and/or their learning outcomes to address the differences identified in Step 8. Finally, in Step 
10, detailed learning experiences are designed, including the topics and pedagogies. 
 



Computing Curricula 2020   Computing Curricula Report  
CC2020   2020 December 31 

Page 150 of 203 

!
Figure E.1 Process for deriving learning experiences from competency specifications (adapted from MSIS 2016) 

 
Squires [Squ1] summarizes another approach for developing a curriculum based on a set of competencies using the 
International Academy of Astronautics (IAA) Space Industry Systems Engineering competency model. This model 
itself consists of 10 competency areas and 37 capabilities each associated with one of the competency areas. 
Furthermore, the model specifies four proficiency levels: Participate (Know), Apply (Perform), Manage (Lead), and 
Guide (Strategize). Squires’ process includes the following steps. 

• Select the competency model to use. 
• Validate the most important (‘critical’) competencies. 
• Determine the current curriculum’s ability to enable the students to attain the required proficiency levels. 
• Determine the proficiency levels that the future curriculum needs to attain. 
• Identify the gap areas between the current and the future curriculum. 
• Assess and fix the gaps. 

 
In this model, the sixth step is the part of the process that addresses the curriculum and specifies how the curriculum 
(both topics and pedagogy) have to be modified (or created in the case of a new program) so that the curriculum will 
enable students to attain the required proficiency levels. 
 
Finally, Chyung et al. [Chy5] propose another six-step process, which covers both authoring of the competencies and 
curriculum design based on them. In this process, the first three steps include— borrowing the authors’ terminology—
the use of three sources of data for determining the competencies (alumni and industry analyses, professional standards 
and curriculum benchmarking, and departmental goals and curriculum review). Thus, the fourth step, actual authoring 
of the competencies, will be based on two types of external resources (employer needs and national and global 
competency/curriculum guidance) and internal goals and review processes. Chyung et al. [Chy5] include the 
development of the learning experiences as the fifth step, during which “the key to this ongoing process is to carefully 
align the stated course objectives, the competencies that apply to that course, and the graded course assignments.” 
[Chy5 p311].  In this process, it is important to ensure that course goals are aligned with “applicable competencies” 
and that the course includes learning processes that “both help students acquire those competencies and assess the 
extent to which they have been successful.”  
 
Summarizing key findings from these three models suggests the following. 

• In all of the models, the characteristics of the learning experiences that constitute the curriculum are 
determined based on the outcome expectations specified with competencies. 

• All of the models assume that the program competencies are identified (at least partially) based on existing 
competency models (developed by industry/government groups or by professional societies). 

• Two of the three models recognize that identifying the outcome expectations as a set of competencies is not 
sufficient; in addition, in these models an expected attainment level needs to be specified for each 
competency. 





Computing Curricula 2020   Computing Curricula Report  
CC2020   2020 December 31 

Page 152 of 203 

authoring of the learning experiences requires the identification of learning experience outcomes based on the 
competencies, configuring the learning outcomes into groups that represent learning experiences, and then designing 
learning activities within each learning experience based on the learning outcomes. Obviously, this is seldom a process 
that starts from a clean slate—existing learning experiences form the foundation for the work. 
  
 
E.3.4:  Specifying Program Outcomes as Competencies from Pedagogical Requirements 
 
One of the positive but potentially resource-intensive impacts of specifying program outcomes with competencies is 
that enabling students to develop skills and dispositions in many cases requires a different set of pedagogical 
assumptions and approaches compared to a mostly knowledge-based specification of outcomes (and their assessment). 
In practice, competency-based outcome specification will lead to a broader set of types of learning experiences, often 
including a much stronger focus on various forms of experiential learning from interactive simulations to intensive 
projects to field experiences to internships and co-ops. Particularly domain-specific skills and dispositions require a 
learning environment that is different from a traditional classroom environment.  
 
 
 
E.4:  Competencies and Stakeholder Value   
 
Competencies, through their task context, are closer to the language with which employers describe their needs than 
the traditional knowledge area, knowledge unit, learning outcome model can achieve. Consequently, competency 
specifications communicate value for the (prospective) employer organization more directly and transparently than 
knowledge-based specifications do. Therefore, competencies help other stakeholders such as students, parents and the 
public sector understand what future careers the degree programs are aligned with. 
 
Competencies as a conceptual framework for valuing the outcomes of higher education can be traced back to the 
1970’s and legal, nursing and teacher vocational training programs in the US. These programs emphasized the 
acquisition of the behavior exhibited by outstanding professionals as a way to identify and develop desired skill sets 
through education and training [Gra2]. The resulting approach focused on training by mimicking desirable behavior, 
and ultimately did not produce the intended competencies. Consequently, these experiments did not attract much of a 
following. Renewed interest from labor organizations and vocational education in the concept emerged throughout 
the late 1980’s, but 



Computing Curricula 2020   Computing Curricula Report  
CC2020   2020 December 31 

Page 153 of 203 

academic computing to clearly describe their graduates’ capabilities while at the same time help employers 
communicate their functional job requirements more clearly. In such a circumstance, the computing educators would 
have the opportunity to weigh their educational goal descriptions against industry needs. As a result, human resource 
activities in industry would find it easier to identify likely institutional sources of graduates with relevant competency 
profiles as prospective future employees.  
 
Competency offers a contextualized model through which communication of practitioner capabilities of graduates can 
be realized. This in turn better serves the coordination and collaboration among institutions of computing education 
along with the human resource activities of industry. Furthermore, this model may better facilitate advising prospective 
students who wish to align their studies with clearly described employment opportunities. All the while, such a 
collaboration can influence curricula in educational programs by providing a better understanding of the job markets 
they may wish to serve. In any case, specific competency descriptors offer a facilitating bridge in the dialog between 
academia and industry locally, nationally, and internationally. 
 
The explicit fusion of knowledge and skills adopted in CC2020 emphasizes the role of practice in the process of 
demonstrating “knowing.” [Wig2



Computing Curricula 2020   Computing Curricula Report  
CC2020   2020 December 31 

Page 154 of 203 

 
Appendix F:  Repository Development 
 
An approach that can be taken is to create an experimental repository for the eventual structure of competency 
encoding. This section describes the development of an exploratory architecture for the digital repository using data 
drawn from published curriculum guidelines using screen scraping and vocabulary machine learning tools. The goal 
is to design a framework that can accommodate a three-dimensional concept of competency (knowledge, skill, and 
disposition) regardless of how one defines those three dimensions.  
 
F.1:  Repository Development 
 
In the experimental repository, a select team used Eduglopedia [Edu1] as the source for knowledge area elements. 
This open and free global encyclopedia for higher education contains more than three thousand course descriptions 
and more than nine hundred program descriptions from approximately five hundred institutions. Furthermore, it uses 
Bloom’s Cognitive Process Dimension [And5] as a placeholder for skill.  
 

 
 
 
The repository development uses Beautiful Soup (a Python package) to screen scrape the Eduglopedia that generates 
XML descriptions of various knowledge areas and relationships within curricula. It also uses tools such as synonym  
search and machine learning to generate a computing taxonomy and to identify specific verbs that applies to the 
different levels of Bloom’s Cognitive Process Dimension. And it generates a database of skills and knowledge as a 

 
Figure F.1. Repository development process  

 



Computing Curricula 2020   Computing Curricula Report  
CC2020   2020 December 31 

Page 155 of 203 

source for queries that in the end allows for visualization of a curriculum. Figure F.1 shows the result of the repository 
development process. The steps of the repository data collection and visualization support follow. 

• Use Beautiful Soup to screen scrape Eduglopedia and obtain XML descriptions of various knowledge areas 
and relationships within curriculum. 

• Use tools such as synonym search and machine learning (as well as review by human experts) to: 
o generate a computing taxonomy, and 
o identify verb sets that apply to the specific cognitive process levels of Bloom’s. 

• Generate/digitize a database of knowledge elements in semiotic order and skills as applied knowledge in 
Bloom’s cognitive process ordering.  

The resulting repository—the curriculum object store—serves as the source for queries that interface with a library 
of representational models allowing users to select, visualize, and/or compare curricular specifications: curriculum 
guidelines, program catalogs, course descriptions, accreditation standards, and job advertisements. 
 
  



Computing Curricula 2020   Computing Curricula Report  
CC2020   2020 December 31 

Page 156 of 203 

 
Appendix G:  Additional Visualizations and Analyses 
 
This appendix shows visualizations that were considered during the CC2020 project. Note that some of the 
terminology that appears in this appendix does not necessarily comply with the terminology that was given in Chapters 
4 to 6. 
 
 
 
G.1:  Use Case-based Analysis 
 
This section gives four examples of use cases. Note that the two use cases in G.1.1 and G.1.2 are taken from 
[Tak1]. 
 
 
G.1.1:  Case 1: Question from Prospective Student 
 
A student is interested in entering undergraduate education in computing and wants to know what type of curriculum 
would best fit her interests. She might have some ideas about dispositions that are relevant in her future curriculum, 
and/or have a preliminary view on domains that would provide her with future job opportunities. She might start by 
checking promising dispositions (or, alternatively, she could start by choosing the knowledge categories and areas—
we show only the first scenario, but the alternative would lead to the same results). She would see a list of dispositions 
(Figure G.1(a)), from which she would choose, resulting in the interface showing the chosen dispositions as shown in 
Figure G.1(b). Note that the dispositions are indicated by color, as there is no order dimension. 

  

                     
 

(a) Before choosing                       (b) After choosing 
 

Figure G.1. Choosing dispositions by a prospective student 
  
The student may also indicate which knowledge categories and knowledge areas seem interesting for her. Figures G.2 
and G.3 show a possible process. She first chose three categories: Users and Organizations, Systems Modeling, and 
Software Fundamentals. In Figure G.2, the ellipses of these three categories are highlighted with red borders. If 
needed, the student could indicate which individual knowledge areas are most relevant. Figure G.3(a) shows the 
knowledge areas for each of the chosen three categories. The student chose the knowledge area User Experience 



Computing Curricula 2020   Computing Curricula Report  
CC2020   2020 December 31 

Page 157 of 203 

Design for Users and Organizations category, and Systems Analysis and Design and Requirements Analysis and 
Specification for Systems Modeling category; again, the ellipse of the chosen knowledge areas are highlighted with 
red borders. The student did not want to make a detailed choice in the category of Software Fundamentals. The 
resulting choices are shown in Figure G.3(b). 
  

!!
Figure G.2. The student’s choice of computing categories 

  

! !
!!?a) Choosing knowledge areas                                              (b) Final result 

 
Figure G.3.  Detailed choice of knowledge areas 

!



Computing Curricula 2020   Computing Curricula Report  
CC2020   2020 December 31 

Page 158 of 203 

!
If the student is satisfied with this set of knowledge areas, she may confirm and ask for a global view of how the 
various curricula match her interests. Based on the student’s choices, the system searches for curricula that fit this 
intended content. In Figure G.4, the intended knowledge categories (which have been partly specified into knowledge 
areas) are mapped for each of the curricular guidelines. The blue squares indicate the extent to which the knowledge 
area/category is relevant in the corresponding curriculum. The green square is the relative match of the student choices 
to that of the curriculum. The calculation of the size of the blue and green squares is not fixed yet, but for example, 
the green square could be based on the weights that were given in the Knowledge table shown in Appendix D.  Since 
the student is more interested in software modeling, based on the message given in Figure G.4, the student decides to 
explore details regarding SE and her favored knowledge categories. By hovering over a square (Figure G.5), the 
corresponding competencies are listed. Also displayed are the dispositions linked to the competencies along with the 
relative level computed from the student choices. 
 

!!
 

Figure G.4.  Mapping of chosen knowledge categories to the curricular guidelines 
!!



Computing Curricula 2020   Computing Curricula Report  
CC2020   2020 December 31 

Page 159 of 203 

!
 

Figure G.5.  Disposition and competency details 
  
 
 
G.1.2:  Case 2: Question from Industry 
 
A user from industry has developed a list of knowledge areas for which relevant skills, knowledge levels, and/or 
dispositions are required for the company’s computing employees. She wants to find out which curriculum might 
potentially provide professional education for the company’s employees, in their context. Initially, CS and IT 
seem to be available and promising. 
 
Similar to the process that the student took in Figures G.2 and G.3 in Case 1, she decides to choose Hardware, 
Software Fundamentals, and Software Development as categories that seem relevant, and removes the other 
three categories. She then checks the knowledge areas for each of the chosen categories and chooses the areas 
that she believes to be relevant for her, resulting in Figure G.6. 
  



Computing Curricula 2020   Computing Curricula Report  
CC2020   2020 December 31 

Page 160 of 203 

  
Figure G.6. Result of knowledge areas selection 

 
 

The user is now able to indicate for each of the selected knowledge areas what skill level would be required, and 
what dispositions are relevant. Suppose that the user indicates that she is willing to provide specifications for the 
knowledge area System Fundamentals. In Figure G.7, the skill level is specified by using a slider, and the 
disposition is specified by choosing from a menu. 
  
 

 
Figure G.7. Detailing skill and disposition 

 
When all relevant specifications for the selected knowledge areas have been provided, the system generates a radar 
chart comparing the knowledge level for selected curricula. The distance from the center indicates the skill level 
related to each knowledge category. Figure G.8 compares CS and IT. The radar chart has been augmented with the 
specification from the user. In the example, it seems IT is the best match for the user’s required knowledge levels. 
This is because there is a complete coverage of the user's specifications and the curriculum content; that is, the blue 
CS surface completely overlaps the user's green specification surface. 



Computing Curricula 2020   Computing Curricula Report  
CC2020   2020 December 31 

Page 161 of 203 

! !
Figure G.8. Comparison of CS and IT based on knowledge level 

  
 
 
G.1.3:  Case 3: Question from Teacher 
 
A teacher in a university faculty of computing aims at developing a course for her domain “Human Factors in 
Computing.” Instead of a course, it could also be a textbook, an interactive electronic learning environment, or a 
mixture of these. The content of this course will be considered an essential part in the undergraduate curriculum for 
the departments IT, SE, and CS. She decides to find out what would be relevant for each of these curricular guidelines, 
in order to compose a course that will be sufficient for all departments. 
 
Similar to the process that the student took in Figures G.1 and G.2 in Case 1, she decides to choose Software 
Fundamentals, Software Development, and Users and Organization as categories that seem relevant, and removes the 
other three categories. She then checks the knowledge areas for each of the chosen categories and chooses the areas 
that she believes to be relevant for her, resulting in Figure G.9. 
 



Computing Curricula 2020   Computing Curricula Report  
CC2020   2020 December 31 

Page 162 of 203 

!

 
Figure G.9. Chosen knowledge areas for the new course design 

 
For each of the chosen knowledge areas (User Experience Design; Software Verification and Validation; Software 
Design; and Graphics and Visualization), she will be able to find the relevant competency statements and dispositions 
from the chosen curriculum guidelines (IT, SE, and CS). Figure G.10 shows what she will get for the area User 
Experience Design after she chose the dispositions and competencies to keep for her course design. The process is the 
same for the other chosen knowledge areas. 
!

!
 

Figure G.10. Potentially relevant competencies with their skill level, and dispositions for the User Experience Design area. 
!

!



Computing Curricula 2020   Computing Curricula Report  
CC2020   2020 December 31 

Page 163 of 203 

!
 

Figure G.11. Resulting chosen set of competencies and dispositions  
 
Then the user may ask for an overview of the total set of chosen dispositions and knowledge with their skill 



Computing Curricula 2020   Computing Curricula Report  
CC2020   2020 December 31 

Page 164 of 203 

 
Figure G.12. Indicating the Institution to be assessed and choosing the curriculum!

 
 
Figure G.13 shows the result: a graph that indicates the minimum and maximum weights of each knowledge element 
(given on the X axis) in the curriculum guidelines for SE. Below the graph, the six knowledge areas are displayed.  
 
The user may expand each of these knowledge areas to access the individual knowledge elements. In Figure G.14, the 
user has expanded the Users and Organizations knowledge category, resulting in the knowledge elements, e.g., Social 
Issues and Professional Practice, Security Policy and Management, etc. On the right side, the user has started inserting 
the actual weight for each element as found in the BA curriculum description of the department assessed. For each 
weight inserted, the interactive visualization will update the graph to show how the faculty scores compared to the 
guidelines. So, for example, in Figure G.13, as the institution values have not yet been input yet, all of the knowledge 
elements have the Evaluation value 0 (in the y-axis). In Figure G.14, the graph has been updated to reflect the input 
value, e.g., the value for Social Issues and the Professional Practice is 6. 



Computing Curricula 2020   Computing Curricula Report  
CC2020   2020 December 31 

Page 165 of 203 

 
!

Figure G.13. Weight-range of knowledge areas in the curriculum guidelines for SE 
!
!



Computing Curricula 2020   Computing Curricula Report  
CC2020   2020 December 31 

Page 166 of 203 

!
Figure G.14. Inserting weights found in the BA curriculum description of the department 

(note: the middle portion has been elided) 
 
 
When the user has finished this input process for all knowledge domains, the resulting comparison looks like Figure 
G.15, showing that this faculty generally conforms to the guidelines, is relatively strong in the domain of Users and 
Organization, and relatively weak on Software Development. 
 



Computing Curricula 2020   Computing Curricula Report  
CC2020   2020 December 31 

Page 167 of 203 

!
Figure G.15.  Resulting state of the department’s curriculum compared to the guidelines 

 
 
 
G.2:  Comparison of Competency Specifications 
 
Figure G.16 shows two competency specifications in table format side by side. Ref# and Title denotes the 
reference number and title, respectively, of a competency specification. The other three columns show the 
competency statement, dispositions, and knowledge-skill pairs for the competency specification. The colors 
show changes and similarities between the two competency specifications. For example, Disposition D-2 and 
Knowledge K(X-3) and K(X-4) are colored pink as they are the same. However, the corresponding skills for 
K(X-3) and K(X-4) are different so they are colored orange. 
 

!
Figure G.16.  Side by side comparison of competency specification 

    (Note: Values are examples and not actual values.) 
 
 
 
G.3:  Various Visualizations of Knowledge 
 
 
Figures G.17, G.18, and G.19 are all visualizations of the same data, specifically Table 5.3 in Chapter 5. 
 



Computing Curricula 2020   Computing Curricula Report  
CC2020   2020 December 31 

Page 168 of 203 

!
 

Figure G.17.  Bar chart showing the maximum emphasis of knowledge areas 
 
 
!
 

 



Computing Curricula 2020   Computing Curricula Report  
CC2020   2020 December 31 

Page 169 of 203 

CC2020 Max  

 
Figure G.18. Radar Chart showing maximum emphasis of knowledge areas 

 
 

 
Figure G.19. Line Chart showing maximum emphasis of knowledge areas 

 
!
!



Computing Curricula 2020   Computing Curricula Report  
CC2020   2020 December 31 

Page 170 of 203 

!
!
Figure G.20. Ribbon Chart comparing the maximum emphasis of knowledge areas between CE2005 and CE2020 
 
 
Figure G.20 compares the CE knowledge area emphasis between the values that were given in CC2005 and CC2020. 
It shows that some of the knowledge areas, such as Signal Processing and Software Verification and Validation, had 
0 emphasis indicating that they did not exist in CE2005. 



Computing Curricula 2020   Computing Curricula Report  
CC2020   2020 December 31 

Page 171 of 203 

 
 

Figure G.21.  Ribbon Chart comparing the maximum emphasis of knowledge areas between CE2020 and IS2020 
 
 
Figure G.21 shows a comparison between the emphasis on knowledge areas for the curriculums CE and IS (both in 
2020). It shows a systematic difference at the left in the region of Hardware and Software Fundamentals where CE 
has a strong emphasis. At the other end of the graph, IS emphasizes knowledge on Users and Organization more than 
CE. 
 
 
 
G.4:  Visualizing Full Curricula 
 
The visualization in Figure G.22 centers around the CS node that links the knowledge areas (KAs), their core 
knowledge units (KUs) and their respective topics [Mar2]. KA nodes are near the center and colored gray. KU nodes 
are placed just outside of the KA nodes having labels starting with U, and topics nodes are placed in the outer part 
having labels starting with T. 
 



Computing Curricula 2020   Computing Curricula Report  
CC2020   2020 December 31 

Page 172 of 203 

 
 

 
 

Figure G.22.  Graph-based structure of the core components of CS2013. 
 
 
To provide a detailed example, consider the highlighted parts in yellow. These yellow nodes represent the core aspects 
of the CS2013 curriculum specification that relates to User Experience Design (in CS2013 labelled “HCI”).  
 



Computing Curricula 2020   Computing Curricula Report  
CC2020   2020 December 31 

Page 173 of 203 

!
!

Figure G.23.  Close-up of the HCI part of Figure G.22 
 
Figure G.23 shows the actual labels of these nodes. Note that this includes not only HCI (Human-Computer 
Interaction), but non-HCI areas such as Software Engineering, Graphics and Visualization, and Social and 
Professional Practice. This is because the CS2013 curriculum mentions a link from these areas to HCI aspects. For 
example, the part concerned with Testing types which belongs to Software Engineering states “Testing types, 
including human computer interface, usability, reliability, security, conformance to specification (cross-reference 
IAS/Secure Software Engineering)” [Acm04 p82]. As “human computer interface” is concerned with HCI, this part 
of Software Engineering is included in Figure G.23. 
 
  



Computing Curricula 2020   Computing Curricula Report  
CC2020   2020 December 31 

Page 174 of 203 

 
Appendix H:  Glossary and Nomenclature 
 
 
This report has been written for the global community of educators, industry, students, and the general public.  
However, across the world in computing, different terms can be used to mean the same thing, and the same terms can 
have different meanings.  While it would be ideal to have a consistent naming system globally, the CC2020 Task 
Force recognizes that many terms are entrenched in a country’s or region’s culture.  In an attempt to ensure 
transparency and readability, a list has been compiled for terms that could be confusing.  A set of CC2020 definitions 
are summarized in this appendix and have been translated into the most common languages in the world.  The task 
force is hopeful that this list will enable the reader to understand the terminology used in computing in their own 
language around the world. 
 
 
 
H.1:  CC2020 Report Definitions 
 
Table H.1 lists the working definitions that appear in this report, as compiled by the CC2020 Task Force. 
 
 

Table H.1 Definitions for CC2020 
Term CC2020 Definitions 

Accreditation Official approval given by an organization stating that somebody or something 
has achieved a required standard 

Adjunct Professor A visiting professor or, in the US, a part-time professor 

Algorithm A set of rules to be followed in calculations or other problem-solving operations 

AP Advanced placement not used outside the USA 

Baccalaureate A bachelor’s degree 

Chair of Department Head of Department or Chair of Department 

Class A group of students studying the same course or degree 

College Outside the US it can be another name for a High School or an organizational unit 
in a university; in the US it is a term for post-secondary education that includes 
universities and colleges. 

Community College Two-year school post high school primarily used in the USA, very rarely used 
elsewhere 

Competency Knowledge + Skills + Dispositions in context 

Core course/curriculum Compulsory courses towards a degree 

Course A component of a degree or in some countries a whole degree 

Credit hours The number of hours for each credit towards a degree 

Credits The points a student receives after passing the assessments towards the course or 
degree 

Curriculum All the different courses of study that are taught in a college or for a particular 
subject 





Computing Curricula 2020   Computing Curricula Report 
CC2020   2020 December 31 

Page 176 of 203 

 
 
H.2:  Definitions/Nomenclature on a Global Scale 
 
Tables H.2 provides translations for the CC2020 working definitions into Arabic, Hindi, Japanese, Chinese and Russian.  Similarly, Table H.3 translates the list 
of working definitions into French, Italian, German, Spanish (Latin American and European), and Portuguese.  
 
 

Table H.2 Definition Equivalents for Arabic, Hindi, Japanese, Chinese, and Russian 
Term CC2020 Definitions Arabic India (Hindi) Japanese Chinese Russian 

Accreditation Official approval given by an 

organization stating that somebody 

or something has achieved a 

required standard 

 मा#ता 認定 学科ᦧ估 Аккредитация يمیداكأ دامتعا

Algorithm A set of rules to be followed in 

calculations or other problem-

solving operations 

 िविध アルゴリズム 算法 Алгоритм ةیمزراوخ

AP Advanced placement not used 

outside the US 

  

アドバンスド・プレ

イスメント 

大学先修᧞ Not used 

Baccalaureate A bachelor’s degree سویرولاكب )ातक 学士 学士 Бакалавриат 

Chair of Department Head of Department or Chair of 

Department 

 िवभागा-. 学部長 or 学科長 系主任 Заведующий кафедрой مسقلا سیئر

Class A group of students studying the 

same course or degree 

 क.ा クラス 班ᕆ Группа, поток (several يسارد فص

groups at a big lecture) 

College Outside the USA it can be another 

name for a High School or an 

organizational unit in a university; 

in the US it is a term for a post-
secondary education that 
includes universities and 
colleges. 

 महािव0ालय 大学 学院 Not used in the sense ةیلك

Community College Two-year school post high school 

primarily used in the USA, very 

rarely used elsewhere 

 عمتجملا ةیلك

  

大ӫ Not used 

Competency Knowledge + Skills + Dispositions 

in context 

 यो4ता コンピテンシ 胦任力 Компетенции ةءافك



Computing Curricula 2020   Computing Curricula Report 
CC2020   2020 December 31 

Page 177 of 203 

Term CC2020 Definitions Arabic India (Hindi) Japanese Chinese Russian 

Core 

course/curriculum 

Compulsory courses towards a 

degree 

 ةطخ / ةیساسأ تاررقم

 ةیسارد

पा67म 必修コース/カリキュ

ラム 

核心᧞程/᧞
程体系 

Обязательные курсы 

Course A component of a degree or in 

some countries a whole degree 

 िवषय コース ᧞程 Курс يسارد ررقم

Credit hours The number of hours for each 

credit towards a degree 

 ةدمتعم تاعاس

 

単位取得時間 学 Часы 

Credits The points a student receives after 

passing the assessments towards 

the course or degree 

 ةبستكم طاقن

 

単位 学分 Кредиты 

Curriculum All the different courses of study 

that are taught in a school or for a 

particular subject 

 पा67म カリキュラム ᧞程体系 Учебный план ةیسارد ةطخ

Engineering Concerned with the design, 

building, and use of something. It 

does not imply a title of engineer 

 अिभयांि<की エンジニアリング or ةسدنھ

工学 

工程 Разработка, 

проектирование 

Faculty Teachers and researchers in a 

university 

संकाय 講師 or 教員 (or 学部 سیردت ةئیھ وضع
) 

学部 ППС (abbreviation) 

Профессорско-

преподавательский 

состав 

Freshman Freshman a term for a first-year 

degree student, generally common 

 ةیعماجلا ةنسلا بلاط

 ىلولأا

 

1年生 一年ᕆ学生 



Computing Curricula 2020   Computing Curricula Report 
CC2020   2020 December 31 

Page 178 of 203 

Term CC2020 Definitions Arabic India (Hindi) Japanese Chinese Russian 

Information 

Technology (IT) 

A branch of "Computing" with an 

approved curriculum.     A fairly 

common global term for the 

"computing" technology industry 

as a whole. Used in many places 

interchangeably with Information 

and Communication Technology 

 सूचना Fौ0ोिगकी 情報技術 信息技 Инормационные تامولعملا ةینقت

технологии 

Junior US term for a third-year student ةثلاثلا ةیعماجلا ةنسلا بلاط 

 

3年生 三年ᕆ学生 No special term for this 

K-12 Kindergarten to year 12 (rarely 

used outside the US and Canada) 

 ماعلا میلعتلا لحارم

  

K-12 Детский сад to year 7 

Lecturer A rank of faculty or a teacher in a 

university 

 HाIाता 講師 or 教員 ᦖ趂 Лектор رضاحم

Middle School Also known as intermediate 

school. Different meanings in 

different countries generally two- 

or three-year schools at either 4 to 

6, 7 to 8 or 9, or 11 – 14 years.   

-मा-िमक िव0ालय 中学校 中学 Средняя школа 7 ةطسوتملا ةلحرملا

15/16 

Module Either a course or a part of a course ةدحو 

  

模賉 Раздел, модуль 

Paper Usually, a product a student 

produces to pass a course or 

examination, or a published article 

परी.ा 試験答案やレポート ةیملع ةلاقم وأ ةقرو

などの成果物 

ᦞ文 Работа, документ 

Professor or a visiting 

professor 

A Visiting Professor or in some 

countries (US) a part-time 

Professor 

Fा-ापक 非常勤教授 or 非常 رئاز ذاتسأ وأ يعماج ذاتسأ

勤講師 

ᦢᳯ教授 No special term for this 

Program(me) All the courses that make up a 

degree 

 يسارد جمانرب

 

プログラム 培养方案 Специальность 

Quarter A quarter of an academic year 

 

ितमाही 学期（クオーター） NA Not used 

Semester Half an academic year يسارد لصف छमाही 学期（セメスター） 学期 Семестр 

Senior US term for a fourth-year student ةیعماجلا ةنسلا بلاط 

 ةعبارلا

 

4年生 四年ᕆ学生 Старшекурсник 

Sophomore US term for a second-year student ةیناثلا ةیعماجلا ةنسلا بلاط 

 

2年生 二年ᕆ学生 No special term for this 



Computing Curricula 2020   Computing Curricula Report 
CC2020   2020 December 31 

Page 179 of 203 

Term CC2020 Definitions Arabic India (Hindi) Japanese Chinese Russian 

Subject Similar to a course but not always 

used at university level 

 िवषय 科目 科目 Предмет عوضوم

Technology The application of scientific 

knowledge for practical purposes, 

especially in industry 

 Fौ0ोिगकी テクノロジ 技 Технология ةینقتلا

Trimester One third of an academic year 

    

Not used 

Undergraduate Studying towards a bachelor’s 

degree 

 पूवL)ातक 学部生 本科生 Студент ةیعماجلا ةلحرملا بلاط

 
 
  



Computing Curricula 2020   Computing Curricula Report 
CC2020   2020 December 31 

Page 180 of 203 

 
 

Table H.3 Definition Equivalents for French, Italian, German, Spanish (Latin America), Spanish (Europe), and Portuguese 
Term CC2020 

Definitions 
French (Europe) Italian German Spanish Latin 

America 
Spanish Europe Português 

Accreditation Official 

approval given 

by an 

organization 

stating that 

somebody or 

something has 

achieved a 

required 

standard 

Accréditation Accreditamento Akkreditierung Acreditación Acreditación Credenciamento 

Algorithm A set of rules to 

be followed in 

calculations or 

other problem-



Computing Curricula 2020   Computing Curricula Report 
CC2020   2020 December 31 

Page 181 of 203 

Term CC2020 
Definitions 

French (Europe) Italian German Spanish Latin 
America 

Spanish Europe Português 

College Outside the 

USA it can be 

another name 

for a High 

School or an 

organizational 

unit in a 

university; in the 

USA it is a term 

for a university 

Université Collegio Hochschule 

(Polytechnic) 

Universidad Universidad Faculdade ou 

Instituto de 

Tecnologia 

Community 

College 

Two-year school 

post high school 

primarily used 

in the USA, very 

rarely used 

elsewhere 

Classe préparatoire (to 

enter prestigious schools) 

Brevet de Technicien du 

Supérieur 

Institut Universitaire de 

Technologie 

Centro di 

formazione 

 

Not used Not used Curso Técnico 

Profissionalizan

te 

Competency Knowledge + 

Skills + 

Dispositions in 

context 

Compétences Competenza Kompetenz Compentencia Compentencia Competência 

Core course/ 

curriculum 

Compulsory 

courses towards 

a degree 

Cours du tronc commun Corsi obbligatori Kernpflichtfach (core 

course)/ 

Kerncurriculum (core 

curriculum) 

Asignaturas 

básicas 

Asignaturas 

obligatorias 

Disciplinas 

obrigatórias 

Course A component of 

a degree or in 

some countries a 

whole degree 

Un cours Insegnamento Studiengang, 

Lehrgang 

Curso Curso Disciplina 

Credit hours The number of 

hours for each 

credit towards a 

degree 

Le temps de présentiel Ore 

corrispondenti ad 

un credito 

formativo 

Semesterwochenstun

den 

Horas por crédito Horas por crédito Hora-aula 

Credits The points a 

student receives 

after passing the 

assessments 

towards the 

course or degree 

Les crédits ou ECTS Crediti Leistungspunkte Créditos Créditos Créditos 



Computing Curricula 2020   Computing Curricula Report 
CC2020   2020 December 31 

Page 182 of 203 

Term CC2020 
Definitions 

French (Europe) Italian German Spanish Latin 
America 

Spanish Europe Português 

Curriculum All the different 

courses of study 

that are taught in 

a school or for a 

particular 

subject 

Contenu pédagogique 

Programme pédagogique 

Curriculum Studienplan/ 

Lehrplan 

Plan de estudios Plan de estudios Currículo 

Engineering Concerned with 

the design, 

building, and 

use of 

something. It 

does not imply a 

title of engineer 

Ingénierie Ingegneria Technik Ingeniería Ingeniería Engenharia 

Faculty Teachers and 

researchers in a 

university 

Faculté / Institut /École 

(institution) 

Enseignant-Chercheur 

(people) 

Collegio dei 

professori 

Kollegium, 

Lehrkörper 

Profesor Profesor Corpo docente 

Freshman Freshman a term 

for a first-year 

degree student, 

generally 

common 

Un étudiant de première 

année 

Matricola Studienanfänger (m)/ 

Studienanfängerin (f) 

Estudiante de 

primer semestre 

Estudiante de 

primer curso 

Calouro 

Graduate, Post-

Graduate 

Graduate—has 

completed a 

bachelor’s 

degree.  

Post-Graduate— 

completed 

master’s and/or 

Doctoral degree 

Licence (bac+3) 

Master (bac+5) 

Doctorat (bac+8) 

laureato; laureato 

magistrale;  

Studienabsolvent, 

Postgraduierter (m)/ 

Postgraduierte (f) 

Graduado, 

Maestro, Doctor 

Graduado, Post 

graduado 

Graduado, Pos-

graduado 

(Mestrado e 

Doutorado) 

Informatics European term 

for computing or 

sometimes 

information 

systems or 

computer 

science 

Informatique (CS never  

Used in french) 

Informatica Informatik Informática Informática Informática 



Computing Curricula 2020   Computing Curricula Report 
CC2020   2020 December 31 

Page 183 of 203 

Term CC2020 
Definitions 

French (Europe) Italian German Spanish Latin 
America 

Spanish Europe Português 

Information and 

Communication 

Technology 

(ICT) 

A fairly 

common global 

term for the 

"computing" 

technology 

industry as a 

whole. Used in 

some places 

interchangeably 

with Information 

Technology 

Technologie de 

l’Information 

et de la Communication 

Tecnologie 

dell'Informazione 

e della 

Comunicazione 

Informations- und Ko

mmunikationstechnol

ogie 

Tecnologías de la 

Información y la 

Comunicación 

Tecnologías de la 

Información y la 

Comunicación 

Tecnologia da 

Informação e 

Comunicação 

Information 

Technology (IT) 

A branch of 

"Computing" 

with an 

approved 

curriculum.     A 

fairly common 

global term for 

the "computing" 

technology 

industry as a 

whole. Used in 

many places 

interchangeably 

with Information 

and 

Communication 

Technology 

Technologie de 

l’Information 

Tecnologie 

dell'Informazione 

Informatik/ 

Informationstechnolo

gie/ 

Informationstechnik 

Tecnologías de la 

Información 

Tecnologías de la 

Información 

Tecnologia da 

Informação 

Junior USA term for a 

third-year 

student 

Un étudiant de troisième 

année 

 

Student/ 

Studentin im 3. Studi

enjahr 

Estudiante de 

tercer semestre 

Estudiante de 

tercer curso 

Veterano do 

terceiro  

K-12 Kindergarten to 

year 12 (rarely 

used outside the 

USA and 

Canada) 

Le primaire (3-10yo) 

Le secondaire au  

Collège (11-15yo) 

 

vom Kindergarten bis

 zum Abitur 

Educación 

preuniversitaria  

Educación 

preuniversitaria  

Educação 

Básica 

Lecturer A rank of 

faculty or a 

teacher in a 

university 

Enseignant Docente Dozent (m) / 

Dozentin (f) 

Profesor de tiempo 

completo 

Profesor Titular Professor 



Computing Curricula 2020   Computing Curricula Report 
CC2020   2020 December 31 

Page 184 of 203 

Term CC2020 
Definitions 

French (Europe) Italian German Spanish Latin 
America 

Spanish Europe Português 

Middle School Also known as 

intermediate 

school. Different 

meanings in 

different 

countries 

generally two- 

or three-year 

schools at either 

4 to 6, year 7 to 

8 or 9, or 11 - 

14.   

École maternelle (3-6) 

École élémentaire (6-10) 

Collège (11-15) 

Lycée (16-18) 

Scuola media Hauptschule (Year 5-

9), Mittelschule ( 

Year 5- 10), 

Gymnasium (year 5-

12) 

Educación básica Educación 

primaria (4-12) 

Ensino 

Fundamental  

Module Either a course 

or a part of a 

course 

Un module / une 

unité d’enseignement 

Modulo Modul Módulo Módulo Módulo 

Paper Usually a 

product a 

student produces 

to pass a course 

or examination, 

or a published 

article 

 

Scritto: prodotto 

da uno studente 

per superare un 

esame  

wissenschaftliche Ar

beit 

Prueba, examen Examen, Trabajo, 

Artículo, Prueba 

Artigo, if the 

last work of the 

degree is called 

Trabalho Final 

de Curso 

Professor or a 

visiting professor 

A Visiting 

Professor or in 

some countries 

(USA) a part-

time Professor 

Professeur invité Professore Professor, 

Gastprofessor 

(visiting professor) 

Profesor visitante Profesor visitante 

(visiting 

professor) 

Profesor asociado 



Computing Curricula 2020   Computing Curricula Report 
CC2020   2020 December 31 

Page 185 of 203 

Term CC2020 
Definitions 

French (Europe) Italian German Spanish Latin 
America 

Spanish Europe Português 

Semester Half an 

academic year 

Un semestre Semestre Semester Semestre Semestre (often 

known as 

“Cuatrimestre” 

because classes 

last for 4 months 

+ one of 

examinations) 

Semestre 

Senior USA term for a 

fourth-year 

student 

Un étudiant de quatrième 

année 

 

Student/ 

Studentin im 4. Studi

enjahr 

Estudiante de 

cuarto semestre 

Estudiante de 

cuarto curso 

Veterano do 

quarto (if last 

year Formando) 

Sophomore USA term for a 

second-year 

student 

Un étudiant de deuxième 

année 

 

Student/ 

Studentin im 2. Studi

enjahr 

Estudiante de 

segundo semestre 

Estudiante de 

segundo curso 

Veterano do 

segundo ano  

Subject Similar to a 

course but not 

always used at 

university level 

Un sujet Materia Fach Asignatura Asignatura Matéria  

Technology The application 

of scientific 

knowledge for 

practical 

purposes, 

especially in 

industry 

Une technologie Tecnologia Technologie Tecnología Tecnología Tecnologia 

Trimester One third of an 

academic year 

Un trimestre (3m) 

Un semestre (5m) 

quadrimestre Trimester Trimestre Trimestre Trimestre 

Undergraduate Studying 

towards a 

bachelor’s 

degree 

La Licence (L1-L3) non laureato grundständiges 

Studium 

Estudios de grado Estudios de grado Graduação 

 
 
 
 



Computing Curricula 2020   Computing Curricula Report 
CC2020   2020 December 31 

Page 186 of 203 

 
Appendix I: Sustainable Computing and Engineering Competence 
in China 
 
 
China and its education ministry have embraced competency as an important element in the development of computing 
and engineering programs. Over the past few years, publications emerged surrounding the importance of competency 
in computing and engineering education. The Forum of Chinese Twenty-Experts on Computing Education, in which 
more than twenty senior professors on computing have engaged, has recently published its “Blue Book” [Blu1] to 
address the need for competency in university environments, particularly as it applies to computing and engineering 
education programs. The China Computer Federation also emphasized computing education for competencies in its 
2018 Future Computer Education Summit (FCES 2018) publication [Imp1]. The first of these publications addresses 
the need for program agility in response to a rapidly changing technological world. The remainder of this section 
summarizes the “Blue Book” philosophy and ways China expects to adapt to technological change over the next dozen 
years. The second of these publications uses a modern approach that competency is a triad of knowledge, skill, and 
disposition as explained earlier in this report. 
 
 
I.1:  Adaptable and Sustainable Competencies    
 
Over 2017–2019, a working group of the mentioned forum has written a “Blue Book” titled, “Computing Education 
and Sustainable Competence” [Blu1]. The emergence of this work in China has opened new ideas in the transformation 
of university computing and engineering education in China. The emerging fields of information technology (IT) and 
artificial intelligence (AI) have created novel opportunities for industry and academia. The internet has made possible 
new modern services and businesses coupled with innovative applications. The emerging AI industry has provided 
fertile ground for new industrial sectors such as smart enterprises and public services. The new industrial revolution 
(i.e., Industry 4.0) promises advances in networked intelligent manufacturing, service-oriented manufacturing, and 
robotics for industry and modern services.  
 
Change on such a global scale brings new challenges for an information society. Societal changes present challenges 
for a digitally networked cognitive society, for sustainable development of society and the environment, and the 
transference of information and knowledge. People also change. Younger generations have new attitudes and demands 



Computing Curricula 2020   Computing Curricula Report 
CC2020   2020 December 31 

Page 187 of 203 

presents a new concept of learning. Its ethos involves open education, purpose learning, and incremental development. 
Its characteristic of paced education promises to transform four-year-systems into lifetime multi-year systems over 
three phases that include calibrating, elevating, and activating. This axel flipped, self-fulfilling approach becomes a 
continuing spiral of Knowledge ==> Ability, followed by Ability ==> New Knowledge. Such a purposeful way of 
learning instills professional development as a driving force for learning. 



Computing Curricula 2020   Computing Curricula Report 
CC2020   2020 December 31 

Page 188 of 203 

 
I.3:  Factors Affecting Agile Computing and Engineering Education     
 
In agile education, there is an emphasis on multiple cultivation objectives based on the diversity of students. Its 
purpose is to develop “education-on-demand” through a combination of a major-oriented program with individualized 
learning. Universities should provide massive, customized education systems through multiple cultivation objectives 
of their students. The teaching system would consist of a curriculum, teaching processes, teacher-student learning 
activities, resources, and quality evaluation methods. Universities would likely have to restructure their traditional 
education systems to establish multiple cultivation objectives, to construct a flexible composite curriculum, to develop 
iterative learning procedures, and to create a collaborative teaching support system. Considerations include multiple 
cultivation objectives, course and module classifications, systematic core courses, combining theory with practice, 
establishment of agile teaching and learning processes, and generating collaborative educational resources.  
 
In agile education, universities would classify their curricula and courses into multi-clusters of modules according to 
the needs of individualized students or groups of specialties and directions to provide an environment of adaptive 
knowledge learning and ability training. Course modules include general education clusters and fundamentals clusters, 
specialty core course modules, interdisciplinary course modules, elective course modules, and experimental practice 
clusters. It might be necessary to make flexible compositions of the course modules, courses, or micro-courses to 
adapt the programs to student needs since they have more choices for their development. Because of emerging 
technologies and applications, it would be necessary to reconstruct the core courses in developing a systematic and 
flexible curriculum. The universities would have to redesign course content and teaching methods because of the 
interdisciplinary learning, the iterated cultivation and development of creativity, and the adaptability of the students. 
 
Agile education is a multi-phase process of iterative learning. For computing programs, the iterative learning process 
begins with students entering a computing course to gain knowledge and to develop an ability for enhancement. The 
process includes the following.  

• Knowing basic concepts of computers and their systems (year-1 courses and yearly projects). 
• Understanding and grasping systems, components, and techniques of computers (year-2 and year-3 courses 

as well as project-based learning). 
• Designing and developing systems and applications for computers (year-4 courses, projects, and internships). 

Ultimately, students will gain fur



Computing Curricula 2020   Computing Curricula Report 
CC2020   2020 December 31 

Page 189 of 203 

and purpose learning by combining teaching resources from multi-institutions. It is also important to consider MOOC 
resources through inter-university collaborative teaching and learning approaches. 
 
 
I.4:  Open Education Ecosystems for Agile Education     
 
It is important to address the role of university management to implement agile education. Universities need to reform 
their management and support systems as well as their ecosystems for agile education. Focusing on individual 
students, small groups, and flexible learning are key elements for a successful transition. Universities should build an 
advanced agile education system, reform and restructure their management and support systems, and build an open 
education ecosystem for sustainable competencies. Suggestions for doing this include (a) setting up a flexible study-
term and a full credit system for iterated learning and individualized cultivation, (b) establishing an undergraduate 
supervisor system and small group learning for individualized cultivation and development of students, (c) developing 
micro-courses and small course modules for flexible composition of learning contents, (d) developing ability-oriented 
courses and learning units as learning models, and (e) establishing a university-industry collaborative education 
system that includes internships, creative projects, and entrepreneurship. 
 
It is also important to create support resources for agile education. This transformation to agile education requires 
abundant educational resources. These include advanced online and offline course resources, networked IT support 
platforms, laboratories for creative projects, entrepreneurship bases, student colleges, big data service platforms, and 
advanced infrastructure and facilities. In modern universities, they should build education support systems on IT-
enabled network platforms to provide intelligent, coordinative, precise, and efficient services for agile education. 
 
Quality assurance is an important part of agile education. Universities should create an ability-oriented agile education 
quality evaluation and assurance system to measure educational processes and results and to set up effective report 
mechanisms for improving teaching and learning quality. Analysis of teaching and learning status is useful for 
dynamic assessment of process evaluation, phase evaluation, and comprehensive evaluation for iterative learning and 
improvement. Quality metrics for agile education include key performance indicators (KPIs) for attainment (assessing 
development results of students’ ability compared to education proposition and expectation), for process (assessing 
the quality of cultivation processes and key points), for cultivation bodies (assessing student quality and teacher 
quality, and for resource (assessing the investment for teaching and learning resources). 
 
Agile education is conducive to open ecosystems 
for learning. Educational ecosystems encourage 
active promotion and constraint roles by 
engendering and developing an evolutionary 
education system. An open education ecosystem 
is a student-centric education system and 
environment that coordinates or integrates 
educational resources inside and outside a 
university. International resources are also 
possible through multi-channel collaborations for 
agile education and sustainable competencies 
development. A student-centric educational 
ecosystem can lead to interdisciplinary and 
comprehensive education, university-industry co-
education, international joint education, creative 
and entrepreneurship education, and campus 
culture-based education. These in turn lead to 
agile education. Figure I.3 illustrates these 
findings.  
 
 

 

 
 

Figure I.3. Open Ecosystems for Agile Education 
(Courtesy of Prof. Xu Xiaofei) 



Computing Curricula 2020   Computing Curricula Report 
CC2020   2020 December 31 

Page 190 of 203 

I.5:  Service-oriented Computing Education      
 
Service-oriented education is a natural outgrowth of agile education. To cultivate, ensure and enhance the sustainable 
competencies of students continuously in their entire professional life would become the important missions and 
educational service functions of universities in the future. Educational transformational trends suggest that:  
 

Qualified Graduates ==> Student Lifetime Sustainable Competencies 
 
Service-oriented education is a new form of student lifetime sustainable development education. It performs a multi-
phased, interdisciplinary, ongoing, and adaptive education 
that provides continuous multi phases of agile education 
services for sustainable competencies during students’ 
entire professional life. Fundamentally, service-oriented 
education leads to:  

• Student lifetime centric sustainable development 
continuous education, 

• Individualized development purpose cultivation 
and learning, 

• Open trans-boundary and interdisciplinary co-
education services, 

• Iterated multi-phased agile education and learning, 
• Professional online and offline education centers, 

and 
• Smart education service networked platforms. 

Ultimately, the process leads to student lifetime sustainable competencies. Figure I.4 illustrates the promise of service-
oriented education. 
 
In conclusion, to cultivate innovative talent with sustainable competencies and adapt to the development of future 
emerging technologies and economies, it is important to reform and restructure current higher education systems, 
models, and ecosystems with new forms of engineering and education for sustainable competencies. As a new and 
advanced education form, agile education promises to improve higher computing and engineering education. These 
new forms of advanced education models and approaches (e.g., agile education, service-oriented education) will 
achieve realization with practice and exploration at universities throughout China and beyond. 
 

This appendix was written by John Impagliazzo and derived 
from notes and information received at the ACM Turing 
Conference (TURC) he attended in China.  The “Blue Book” 
author has reviewed the narrative. 

  

 

 
Figure I.4. Promise of service-oriented education 

(Courtesy of Prof. Xu Xiaofei) 
 





Computing Curricula 2020   Computing Curricula Report 
CC2020   2020 December 31 

Page 192 of 203 

First Name Last Name Affiliation Country 
Paolo Ciancarini   University of Bologna President of GRIN, the Italian 

association of informatics 
university professors)  

Alison Clear Eastern Institute of Technology New Zealand 
Tony Clear Auckland University of Technology New Zealand 
Ernesto Cuadros-Vargas Latin American Center for Computing 

Studies (CLEI) 
Peru 

Alberto Culatina Università degli Studi di Pavia Italia 
Yafei Dai Peking University China 
Colin  de la Higuera  Univ. Nantes  Representing the Société 

informatique de France, the 
French association of 
Informatics university 
professors  

Adrienne Decker University of Buffalo United States of America 
Jörg  Dese  Fernuniversität in Hagen  Representing Fakultätentag 

Informatik, German scientific 
society of university 
professors in informatics, and 
Gesellschaft für Informatik  

Jörg Desel FernUniversität in Hagen Germany 
Juan Francisco Díaz Universidad del Valle Colombia 
Juan Manuel Dodero University of Cadiz Spain 
Tania Mara Dors Pontificia Universidade Catolica do 

Parana 
Brazil 

Dennis Du - China 
Eric Durant Milwaukee School of Engineering United States of America 
MJ Escalona University of Seville Spain 
Marisa Exter Purdue University United States of America 
Dick  Fairley  Software and Systems Engineering 

Associates 
United States 

Aaron French University of New Mexico United States 
Stephen Frezza Gannon University United States of America 
Shivanagowda G M Shri Dharmasthala Manjunatheshwara 

College of Engineering and 
Technology 

India 

Judith Gal-Ezer Open University Israel 
Kevin Gary Arizona State University United States 
Beatriz Florián Gaviria  Universidad del Valle  Colombia 
Markus Geissler Cosumnes River College United States 
Giorgio Giacinto University of Cagliari Italy 





Computing Curricula 2020   Computing Curricula Report 
CC2020   2020 December 31 

Page 194 of 203 

First Name Last Name Affiliation Country 
Bruce McMillin Missouri University of Science and 

Technology 
United States of America 

Tania McVeety IBM United States of America 
Nancy Mead Carnegie Mellon University United States of America 
Greg Michaelson School of Mathematical and Computer 

Sciences, Heriot Watt University 
United Kingdom 

Mattia Monga Università degli Studi di Milano, 
Departmente of Computer Science 

Italy 

Manuel Mora Autonomous University of 
Aguascalientes 

Mexico 

Lourdes Moreno  Chair AIPO- Spanish Society for HCI Spain 
Enrico Nardelli Univ. Roma Tor Vergata  President of Informatics 

Europe, the European 
association of university 
departments and industrial 
research lab in Informatics  

Vânia  Neris Federal Universtity of São Carlos Brazil 
Salvatore Orlando Univ. Venezia Italy 
Allen Parrish University of Alabama United States of America 
Arnold Pears KTH Royal Institute of Technology Sweden 
Teresa  Pereira  Instituto Politécnico de Viana Castelo Portugal 
Domenick Pinto Sacred Heart University United States 
Melinda Reno Deloitte Consulting United States of America 
RITSI Reunión de 

Estudiantes de 
Ingenierías 
Técnicas y 
Superiores de 
Informática 

- Spain 

Ulises Roman Concha UNMSM Peru 
Ariel Sabiguero Universidad de la República  Uruguay 
Fermin Sanchez Universitat Politècnica de Catalunya Spain 
Nello Scarabottolo Università di Milano  Italy 
Yann  Secq  University of Lille France 
Ian Seward SFIA Foundation International 
Nicholas Sheppard Western Sydney University Australia 
Williamson  Silva UNESPAR Brazil 
 

Simon University of Newcastle Australia 
Yanchun Sun Peking University China 
Shingo Takada Keio University Japan 
Gabriel Tamura Universidad Icesi Colombia 
Chris  Taylor  Milwaukee School of Engineering United States 



Computing Curricula 2020   Computing Curricula Report 
CC2020   2020 December 31 

Page 195 of 203 

First Name Last Name Affiliation Country 
JohnBarrie Thompson None - retired academic and UK 

National Teaching Fellow 
United Kingdom 

Ye Tian ByteDance China 



Computing Curricula 2020   Computing Curricula Report 
CC2020   2020 December 31 

Page 196 of 203 

 
References  
 
 
 
R1:  References for Report 
 
  
[Aac1] American Association of Community Colleges (AACC); https://www.aacc.nche.edu/. Accessed 2020 Dec 6. 
[Abe1] ABET. Accreditation Board for Engineering and Technology; https://www.abet.org/. Accessed 2020 Dec 6. 
[Acc1]  Accenture: Technology Vision 2020: We, the Post-Digital People; https://www.accenture.com/us-en/insights/technology/technology-

trends-2020. Accessed 2020 Dec 6. 
[Acm00]  ACM Website; https://www.acm.org/. Accessed 2019 May 6.  
[Acm01]  ACM Curricula Reports Website; https://www.acm.org/education/curricula-recommendations. Accessed 2019 March 11. 
[Acm02]  ACM (2005). Computing Curricula 2005 The Overview Report. ACM and IEEE Computer Society. ACM SIGCSE Bulletin (March 

2006); https://doi.org/10.1145/1124706.1121482.  
[Acm03]  ACM (2010). IS 2010 Curriculum Guidelines for Undergraduate Degree Programs in Information Systems, Association for 

Computing Machinery (ACM) and Association for Information Systems (AIS); https://doi.org/10.1145/2593310. 
[Acm04]  ACM (2013). Computer Science Curricula 2013: Curriculum Guidelines for Undergraduate Degree Programs in Computer Science, 

Association for Computing Machinery and IEEE Computer Society; https://doi.org/10.1145/2534860. 
[Acm05]  ACM (2014). Software Engineering Curricula 2014 Curriculum Guidelines for Undergraduate Degree Programs in Software; 

Engineering, Association for Computing Machinery, and IEEE Computer Society; https://doi.org/10.1145/2594168. 
[Acm06]  ACM (2016). Computer Engineering Curricula 2016 Curriculum Guidelines for Undergraduate Degree Programs in Computer 

Engineering, Association for Computing Machinery (ACM) and IEEE Computer Society; https://doi.org/10.1145/3025098. 
[Acm07]  ACM (2017). Information Technology Curricula 2017 Curriculum Guidelines for Baccalaureate Degree Programs in Information 

Technology, Association for Computing Machinery (ACM) IEEE Computer Society (IEEE-CS); https://doi.org/10.1145/3173161.  
[Acm08]  ACM (2017). Cybersecurity Curricula 2017 Curriculum Guidelines for Post-Secondary Degrees in Cybersecurity. Association for 

Computing Machinery (ACM), IEEE Computer Society (IEEE-CS), Association for Information Systems Special Interest Group on 
Information Security and Privacy (AIS SIGSEC), International Federation for Information Processing Technical Committee on 
Information Security Education (IFIP WG 11.8); https://doi.org/10.1145/3184594. 

[Acm09]  ACM (2020). Information Technology Curricular Guidance for Transfer Programs; http://ccecc.acm.org/files/publications/IT-
Transfer2020.pdf. Accessed 2020 Dec 6. 

[Acm10]  ACM (2017). Computer Science Transfer Curriculum 2017 Computer Science Curricular Guidance for Associate-Degree Transfer 
Programs with Infused Cybersecurity, The Association for Computing Machinery (ACM) Committee for Computing Education in 
Community Colleges (CCECC); http://dx.doi.org/10.1145/3108241.  

[Acm11]  ACM (2017) Topi, H., Karsten, H., Brown, S. A., Carvalho, J. A., Donnellan, B., Shen, J., et al. MSIS 2016: Global Competency 
Model for Graduate Degree Programs in Information Systems, 40, 1 (2017); https://doi.org/10.17705/1CAIS.04018 . 

[Acm12]  ACM (2001). Computing Curricula 2001: Curriculum Guidelines for Undergraduate Degree Programs in Computer Science, 
Association for Computing Machinery and IEEE Computer Society; https://www.acm.org/binaries/content/assets/education/curricula-
recommendations/cc2001.pdf. Accessed 2019 Jun 26. 

[Acm13] ACM (1968). Curriculum 68: Recommendations for academic programs in computer science: a report of the ACM curriculum 
committee on computer science. Communications of the ACM 11, 3 (1968), 151-197. 

[Acm14] ACM. (1972). Ashenhurst, Robert L (Ed.). Curriculum recommendations for graduate professional programs in information systems. 
Communications of the ACM, 15, 5 (1972), 363-398. 

[Acm15] ACM. (1973). Couger, J. (Ed.). Curriculum Recommendations for Undergraduate Programs in Information Systems, Communications 
of the ACM, 16, 12 (1973), 727-749. 

[Acm16] ACM Education Policy Committee (2018) Lighting the Path: From Community College to Computing Careers; 
https://www.acm.org/binaries/content/assets/education/lighting-the-path-from-community-college-to-computing-careers.pdf. 
Accessed 2020 Dec 20. 

[Acm17]  ACM (2020) Cybersecurity Curricular Guidance for Associate-Degree Programs; 
http://ccecc.acm.org/files/publications/Cyber2yr2020.pdf.  Accessed 2020 Dec 6.   

[Acm18] ACM Europe Council. Informatics for All; https://urop.acm.org/i4all. Accessed 2021 Jan 5. 
[Als1] Alsop, S. Beyond Cartesian Dualism: Encountering Affect in the Teaching and Learning of Science. Vol. 29. (Springer Science & 



Computing Curricula 2020   Computing Curricula Report 
CC2020   2020 December 31 

Page 197 of 203 

[Bai2] Bairaktarova, D. and Woodcock, A. Engineering Student’s Ethical Awareness and Behavior: A New Motivational Model, Scince and 
Engineering Ethics, 23, 4 (2017), 1129–1157. 

[Ban1] Wilder, C.R. and Ozgur, C.O. Business Analytics Curriculum for Undergraduate Majors, INFORMS Transactions on Education 15, 2 
(2015), 180-187; https://doi.org/10.1287/ited.2014.0134. 

[Bar1]  Baron, R. M., and Kenny, D. A. The moderator-mediator variable distinction in social psychological research: Conceptual, strategic, 
and statistical considerations. Journal of Personality and Social Psychology, 51 (1986), 1173-1182; 
https://psych.wisc.edu/henriques/mediator.html.  Accessed 2019 Sep 12.  

[Bau1] Baumgartner, I.  and Shankararaman, V.  Actively linking learning outcomes and competencies to course design and delivery: 
experiences from an undergraduate Information Systems program in Singapore, in Proceedings of the 2013 IEEE Global Engineering 
Education Conference, (Berlin, Germany, 2013), 238–246. 

[Bhe1] BHEF (2016) Data Science and Analytics (DSA) Competency Map, The Business Higher Education Framework (BHEF), version 1.0, 
produced in November 2016; 
https://s3.goeshow.com/dream/DataSummit/Data%20Summit%202018/BHEF_2016_DSA_competency_map_1.pdf. Accessed 2020 
Jan 06. 

[Bil1] Billett, S. Realising the educational worth of integrating work experiences in higher education, Studies in Higher Educaton, 34, 7 
(2009), 827–843. 

[Blo1]  Bloom, B.S. (Ed.). Engelhart, M.D., Furst, E.J., Hill, W.H., Krathwohl, D.R. (1956). Taxonomy of Educational Objectives, Handbook 
I: The Cognitive Domain. (New York, David McKay Co. Inc.). 

[Bls1] Bureau of Labor Statistics, U.S. Department of Labor, Occupational Outlook Handbook, 2016-17 Edition, Computer and Information 
Technology Occupations; https://www.bls.gov/ooh/computer-and-information-technology/home.htm. Accessed 2017 Dec 2. 

[Bls2] Bureau of Labor Statistics, U.S. Department of Labor, Occupational Outlook Handbook, 2016-17 Edition, Computer and Information 
Technology Occupations; https://www.bls.gov/ooh/computer-and-information-technology/information-security-analysts.htm. 
Accessed 2017 Dec 2. 

[Blu1] The Blue Book Working Group of the Forum of Chinese Twenty-Experts on Computing Education in China. (Computer Education for 
Sustainable Competence, China Higher Education Publishing, January 2019); in Chinese.  

[Bol1] Bologna Declaration; http://www.ehea.info/cid100210/ministerial-conference-bologna-1999.html. Accessed 2020 Dec 6. 
[Bol2]  Bologna Working Group on Qualifications Frameworks. A Framework for Qualifications of the European Higher Education Area. 

(The Danish Ministry of Science, Technology and Innovation, 2005). 
[Bur1] Burning Glass. (2017). The Digital Edge: Middle-Skill Workers and Careers; https://www.burning-glass.com/wp- 

content/uploads/Digital_Edge_report_2017_final.pdf. Accessed 2019 May 14. 
[Cas1]  Cassel, L., and Topi, H. (2016). Strengthening Data Science Education Through Collaboration; 

https://digital.library.villanova.edu/Item/vudl:622682. Accessed 2020 Dec 6. 
[Cas2] Caspersen, M.E., Gal-Ezer, J., McGettrick, A., and Nardelli. E. Informatics as a fundamental discipline for the 21st century, 

Communications of the ACM, 62, 4 (2019), 58;  https://cacm.acm.org/magazines/2019/4/235598-informatics-as-a-fundamental-
discipline-for-the-21st-century/fulltext. Accessed 2020 Dec 6. 

[Ccw1] CC2020 Project Website. https://www.cc2020.net/. Accessed 2019 May 9 
[Cha1] Chambers D.W. and Gerrow, J.D. Manual for Developing and Formatting Competency Statements, Journal of Dental Education, 58, 

5 (1994), 361–66. 
[Che1]  Juan Chen, Li Shen, Jianping Yin, Chunyuan Zhang. Design of Practical Experiences to Improve Student Understanding of Efficiency 

and Scalability Issues in High-Performance Computing (Poster). SIGCSE ’18: Proceedings of the 49th ACM Technical Symposium on 
Computer Science Education. Pages 1090. February 2018. Baltimore, Maryland, USA. https://doi.org/10.1145/3159450.3162239. 

[Che2]  Juan Chen, Yingjun Cao, Linlin Du, Youwen Ouyang, and Li Shen. Improve Student Performance Using Moderated Two-Stage 
Projects. CompEd ’19: Proceedings of the ACM Conference on Global Computing Education. Pages 201-207. May 2019, Chengdu, 
China. https://doi.org/10.1145/3300115.3309524. 

[Che3]  Juan Chen, John Impagliazzo, Li Shen. High-Performance Computing and Engineering Educational Development and Practice. 2020 
IEEE Frontiers in Education Conference (FIE), Uppsala, Sweden, October 2020, pp. 1-8, 
https://doi.org/10.1109/FIE44824.2020.9274100. 

[Chy5] Chyung, S., Stepich, D. and Cox, D. Building a Competency-Based Curriculum Architecture to Educate 21st-Century Business 
Practitioners, The Journal of Education for Business, 81, 6 (2006), 307-314. 

[Cio] CIO Council. (2012). Clinger-Cohen core competencies and learning objectives. Washington, DC: CIO Council. 
[Cis1] CISCO.  Cisco Training and Certifications; https://www.cisco.com/c/en/us/training-events/training-certifications.html. Accessed 2020 

Dec 6. 
[Cla1]  Classroom, The. (2019) Knowledge Based Learning; https://www.theclassroom.com/knowledge-based-learning-5403738.html. 

Accessed 2020 Dec 12. 
[Cle1] Clear, T. Thinking Issues: Meeting Employers’ eExpectations of DevOps Roles: Can Dispositions Be Taught? Inroads, 8, 2 (2017), 

19–21; https://doi.org/10.1145/3078298. 
[Cle2] Clear, A., Clear, T., Impagliazzo J. and Wang, P. (2020). From Knowledge-based to Competency-based Computing Education: Future 

Directions, submitted for Review. 
[Col1] Collins Dictionary; http://www.collinsdictionary.com/dictionary/english/communication-skills. Accessed 2017 Dec 2. 
[Com1]  Computing at School, Computing in the national curriculum: A guide for primary teachers, 2013; 

https://www.computingatschool.org.uk/data/uploads/CASPrimaryComputing.pdf. Accessed 2020 Dec 12. 
[Com2]  Computing at School, Computing in the national curriculum: A guide for secondary teachers, 2014; 

https://www.computingatschool.org.uk/data/uploads/cas_secondary.pdf.  Accessed 2020 Nov 22. 
[Com3] CompTIA;  https://www.comptia.org/. Accessed 2020 Nov 22 
[Con1]  Conceiving-Designing-Implementing-Operating (CDIO); http://www.cdio.org/. Accessed 2019 May 9.  
[Cos1] Computer Society of IEEE. http://www.computer.org/. Accessed 2019 May 6. 
[Cou1] Couger, J. (Ed.). Curriculum recommendations for Undergraduate programs in information systems. Communications of the ACM 16, 

12 (1973), 727-749. 
[Cpt1] CompTIA, Information Technology (IT) Industry & Association; https://www.comptia.org/. Accessed 2017 Dec 2. 
[Cpt2] CompTIA, Building Digital Organizations, February 2017; https://www.comptia.org/content/research/building-digital-organizations. 



Computing Curricula 2020   Computing Curricula Report 
CC2020   2020 December 31 

Page 198 of 203 

Accessed 2020 Dec 23. 
[CSf] CSforALL; Computer Science For All; https://wwwcsforall.org. Accessed 2021 Jan 21. 
[Csp1] CSpathshala. www.cspathshala.org/. Accessed 2019 Aug 17. 
[CSTA] Computer Science Teachers Association; https://www.csteachers.org.  Accessed 2021 Jan 21. 
[Cua1]  Cuadros-Vargas, E. (2018). Escuela Profesional de Ciencia de la Computacion; 

https://education.spc.org.pe/Peru/CS-UTEC/Plan%202018/CS-UTEC-poster.pdf. Accessed 2019 May 9. 
[Cua2] Cuadros-Vargas, E. (2018). 3.9 Compatibilidad de la carrera con relación a estandares internacionales. 

https://education.spc.org.pe/Peru/CS-UTEC/Plan%202018/3_9_Compatibilidad_carrera_.html. Accessed 2019 May 9. 
[Dab1] Dabbagh, N., Benson, A. D., Denham, A., Joseph, R., Al-Freih, M., Zgheib, G., ... and Guo, Z. Massive open online courses. 

In Learning technologies and globalization  (Springer, Cham, 2016), 9–13. 
[Dat1]  Data Science Task Force; http://dstf.acm.org/. Accessed 2020 Nov 22. 
[Dat2]  Data Science Draft Report 1. (2019). http://www.cs.williams.edu/~andrea/DSReportInitialFull.pdf. Accessed 2019 May 6. 
[Dat3] Data Science Draft Report 2. (2019) http://dstf.acm.org/DSReportInitialFull.pdf. Accessed 2020 Jan 6. 
[Dat4] DataUSA. 2019. https://datausa.io/profile/cip/computer-and-information-sciences-and-support-services. Accessed 2019 Aug 17. 



Computing Curricula 2020   Computing Curricula Report 
CC2020   2020 December 31 

Page 199 of 203 

[Har1] Harrow, A. A Taxonomy of Psychomotor Domain: A Guide for Developing Behavioral Objectives. ( David McKay Co., Inc., 
New York, USA, 1972). 

[Har2]  Harvard; https://www.campusservices.harvard.edu/system/files/documents/1865/harvard_competency_dictionary_complete.pdf. 
Accessed 2020 Nov 25. 

[Hel1]  Helfert, M. Business informatics: An engineering perspective on information systems. Journal of Information Technology Education: 
Research, 7, 2008, 223–245. 

[Icd1]  ICD Translation; http://icdtranslation.com/skill-based-and-knowledge-based-online-training/. Accessed 2020 Nov 22. 
[Iee1]  IEEE (2017) Los Alamitos, Calif., Dec. 14, 2017; https://www.prnewswire.com/news-releases/top-10-technology-trends-for-2018-

ieee-computer-society-predicts-the-future-of-tech-300571274.html. Accessed 2020 Nov 22. 
[Iee2] The Informatics Europe and European Commission Joint Report on Industry-University cooperation; https://www.informatics-

europe.org/news/544-bridging-the-digital-talent-gap-towards-successful-industry-university-partnerships.  
[Iee3]  IEEE Computer Society (2014) Software Engineering Competency Model: Version 1.0, SWECOM 2014. 
[Imp1] Impagliazzo, John. (2018) The Role of Competency and the Future of Computer Education. Communications of the China Computer 

Federation; 14, 9 (September 2018); in Chinese. 
[Imp2] Impagliazzo, J., et al. Developing an Overview of Computing/Engineering Curricula via the CC2020 Project. In Proc. of the IEEE 

EduNine Conference (2018). IEEE Education Society; https://ieeexplore.ieee.org/document/8450965. Accessed 2020 Nov 22. 
[Imp3] Impagliazzo J., Parrish, A., and Clear, A. Innovative Computing Curricula and the CC2020 Project. In Proc. of the Frontiers in 

Education (FIE) Conference (2018); https://www.computer.org/csdl/proceedings-article/fie/2018/08658622/18j95f9XE7m. Accessed 
2020 Nov 22. 

[Ind1]  India 1; https://www.ugc.ac.in. Accessed 2020 Nov 22. 
[Ind2]  India 2; www.naac.gov.in. Accessed 2020 Nov 22. 
[Ind3]  India 3; www.aicte-india.org. Accessed 2020 Nov 22. 
[Ind4]  India 4; www.nbaind.org. Accessed 2020 Nov 22. 
[Ins1] Institut de France, L'Académie des Sciences, “L'enseignement de l’informatique en France – Il est urgent de ne plus attendre,” Mai 

2013; https://www.academie-sciences.fr/pdf/rapport/rads_0513.pdf. Accessed 2020 Nov 22. 
[Inv1] Investopedia; http://www.investopedia.com/terms/s/soft-skills.asp. Accessed 2017 Dec 2. 
[Ipa1] Information-technology Promotion Agency – Japan (IPA). IT Human Resources Development: i Competency Dictionary; 

https://www.ipa.go.jp/english/humandev/icd.html. Accessed 2019 Aug 18. 
[ITec]  Info-Tech Research Group, 2020 Tech Trend Report; https://www.infotech.com/research/ss/2020-tech-trend-report. Accessed 2021 Feb 

15. 
[Kak1] Kakeshita, T. National Survey of Japanese Universities on Computing Education: Analysis of Departments Majored in Computing 

Discipline, Olympiads in Informatics, 12 (2018), 69–84; https://ioinformatics.org/journal/v12_2018_69_84.pdf. Accessed 2019 June 29. 
[Ken1] Kennedy, D., Hyland, A., and Ryan, N. Learning outcomes and competences, Introducing Bologna Objectives and Tools, (2009), 2–3.  
[Kpm1]  KPMG: Technology Trends Index USA; http://technologytrendsindex.kpmg.com/. Accessed 2020 Nov 22. 
[Kra1]  Krathwohl, D.R., Bloom, B.S., and Bertram, B.M. Taxonomy of Educational Objectives, the Classification of Educational Goals. 

Handbook II: Affective Domain. (David McKay Co., Inc., New York, USA,1973). 
[Kra2] Kramer, M., Hubwieser, P. and Brinda, T.A Competency Structure Model of Object-Oriented Programming, 2016 International 

Conference on Learning and Teaching in Computing and Engineering (LaTICE), 2016, 1–8. 
[Kuh1] Kuh, G.D. The national survey of student engagement: Conceptual and empirical foundations. New Directions for Institutional 

Research, 141 (2009), 5–20. 
[Len1]  Lenburg, C.B. The framework, concepts and methods of the competency outcomes and performance assessment (COPA) model. 

Online Journal of Issues in Nursing, 4, 2 (1999), 1–12. 
[Lin1] Lindenwood University Makerspace Lab, https://www.lindenwood.edu/about/news/details/converged-media-lab-makerspace-to-open-

this-fall/. Accessed 2019 Aug 17. 
[Liu11 Liu, K., Semiotics in Information Systems Engineering, Cambridge University Press, Cambridge, U.K, 2000. 
[Loc1]  Lockoff, J., Wegewiis, B., Durkin, K., Wagenaar, R., Gonzales, J., Isaacs, A. K., Donà dalle Rose, L.F., and Gobbi, M. (Eds.) (2010). 

A Tuning guide to formulating degree programme profiles: Including programme competences and programme learning outcomes. 
Bilbao, Spain: University of Deusto; https://www.unideusto.org/tuningeu/publications/290-tuning-guide-to-formulating-degree-
programme-profiles.html. Accessed 2020 Nov 22. 

[Lun1]  Lunt, B.M., Ekstrom, J.J., Gorka, S., Hislop, G., Kamali, R., Lawson, E., LeBlanc, R., Miller, J. and Reichgelt, H. 2008. Curriculum 
Guidelines for Undergraduate Degree Programs in Information Technology; https://dl.acm.org/citation.cfm?id=2593311. Accessed 
2017 Dec 2  

[Lyn1] Lynch, D.R., Russell, J.S.,  Evans, J.C., and Sutterer. K.C. Beyond the Cognitive: The Affective Domain, Values, and the 
Achievement of the Vision. Journal of Professional Issues in Engineering Education and Practice 135, 1 (2009): 47–56. 

[Mar1]  Marshall, L. A comparison of the core aspects of the ACM/IEEE Computer Science Curriculum 2013 Strawman report with the 
specified core of CC2001 and CS2008 Review. Computer Science Education Research Conference. (2012) (CSERC 2012, ACM, 
2012), 29–34. 

[Mar2]  Marshall, L. (2014) A graph-based framework for comparing curricula. Ph.D. thesis, University of Pretoria, South Africa.  
[Mar3]  Marshall, L. (2017) A Topic-Level Comparison of the ACM/IEEE CS Curriculum Volumes. Liebenberg J., Gruner S. (eds) ICT 

Education, Proceedings of the 46th Annual Conference of the Southern African Computer Lecturers' Association on ICT Education, 
SACLA 2017, held in Magaliesburg, South Africa, in July 2017. Communications in Computer and Information Science, vol. 730 
(2017), 309-324.  

[Mar4]  Markus, M.L. and Topi, H. (2015) Big Data, Big Decisions for Science, Society, and Business: Report on a Research Agenda Setting 
Workshop. Technical Report. National Science Foundation (NSF), USA; https://dl.acm.org/doi/book/10.5555/2849516. Accessed 
2020 Nov 23. 

[Mer1]  Merriam-Webster; https://www.merriam-webster.com/dictionary/competency. Accessed 2019 June 3. 
[Mer2] Merriam-Webster; https://www.merriam-webster.com/dictionary/disposition/. Accessed 2019 Aug 30.  
[Mer3]  Merriam-Webster; https://www.merriam-webster.com/dictionary/learning. Accessed 2020 Dec 12. 
[Mer4] Merriam-Webster; https://www.merriam-webster.com/dictionary/knowledge?src=search-dict-box#synonyms. Accessed 2020 Dec 12. 
[Mic1] Microsoft Certifications; https://docs.microsoft.com/en-us/learn/certifications/. Accessed 2020 Nov 22. 



Computing Curricula 2020   Computing Curricula Report 
CC2020   2020 December 31 

Page 200 of 203 

[Min1] Ministry of Education, New Zealand (2019). What are makerspaces? http://elearning.tki.org.nz/Teaching/Future-focused-
learning/Makerspaces. Accessed 2019 Jul 3. 

[Nas1] National Academies of Science (NAS) (2018). Envisioning the Data Science Discipline: The Undergraduate Perspective: Interim 
Report;| http://doi.org/10.17226/24886. 

[Nas2]  National Academies of Sciences, Engineering, and Medicine. 2018. Assessing and Responding to the Growth of Computer Science 
Undergraduate Enrollments. Washington, DC: The National Academies Press; https://doi.org/10.17226/24926. 

[New1] University of Newcastle, Information Technology; https://www.newcastle.edu.au/degrees/bachelor-of-information-technology. 
Accessed 2020 Nov 22. 

[Nov1] Novinson, M. Top 15 Moneymaking Certifications for 2017. CRN, The Channel Company; http://www.crn.com/slide-
shows/managed-services/300080027/top-15-moneymaking-certifications-for-2016.htm. Accessed 2017 Dec 2. 

[Nrc1]  



Computing Curricula 2020   Computing Curricula Report 
CC2020   2020 December 31 

Page 201 of 203 

[Sto1] Stoof, A., Martens, R L., and Van Merriënboer, J.J.  What is competence? A constructivist approach as a way out of confusion, 
(Onderwijs Res. Dagen ORD Leiden Neth., 2000).  

[Tak1]  Takada, S., Cuadros-Vargas, E., Impagliazzo, J. et al. Toward the visual understanding of computing curricula. Educ Inf Technol 25, 
(2020), 4231–4270; https://doi.org/10.1007/s10639-020-10127-1.  

[Tan1] Tang, C., Hawthorne, E.K., Tucker, C.S., Cuadros-Vargas, E., Cukierman, D., Simon, Zhang, M. (2016). Global Perspectives on the 
Role of Two-Year/Technical/Junior Colleges in Computing Education. 21st ACM Conference on Innovation and Technology in 
Computer Science Education (ITiCSE ’16), Arequipa, Peru, 204-205. 

[Tec1]  TechTarget; https://whatis.techtarget.com/definition/concept-map. Accessed 2020 Nov 23.  
[Ted1]  Tedre, M. The Science of Computing: Shaping a Discipline. (Boca Raton, CRC Press / Taylor & Francis, 2015). 
[Ted2]  Tedre, M., and Sutinen, E. (2008). Three traditions of computing: what educators should know. Computer Science Education, 18, 3 

(2008), 153–170. 
[Tes1]  Tes; https://www.tes.com/teaching-resource/kbl-knowledge-based-learning-11361440. Accessed 2020 Nov 23. 
[The1]  The Essential Facts; https://www.theesa.com/wp-content/uploads/2019/05/2019-Essential-Facts-About-the-Computer-and-Video-

Game-Industry.pdf. Accessed 2020 Dec 12. 
[Tre1] Trevelyan, J.  The Making of an Expert Engineer. (Taylor and Francis Group, Ltd., 2014).  
[Top1]  Topi, H. Information Systems in CC2020: Comparing Key Structural Elements of Curriculum Recommendations in Computing. 2017 

Proceedings of SIGED: IAIM Conference. Association for Information Systems Electronic Library (AISeL). 
https://aisel.aisnet.org/siged2017/9. Accessed 2020 Dec 8. 

[Tuc1] Tucker, A.B. Computing curricula 1991. Communications of the ACM, 34, 6 (1991), 68-84; 
http://dl.acm.org/citation.cfm?doid=103701.103710.  

[Van1] Van der Klink, M. and Boon, J. The investigation of competencies within professional domains, Hum. Res. Dev. Int., 5, 4 (2002), 411–
424. 

[Van2] Van der Klink, M., Boon, J. and Schlusmans, K. Competences and Vocational Higher Education: Now and in Future, Eur. J. Vocat. 
Train., 40, 1 (2007), 67–82. 

[Vor1] Voorhees, R. A., and Bedard-Voorhees, A. Principles for Competency-based education. Instructional-Design Theories and Models, 
IV, (Routledge, 2016), 49-80. 

[Wag1]  Waguespack, L., Babb, J. S. and Yates, D. Triangulating Coding Bootcamps in IS Education: Bootleg Education or Disruptive 
Innovation? Information Systems Education Journal, 16, 6 (2018), 48. 

[Wag5] Waguespack, L. et al., Adopting Competency Mindful of Professionalism in Baccalaureate Computing Curricula, EDSIGCON 2019, 
2019; 
https://www.researchgate.net/publication/336945198_Adopting_Competency_Mindful_of_Professionalism_in_Baccalaureate_Compu
ting_Curricula. Accessed 2020 Dec 12. 

[Web1] Weber, H. (2017). The New Virtues of Engineering and the Need for Change in the Engineering Curriculum; 
https://www.researchgate.net/publication/325924314_The_New_Virtues_of_Engineering_and_the_Need_for_Change_in_the_Engine
ering_Curriculum.  Accessed 28 Dec 2020. 

[Wef1]  World Economic Forum (2020). Jobs of Tomorrow: Mapping Opportunity in the New Economy; 
https://www.weforum.org/reports/jobs-of-tomorrow-mapping-opportunity-in-the-new-economy. Accessed 2020 Nov 23. 

[Wei1]  Weinert, F.E. Definition and selection of competencies: Concepts of Competence,  Organization for Economic Co-operation and 
Development, 1999. 

[Wig1] Wiggins, G., McTighe, J., and Ebrary, I. Understanding by design (Expanded 2nd edition). (Alexandria, VA, Association for 
Supervision and Curriculum Development, 2005). 

[Wig2] Wiggins, G., and McTighe, J. The Understanding by Design Guide to Creating High-Quality Units. (Alexandria, VA, Association for 
Supervision and Curriculum Development, 2011). 

[Wil1] Willcox, K., and Huang, L. Mapping the CDIO Curriculum with Network Models. CDIO, In 13th International CDIO Conference 
(2017). 

[Zuc1] Zucker, R. ViCurriAS: a curriculum visualization tool for faculty, advisors, and students. In J. Comput. Sci. Coll. 25, 2 (2009), 
138–145. 

 
 
 
R2:  Additional References not Cited 
 
• ACM and AIS. (2017c). MSIS 2016: Global Competency Model for Graduate Degree Programs in Information Systems. 

https://www.acm.org/binaries/content/assets/education/msis2016.pdf. Accessed 2019 May 14. 
• ACM (2019). Computing Competencies for Undergraduate Data Science Curricula (Initial Draft). 

http://www.cs.williams.edu/~andrea/DSReportInitialFull.pdf. Accessed 2019 May 9. 
• Ashenhurst, R.L. Curriculum Recommendations for Graduate Professional Programs in Information Systems. Communications of the 

ACM, 15, 5 (1972), 364–398.  
• Atchison, W.F. Computer Education, Past, Present, and Future. ACM SIGCSE Bulletin, 13, 4 (1981), 2–6. 

http://doi.org/10.1145/989306.989307. 
• Barr, V. and Stephenson C. Bringing Computational Thinking to K-12: What Is Involved and What Is the Role of the Computer 

Science Education Community?” ACM Inroads 2, 1 (2011), 48; https://dl.acm.org/doi/10.1145/1929887.1929905. 
• Biggs, J.B. Approaches to the enhancement of tertiary teaching. Higher Education Research and Development 8, 1 (1989), 7–25. 
• Cassel, L.N., Sloan, R.H., Davies, G., Topi, H. and McGettrick, A. The Computing Ontology Project: The Computing Education 

Application. SIGCSE Bull. 39, 1 (2007), 519–20. 
• Clear, A., Parrish, A., van der Veer, G.C., Zhang, M. CC2020: A Vision on Computing Curricula. Panel, Proceedings of the 2017 

ACM SIGCSE Technical Symposium, DOI: 10.1145/3017680.3017690. 



Computing Curricula 2020   Computing Curricula Report 
CC2020   2020 December 31 

Page 202 of 203 

• Couger, J.D.  Curriculum recommendations for undergraduate programs in information systems. Communications of the ACM, 16, 12 
(1973), 727–749; http://doi.org/10.1145/362552.362554. 

• Conte, S.D., Hamblen, J.W., Kehl, W.B., Navarro, S.O., Rheinboldt, W.C., Young, D.M., Jr, and Atchinson, W.F. An Undergraduate 
Program in Computer Science—Preliminary Recommendations. Communications of the ACM, 8, 9 (1965), 543–552; 
http://doi.org/10.1145/365559.366069. 

• Council of Chief State School Officers. 2013. Knowledge, Skills, and Dispositions: The Innovation Lab Network State Framework for 
College, Career, and Citizenship Readiness, and Implications for State Policy; https://files.eric.ed.gov/fulltext/ED542708.pdf. 
Accessed 2020 Nov 24. 

• Couger, J.D., Davis, G.B., Dologite, D.G., Feinstein, D.L., Gorgone, J.T., Jenkins, A.M., et al. IS'95: Guideline for undergraduate IS 
curriculum. Mis Quarterly, (1995) 341–359. 

• Davis, G.B., Gorgone, J.T., Couger, J., Feinstein, D.L., and Longenecker, H.E., Jr.  IS'97: model curriculum and guidelines for 
undergraduate degree programs in information systems. ACM SIGMIS Database, 28,1 (1996), 101–194. 

• Davis, M. The Universal Computer: The Road from Leibniz to Turing. (New York, A K Peters/CRC Press, 2011).  
• Edström, Kristina. 2017. “Exploring the Dual Nature of Engineering Education: Opportunities and Challenges in Integrating the 

Academic and Professional Aspects in the Curriculum.” Edited by Anette Kolmos. PhD in Technology and Learning, Stockholm, 
Sweden: KTH Royal Institute of Technology; http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-217315. Accessed 2020 Nov 24. 

• Frezza, S.T., Clear, A. and Vichare, A.M. 2018. Voices on the Core of Computing. In 2018 IEEE Frontiers in Education Conference 
(FIE); http://doi.org/10.1109/FIE.2018.8658484. 

• Fuller, U. and Keim, B. Should We Assess Our Students’ Attitudes? In Proceedings of the Seventh Baltic Sea Conference on 
Computing Education Research, 187–90. (Koli National Park, Finland, ACM, 2007). 

• Fincher, S., and Petre, M. Computer Science Education Research. (CRC Press, 2014). 
• Forsythe, G.E. (1967). A University's Educational Program in Computer Science. Communications of the ACM, 10, 1 (1967), 3–11; 

http://doi.org/10.1145/363018.363038. 
• Gibbs, G. Teaching students to learn: A student-centered approach. (Open University Press, 1981). 
• Gorgone, J. and Gray, P. MSIS 2000: model curriculum and guidelines for graduate degree programs in information systems. 

Communications of the AIS, 3, 1 (2000), 1.  
• Gorgone, J. T., Davis, G. B., Valacich, J. S., Topi, H., Feinstein, D. L., and Longenecker, H. E. IS 2002 model curriculum and 

guideli1es for undergraduate degree programs in information systems. Communications of the AIS, 11, 1 (2002). 
• Gorgone, J.T., Gray, P., Stohr, E.A., Valacich, J.S., and Wigand, R.T. MSIS 2006: Model Curriculum and Guidelines for Graduate 



Computing Curricula 2020   Computing Curricula Report 
CC2020   2020 December 31 

Page 203 of 203 

• Shiveley, J., and Misco, T, ‘But How Do I Know About Their Attitudes and Beliefs?’: A Four-Step Process for Integrating and 
Assessing Dispositions in Teacher Education. The Clearing House: A Journal of Educational Strategies, Issues and Ideas 83, 1 
(2010), 9–14. 

• Sicilia, M-A. How Should Transversal Competence Be Introduced in Computing Education? ACM SIGCSE Bulletin 41, 4 (2010), 95–
98. 

• Smith, B. The Future Computed: Artificial Intelligence and its Role in Society. (Microsoft Corporations, 2018).  
• Spc1; https://education.spc.org.pe/Peru/CS-SPC/Plan2021/docs/CS-SPC-poster-EN.pdf. Accessed 2020 Dec 6. 
• Spc1; https://education.spc.org.pe/Peru/CS-SPC/Plan2021/3_9_Compatibilidad_carrera_.html. Accessed 2020 Dec 6. 
• Spector, A.Z. (2017) Changing Nature of Computer Science and Its Impact on Undergraduate Education; 

http://sites.nationalacademies.org/cs/groups/cstbsite/documents/webpage/cstb_173998.pdf. Accessed 2020 Dec 8. 
• Tedre, M., Simon, and Malmi, L. Changing aims of computing education: a historical survey. Computer Science Education, 28, 2 

(2018), 158–186. 
• Topi, H., Valacich, J.S., Wright, R.T., Kaiser, K., Nunamaker, J.F., Sipior, J.C., and de Vreede, G.J. IS 2010: Curriculum Guidelines 

for Undergraduate Degree Programs in Information Systems. Communications of the Association for Information Systems, 26, 18 
(2010); http://aisel.aisnet.org/cais/vol26/iss1/18/. Accessed 2020 Nov 25. 

• Topi, H., Valacich, J.S., Wright, R.T., Kaiser, K., Nunamaker, J.F., Sipior, J.C., and de Vreede, G.J. IS 2010: Curriculum Guidelines 
for Undergraduate Degree Programs in Information Systems. Communications of the Association for Information Systems, 26, 1 
(2010); http://aisel.aisnet.org/cais/vol26/iss1/18/. Accessed 2020 Nov 25. 

• 






