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T
he relation between mathematics and

music has a long and rich history, in-

cluding: Pythagorean harmonic theory,

fundamentals and overtones, frequency

and pitch, and mathematical group the-

ory in musical scores [7, 47, 56, 15]. This article

is part of a special issue on the theme of math-

ematics, creativity, and the arts. We shall explore

some of the ways that mathematics can aid in

creativity and understanding artistic expression

in the realm of the musical arts. In particular, we

hope to provide some intriguing new insights on

such questions as:

• Does Louis Armstrong’s voice sound like his

trumpet?

• What do Ludwig van Beethoven, Ben-

ny Goodman, and Jimi Hendrix have in

common?

• How does the brain fool us sometimes

when listening to music? And how have

composers used such illusions?

• How can mathematics help us create new

music?
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• Melody contains both pitch and rhythm. Is
it possible to objectively describe their con-

nection?

• Is it possible to objectively describe the com-
plexity of musical rhythm?

In discussing these and other questions, we shall

outline the mathematical methods we use and
provide some illustrative examples from a wide

variety of music.

The paper is organized as follows. We first sum-
marize the mathematical method of Gabor trans-

forms (also known as short-time Fourier trans-

forms, or spectrograms). This summary empha-
sizes the use of a discrete Gabor frame to perform

the analysis. The section that follows illustrates
the value of spectrograms in providing objec-

tive descriptions of musical performance and the

geometric time-frequency structure of recorded
musical sound. Our examples cover a wide range

of musical genres and interpretation styles, in-

cluding: Pavarotti singing an aria by Puccini [17],
the 1982 Atlanta Symphony Orchestra recording

of Copland’s Appalachian Spring symphony [5],

the 1950 Louis Armstrong recording of “La Vie en
Rose” [64], the 1970 rock music introduction to

“Layla” by Duane Allman and Eric Clapton [63], the
1968 Beatles’ song “Blackbird” [11], and the Re-

naissance motet, “Non vos relinquam orphanos”,

by William Byrd [8]. We then discuss signal syn-
thesis using dual Gabor frames, and illustrate

how this synthesis can be used for processing

recorded sound and creating new music. Then we
turn to the method of continuous wavelet trans-

forms and show how they can be used together

with spectrograms for two applications: (1) zoom-
ing in on spectrograms to provide more detailed

views and (2) producing objective time-frequency
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portraits of melody and rhythm. The musical il-

lustrations for these two applications are from a

1983 Aldo Ciccolini performance of Erik Satie’s
“Gymnopédie I” [81] and a 1961 Dave Brubeck jazz

recording “Unsquare Dance” [94]. We conclude the

paper with a quantitative, objective description
of the complexity of rhythmic styles, combining

ideas from music and information theory.

Discrete Gabor Transforms: Signal
Analysis
We briefly review the widely employed method of
Gabor transforms [53], also known as short-time

Fourier transforms, or spectrograms, or sono-

grams.The firstcomprehensive effort inemploying
spectrograms in musical analysis was Robert Co-

gan’s masterpiece, New Images of Musical Sound
[27] — a book thatstilldeservesclose study. A more

recent contribution is [62]. In [37, 38], Dörfler de-

scribes the fundamental mathematical aspects of
using Gabor transforms for musical analysis. Other

sources for theory and applications of short-time

Fourier transforms include [3, 76, 19, 83, 65].There
is also considerable mathematical background in

[50, 51, 55], with musical applications in [40]. Us-

ing sonograms or spectrograms for analyzing the
music of birdsong is described in [61, 80, 67]. The

theory of Gabor transforms is discussed in com-
plete detail in [50, 51, 55] from the standpoint of

function space theory. Our focus here, however,

will be on its discrete aspects, as we are going to
be processing digital recordings.

The sound signals that we analyze are all dig-

ital, hence discrete, so we assume that a sound
signal has the form {f (tk)}, for uniformly spaced

values tk = k∆t in a finite interval [0, T]. A Gabor

transform of f , with window functionw , is defined
as follows. First, multiply {f (tk)} by a sequence of

shifted window functions {w(tk−τℓ)}Mℓ=0, produc-

ing time-localized subsignals, {f (tk)w(tk−τℓ)}Mℓ=0.

Uniformly spaced time values, {τℓ = tjℓ}Mℓ=0, are
used for the shifts (j being a positive integer
greater than 1). The windows {w(tk − τℓ)}Mℓ=0 are
all compactly supported and overlap each other;

see Figure 1. The value of M is determined by

the minimum number of windows needed to cover
[0, T], as illustrated in Figure 1(b). Second, because

w is compactly supported, we treat each subsignal
{f (tk)w(tk − τℓ)} as a finite sequence and apply

an FFT F to it. This yields the Gabor transform of

{f (tk)}:
(1) {F{f (tk)w(tk − τℓ)}}Mℓ=0.

We shall describe (1) more explicitly in a moment
(see Remark 1 below). For now, note that because

the values tk belong to the finite interval [0, T],
we always extend our signal values beyond the
interval’s endpoints by appending zeros; hence

the full supports of all windows are included.

(a) (b) (c)

Figure 1. (a) Signal. (b) Succession of window
functions. (c) Signal multiplied by middle
window in (b); an FFT can now be applied to
this windowed signal.

The Gabor transform that we employ uses a
Blackman window defined by

w(t) =





0.42+ 0.5 cos(2πt/λ) +
0.08 cos(4πt/λ) for |t| ≤ λ/2

0 for |t| > λ/2
for a positive parameter λ equaling the width
of the window where the FFT is performed. In
Figure 1(b) we show a succession of these Black-
man windows. Further background on why we use
Blackman windows can be found in [20].

The efficacy of these Gabor transforms is shown
by how well they produce time-frequency portraits
that accord well with our auditory perception,
which is described in the vast literature on Ga-
bor transforms that we briefly summarized above.
In this paper we shall provide many additional
examples illustrating their efficacy.

Remark 1. To see how spectrograms display the
frequency content of recorded sound, it helps to
write the FFT F in (1) in a more explicit form.
The FFT that we use is given, for even N, by the
following mapping of a sequence of real numbers

{am}m=N/2−1
m=−N/2 :

(2) {am} F
---------------------------------→

{
Aν = 1√

N

N/2−1∑

m=−N/2
am e

−i2πmν/N
}
,

where ν is any integer. In applying F in (1), we
make use of the fact that each Blackman window
w(tk − τℓ) is centered on τℓ = jℓ∆t and is 0 for
tk outside of its support, which runs from tk =
(jℓ − N/2)∆t to tk = (jℓ + N/2)∆t and is 0 at
tk = (jℓ±N/2)∆t . So, for a given windowing spec-
ified by ℓ, the FFT F in (2) is applied to the vector

(am)
N/2−1
m=−N/2 defined by

(
f (tk)w([k− jℓ]∆t)

)jℓ+N/2−1

k=jℓ−N/2.

In (2), the variable ν corresponds to frequencies
for the discrete complex exponentials e−i2πmν/N

used in defining the FFT F . For real-valued data,
such as recorded sound, the FFT values Aν satisfy
the symmetry condition A−ν = A∗ν , where A∗ν is
the complex conjugate ofAν . Hence, no significant
information is gained with negative frequencies.
Moreover, when the Gabor transform is displayed,
the values of the Gabor transform are plotted as
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squared magnitudes (we refer to such plots as

spectrograms). There is perfect symmetry at ν
and −ν, so the negative frequency values are not

displayed in the spectrograms.

Gabor Frames
When we discuss audio synthesis, it will be im-

portant to make use of the expression of Gabor

transforms in terms of Gabor frames.An important

seminal paper in this field is [92]. A comprehensive

introduction can be found in [48]. We introduce

Gabor frames here because they follow naturally

from combining (1) and (2). If you prefer to see

musical examples, then please skip ahead to the

next section and return here when we discuss

signal synthesis.

Making use of the description of the vector (am)
given at the end of Remark 1, we can express (1)

as

(3)
1√
N

k1∑

k=k0

f (k∆t)w([k− jℓ]∆t) e−i2π[k−jℓ]ν/N .

In (1), the values k0 and k1 are the lower and upper

limits of k that are needed to extend the signal

values beyond the endpoints of [0, T]. We have

also made use of the fact that w([k− jℓ]∆t) = 0

for k ≤ jℓ −N/2 and for k ≥ jℓ +N/2.

We now define the functions Gℓ,ν(k) for ν =
−N/2, . . . ,N/2− 1 and ℓ = 0, . . . ,M as

(4) Gℓ,ν(k) = 1√
N
w([k− jℓ]∆t) e−i2π[k−jℓ]ν/N

and write Cℓ,ν for the Gabor transform values that

are computed by performing the computation in

(3):

(5) Cℓ,ν =
k1∑

k=k0

f (tk)Gℓ,ν(k).

We have suppressed the dependence on j since it

is a fixed value, specifying the amount of shifting

for each successive window (via τℓ = tjℓ). It is

set in advance and does not change during the

analysis procedure using {Gℓ,ν}.
The significance of Equation (5) is that each Ga-

bor transform value Cℓ,ν is expressed as an inner
product with a vector

(
Gℓ,ν(k)

)
. Hence, the entire

arsenal of linear algebra can be brought to bear

on the problems of analyzing and synthesizing

with Gabor transforms. For instance, the vectors

{Gℓ,ν} are a discrete frame. The theory of frames

is a well-established part of function space theory,

beginning with the work of Duffin and Schaeffer

on nonharmonic Fourier series [45, 99] through

applications in wavelet theory [33, 18, 58] as well

as Gabor analysis [50, 51, 55, 24].

To relate our discrete Gabor frame to this body

of standard frame theory, and to provide an ele-

mentary condition for a discrete Gabor frame, we

require that the windows satisfy

(6) A ≤
M∑

ℓ=0

w2(tk − τℓ) ≤ B

for two positive constants A and B (the frame

constants). The constants A and B ensure numeri-

cal stability, including preventing overflow during

analysis and synthesis. The inequalities in (6)
obviously hold for our Blackman windows when

they are overlapping as shown in Figure 1(b). Us-

ing (4) through (6), along with the Cauchy-Schwarz

inequality, we obtain (for K := k1 − k0 + 1):

(7)

M,N/2−1∑

ℓ=0,ν=−N/2
|Cℓ,ν |2 ≤ (KB) ‖f‖2,

where ‖f‖ is the standard Euclidean norm: ‖f‖2 =∑k1
k=k0

|f (tk)|2. When we consider Gabor transform

synthesis later in the paper, we shall also find that

(8) (A/K) ‖f‖2 ≤
M,N/2−1∑

ℓ=0,ν=−N/2
|Cℓ,ν |2.

So we have (using B1 := A/K and B2 := KB):

(9) B1‖f‖2 ≤
M,N/2−1∑

ℓ=0,ν=−N/2
|Cℓ,ν|2 ≤ B2‖f‖2 ,

a discrete version of standard analysis operator

bounds in function space theory. By analysis oper-

ator, we mean the Gabor transform G defined by

{f (tk)} G
-----------------→ {Cℓ,ν}.

Remark 2. (1) It is not necessary to use a single

fixed window w to perform Gabor analysis. For

example, one could use windows wℓ(tk − τℓ) for

each ℓ, provided A ≤ ∑M
ℓ=0w

2
ℓ (tk − τℓ) ≤ B is

satisfied. Doing so allows for more flexibility in

handling rapid events like drum strikes [100],
[37, Chap. 3], [39]. (2) The time values {tk} do

not need to be evenly spaced (this is called non-

uniform sampling) [50, 51]. An application using

nonuniform sampling is described in Example 12.

Musical Examples of Gabor Analysis
We now discuss a number of examples of using

spectrograms to analyze recorded music. Our goal
is to show how spectrograms can be used to pro-

vide another dimension, a quantitative dimension,

to understanding the artistry of some of the great

performances in music. For each of the displayed

spectrograms, you can view a video of the spec-

trogram being traced out as the music plays by

going to this webpage:

(10) http://www.uwec.edu/walkerjs/MBSGC/

Viewing these videos is a real aid to understand-

ing how the spectrograms capture important

features of the music. The website also provides

an online bibliography and links to the software
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we used. Another site with advanced software for

time-frequency analysis is [69].
As we describe these examples, we shall briefly

indicate how they relate to the art of music and its
creation. While spectrograms are extremely use-
ful for quantitative analysis of performance—and

performance itself is an act of artistic creation—we
shall also point out some ways in which spectro-
grams can be of use in aiding the creative process
of musical composition. When we finish discussing
these examples, we will summarize all of these

observations on musical creativity.

Example 1 (Pavarotti’s vocals). Our first example
is a spectrogram analysis of a 1990 recording
of the conclusion of Puccini’s aria, “Nessun Dor-
ma”, featuring a solo by Luciano Pavarotti [17].
See Figure 2. This spectrogram shows the high-

amplitude vibrato (oscillations of pitch) that
Pavarotti achieves. Using the spectrogram, we
can measure quantitatively the amplitudes in the
vibrato. This illustrates an interesting creative
application of spectrograms. Because they can be

displayed in real time as the singer is performing,
they can be used to help performers to analyze
and improve their vibrato, both in amplitude and
steadiness. One affordable package for real-time
spectrogram display can be found at [1]. Notice

also that Pavarotti is able to alter the formant
structure (the selective amplification of different
frequency bands) of the same word in the lyrics,
which produces a clearly audible change in bright-
ness (timbre) in the sound. Using spectrograms to

study formants is usually the domain of linguis-
tics [75]. But here we see that formants—through
a real-time adaptation of selective frequency am-
plification (selective resonance)—play a role in the
magnificent instrumentation that is possible with

the human voice.1

Example 2 (Contrasting choral and solo voicings).
Our second example is another passage from
the same recording of “Nessun Dorma” [17], con-
taining a choral passage and the introduction of
Pavarotti’s concluding solo. See Figure 3. We can

see in the spectrogram that there is a notable
contrast between the sinuous, blurred vibrato of
the chorus in the beginning of the passage ver-
sus the clearer vibrato of Pavarotti’s solo voice,
which is centered on elongated, single pitches.

The blurring of the vibrato of the chorus is due
to reverberation (persistent echoing). We can
describe this with the following model:

(11) f (tk) =
J∑

j=0

g([k− jm]∆t)h(j),

1There is some speculation that the human vocal appa-

ratus actually evolved first in order to sing, rather than

speak [73].

Figure 2. Spectrogram from a recording of
“Nessun Dorma” with Luciano Pavarotti.
Pavarotti’s large-amplitude vibrato is clearly
visible and measurable. The differing
formants (selective amplification of different
frequency bands) for different vocalizations of
the lyrics (printed below the spectrogram) are
also clearly displayed. Pavarotti changes the
formants for the first two vocalizations of
vincerò, and this is clearly audible as a change
of brightness (timbre) of the sound. In
addition, Pavarotti holds the final note, sung
as an extended ò, with large, constant
amplitude vibrato for more than 5 seconds, an
amazing feat. (A video for this figure is at (10),
a larger graphic is at [101].)

where m is a positive integer, g is the sound that
is reverberating, and h is a damping function. The

superposition of the slightly damped time-shifted

versions of g creates the blurring effect, due to

the closeness together in time of almost identical,
shifted versions of g. Equation (11) is a discrete

convolution. Audio engineers frequently employ

a model like this, called convolution reverb, to

simulate the effects of reverberation [44], [7,
Sec. 16.7.2]. The function h, called the impulse

response, is created once through digitally record-

ing the reverberation of a very sharp sound (an

impulse). Assuming linearity and shift-invariance
properties of reverberation, the reverberation

of other sounds is simulated digitally via Equa-

tion (11). We shall give an example of using

convolution reverb for producing a new musical
composition, “Sierpinski Round”, in Example 13.

In contrast to the reverberation in the chorus,

Pavarotti’s vocals—which emerge at high volume
from the midst of the chorus, an emotionally mov-

ing experience—are much more clearly defined

in their vibrato, and his vibrato oscillates around

constant pitches. The lack of reverberation in
Pavarotti’s vocals is probably due to a difference

in the way his voice was recorded. The recording

was done live at the ruins of the Baths of Caracalla

in Rome. Pavarotti sang into a single microphone,
while the multiple voices of the chorus were

recorded by another microphone (or small set

of microphones relative to the large number of
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chorus members). Consequently, the recording
of the chorus picks up the reverberation off of
the walls of the ruins, while Pavarotti’s single
microphone records his initial voicing without
much reverberation. The resounding emergence
of Pavarotti’s voice from the midst of the chorus
is no doubt an artistic choice of Puccini to create
a dramatic contrast between the individual and
the collective. The blurring of the reverberation
of the choral voices versus the clarity of the solo
voice serves to further enhance the contrast. This
enhanced contrast may also be a creative decision,
and with methods such as convolution reverb it
can be deliberately produced in creating digital
recordings.

Example 3 (Does Louis Armstrong’s voice sound
like his trumpet?). The classical pianist Edna
Stern has answered this question very nicely, with
her succinct description of the creative artistry of
Louis Armstrong:

The way he plays trumpet is very
similar to his singing, it comes
through in the way he is vibrat-
ing or marking the expressive
moments in the music. Also the
timing and the way he is build-
ing his phrases are both done in
the same declamatory way as his
singing. When he is singing, his
vibratos are very similar to the
trumpet vibratos and I think that
there is a clarity in the way he
punctuates his syllables, using
the exploding ones in a sort of
trumpet way. [89]

In Figure 4 we show two spectrograms of clips
taken from Armstrong’s 1950 recording of “La Vie
en Rose” [64] that illustrate perfectly, in a quan-
titative way, what Stern is talking about. They
contain a trumpet solo and vocals of Armstrong.
All the vocals exhibit vibrato. The fundamentals
for the trumpet notes are in a higher frequency
range (around 500 Hz) than the vocals (around
200 Hz). The most prominent trumpet notes ex-
hibiting vibrato are between 0.2 and 1.4 seconds,
between 10.5 and 12.2 seconds, and between 14.0
and 15.3 seconds. It is interesting how Armstrong
increases the amplitude of the vibrato as these
notes progress. This is most evident for the three
notes just cited. There is an interesting contrast
between these trumpet notes compared with the
constant frequency notes of other instruments in
the passage (the horizontal bars in the spectro-
gram that correspond to bass notes at the lowest
frequencies, as well as guitar and piano notes at
higher frequencies). During the recording, Arm-
strong also plays notes with constant amplitude
vibrato. For example, at the end of the record-
ing, he sustains a note with constant amplitude

Figure 3. Spectrogram from a recording of
“Nessun Dorma” with Luciano Pavarotti. In the

first 7.5 seconds, there is a chorus of voices
singing. Their lyrics produce several sinuous

blurry curves, corresponding to fundamentals
and overtones of male and female voices. This
chorus is singing with vibrato, but the vibrato

is obscured by the blurring (a convolution of
reverberating sound). In contrast, Pavarotti’s

solo emerges from the chorus at about 7.0
seconds. His voicings are with much clearer

vibrato and are centered on single, more
elongated pitches. (A video for this figure is at

(10), a larger graphic is at [101].)

vibrato for about six seconds. The corresponding
spectrogram image is similar to the final note
for ò! held by Pavarotti in Figure 2, so we do not
display it.

The exploding syllables that Stern refers to
are evident in the very brief, sharply sloped
structures that initiate many of the vocals. A
particularly prominent one occurs in the vocals

spectrogram in Figure 4 at about 14.0 seconds. A
similar explosive onset of a trumpet note occurs at
about 8.8 seconds in the spectrogram containing

the trumpet solo.
Louis Armstrong is well known for both his

trumpet playing and his unique vocal style. Here
we have shown, in a quantitative way, that it is

pointless to try to separate these two aspects of
his performance.

Example 4 (Dissonance in rock music). Our next

example is a recording of one of the most famous
passages in rock music, the introduction to the
1970 recording of “Layla” by Derek and the Domi-

noes [63]. See Figure 5. The passage begins with
the two guitars of Duane Allman and Eric Clapton
playing in perfect synchronicity. At around 1.7
seconds, however, a buzzing distortion of the

sound occurs. This distortion is due to a beating
effect between closely spaced overtones. Although
this dissonance may offend some ears, it is most
certainly a conscious effect done by the musicians

as a prelude to the intense pleading, with a very
rough textured voice, of the singer later in the
song. It is interesting to contrast this intense

dissonance with the more subtle one invoked in
“Gymnopédie I” (see Figure 15). When we discuss
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Figure 4. Top: Spectrogram of a trumpet solo
by Louis Armstrong. Bottom: Spectrogram of
Louis Armstrong vocals. (A video for this
figure is at (10), a larger graphic is at [101].)

Figure 5. Spectrogram from a recording of
“Layla” with Eric Clapton and Duane Allman on
guitars. An important feature of the
spectrogram is the clear indication of beating
between different overtones. For example, for
time between 1.7 and 2.2 seconds and
frequencies around 450 Hz and 750 Hz, and
also for time between 2.2 and 2.4 seconds and
frequencies around 300 Hz, 550 Hz, and 700
Hz. The beating appears as sequences of dark
points lying between horizontal overtone
bands. It is clearly audible as a buzzing sound.
(A video for this figure is at (10), a larger
graphic is at [101].)

“Gymnopédie I”, we will show how this contrast

can be characterized quantitatively and how that

could be of use in musical composition.

Example 5 (The geometry of Appalachian Spring).

The use of finite groups in analyzing the structure

of notes and chords in musical scores is well estab-

lished [56, 47, 15]. The work now extends even to
the use of highly sophisticated methods from al-
gebraic geometry [70] and orbifold topology [95].
Computer methods are being used as well [21, 12,
7].

One advantage that spectrograms have over
analysis of scores, however, is that they provide
a way for us to identify these group operations
being performed over an extended period of time
in a complex musical piece. In such cases, score
analysis would be daunting, at least for those

without extensive musical training. Spectrograms
can help those without score-reading experience
to see patterns, and it can help those who do
have score-reading experience to connect these
group operations to the patterns that they see in

the score. Either way, it is valuable. Certainly a
solid understanding of these group operations,
and how master composers have used them, is
an important aspect of learning to create new
musical compositions.

Figure 6. Spectrogram of a passage from
Appalachian Spring by Aaron Copland. In the
time intervals marked by A through G, there is
a complex sequence of transpositions and
time dilations, played by various instruments,
of the basic melody introduced in A. (A video
for this figure is at (10), a larger graphic is at
[101].)

As an example of analyzing a spectrogram with-
out score references, we look at Section 7 from an

Atlanta Symphony recording of Aaron Copland’s
symphonic suite, Appalachian Spring [5]. See Fig-
ure 6. Copland uses group-theoretic operations
in the time-frequency plane—transposition and
dilation—in order to develop the basic melody of

the Shaker hymn, “Simple Gifts”.
In the spectrogram, within the time interval A

and the frequency range of 300 to 600 Hz, there
is the initial statement of the melody, played by
woodwinds. There is also a transposition and
dilation (time shortening) of part of the melody

to a much higher frequency range (time range
0:15 to 0:17 and frequency range 900 Hz to 1200
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Hz)—a sort of grace note effect, but using an

entire melodic motive. In the time interval B and

the frequency range of 200 to 500 Hz, there is a

transposition down to stringed instruments, with

a time dilation (shrinkage) of the melody, plus

some interpolated notes so that the melody still

plays for about 30 seconds. In the time interval C,

there is a fugue-like development of the melody.

It begins with another transposition from A’s

melody to a lower frequency range than in B.

Then at about time 1:12 there is an overlay of a

transposition of A’s melody to a higher frequency

range played by horns, and underlying it a very

slow-moving time dilation (stretching) of a trans-

position down to a lower frequency range played

by bass strings. In the time interval D there is a

transition passage, played by woodwinds, of short

motives pulled from the melody. The beginning of

time interval E, from about time 1:37 to time 1:40,

contains a rising horn crescendo that leads into

a transposition of the melody from A to a higher

frequency range (also played by horns). Within

the time interval F , there is a transposition down

again, played by woodwinds. Finally, the passage

concludes with the time interval G, containing a

combination of all the previous transpositions:

played by strings, horns, and woodwinds at

high volume, emphasized by a stately rhythmic

pounding of a bass drum.2 This passage from

Appalachian Spring is a remarkable example of

an extended development of a melodic theme.

Example 6 (What do Ludwig van Beethoven, Benny

Goodman, and Jimi Hendrix have in common?).

The short answer, of course, is that they all created

great music. In Figure 7 we show three spectro-

grams of recordings of short passages from their

music. It is interesting to find the similarities and

differences between these spectrograms and the

music they reflect. In the Beethoven passage—

which is a portion of his Piano Sonata in E (Opus

109) performed by David Añez Garcia [66, Move-

ment 1, Measures 15–17]—we see a descending

series of treble notes followed by an ascending se-

ries, reflecting an approximate mirror symmetry.

The symmetry is broken, however, by an ascend-

ing set of bass notes (indicated by the arrow on

the spectrogram). The mirror-symmetric pattern

is also broken by the gentle rising treble notes

trailing off to the right.

The spectrogram of the Goodman recording—

a clip from a circa 1943 live broadcast of “Sing,

2For those listeners familiar with the religious back-

ground of the Shaker hymn, the metaphor—external

to the music—of the inheritance of the earth is

unmistakable in this concluding portion.

Sing, Sing” [14]3—also shows a similar, approxi-
mate mirror symmetry from time 3.5 seconds to
8.5 seconds, which is also broken by a gently rising
scale trailing off to the right. In this case, Goodman
is playing a clarinet and bending the notes as is
commonly done in jazz style. The bending of the
notes is clearly displayed in the spectrogram by
the connected curved structures (which possess a
symmetry of their own). This is a significant con-
trast to the discretely separated, constant harmon-
ic piano notes in the Beethoven passage.

The spectrogram of the Hendrix passage—a clip
from his 1968 recording of “All Along the Watch-
tower” [46]—exhibits a similar pattern to the
other two, an approximately mirror-symmetrical
descension and ascension of pitch, followed by
a gently rising trailing off of melodic contour.
Hendrix, however, illustrates a unique aspect of
his music. Rather than using discrete notes, he
instead uses his electric guitar to generate a con-
tinuous flow of chords. The chord progression is
continuous rather than a set of discrete tones
typically used in most Western music. It is inter-
esting that the electronic sound produced here is
surprisingly warm and soft, especially in the later
“trailing off” portion. Perhaps this is due to Hen-
drix’s synthesizing continuous chord transitions
and vibrato (“wah-wah”) within the blues scale, a
remarkable achievement.

A more extended spectrogram analysis of the
Beethoven piano sonata can be found in [27,
pp. 49–56]. For more on jazz vis-à-vis classical
music, see [16, pp. 106–132]. For incisive com-
ments on Hendrix in particular, see [2, pp. 197
and 203].

Example 7 (Birdsong as a creative spark for mu-
sic). Birdsong has a long and distinguished histo-
ry of providing a creative spark for musical com-
position. Donald Kroodsma, perhaps the world’s
leading authority on birdsong, has succinctly de-
scribed this history:

As early as 1240, the cuckoo’s
cuckoo song appears in human
music, in minor thirds. The songs
of skylarks, song thrushes, and
nightingales debut in the ear-
ly 1400s. The French composer
Olivier Messiaen is my hero, as
he championed birdsongs in his
pieces. I love Respighi’s Pines
of Rome, too, as the songs of a
nightingale accompany the or-
chestra…I learned recently, too,
why I have always especially en-
joyed the “Spring” concerto from

3We hope our discussion of this piece will help to alleviate

its undeserved obscurity. At the time of writing, [14] is still

in print.
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Figure 7. Top: Spectrogram from a recording
of Beethoven’s Piano Sonata in E (Opus 109).
The arrow indicates an ascending bass scale,
entering in contrast to the descending treble
scale. Middle: Spectrogram from a Benny
Goodman recording of “Sing, Sing, Sing”.
Bottom: Spectrogram from a Jimi Hendrix
recording of “All Along the Watchtower”. (A
video for this figure is at (10), a larger graphic
is at [101].)

Vivaldi’s Four Seasons: It is the

birds and their songs that cel-

ebrate the return of spring in

this concerto, and now I clearly

hear their birdsongs in the brief,

virtuoso flourishes by the solo

violinist. [61, p. 275]

Kroodsma’s book, from which this quote is taken,

is full of spectrograms and their use in analyzing

the musical qualities of birdsong. There is even

a most amusing description on p. 274 of his re-

searching which composers Java sparrows prefer

and carrying out musical education with them!

Unfortunately, we do not have space here to

do justice to the music of Messiaen. However,

there is an excellent discussion, utilizing both

spectrograms and scores, of the creative inspi-

ration of birdsong for his music in Rothenberg’s

book [80]. The website for that book [98] also

contains some samples of Messiaen’s music and

related birdsongs. One technique that Messi-

aen employed was to slow down the tempo of

birdsong to increase its comprehensibility to
human ears. He did this based on his own metic-
ulous transcriptions into musical scores of songs
he heard in the field. With Gabor transforms, this
process can be done digitally with the recorded
songs themselves; we will discuss how in Exam-
ple 12. There is certainly much more to explore in
Messiaen’s music using the tools of spectrograms.
The tools of percussion scalograms for rhythm
analysis (which we discuss later) can be employed
as well, since Messiaen incorporated the rhythmic
styles of birdsong in his music [80, p. 198].

Besides Messiaen, Stravinsky also incorporated
elements of birdsong into some of his compo-
sitions. In his classic work of musical theory,
Mache devotes an entire chapter to studying, via
spectrograms, the connections between the music
of birds and elements of Stravinsky’s music [67,
Chap. 5]. Mache uses spectrograms as a kind of
generalized musical notation, which gets around
the very challenging problem of transcribing
birdsong into standard musical notation. Mache
also discusses other animal music-making in this
chapter, which he entitles “Zoomusicology”.

Figure 8. Spectrogram of Paul McCartney’s
duet with a songbird, from the Beatles’
recording “Blackbird”. (A video for this figure
is at (10), a larger graphic is at [101].)

Besides the world of classical music, or art
music, birdsong has been used in more popular
music as well. A striking example is from the Bea-
tles, who bridged the worlds of popular song and
artistic music. At the end of their 1968 recording
of “Blackbird” [11], Paul McCartney literally sings
a duet with a blackbird. In Figure 8 we show a
spectrogram of this portion of the recording. The
blackbird’s chirps lie in the upper portion of the
time-frequency plane with sharply sloped rapid
changes of pitch, while McCartney’s vocals lie
more in the lower portion (although his overtones
often extend into the region where the blackbird
is singing). In some places, for instance between
10.0 and 10.5 seconds, McCartney’s rapid articu-
lation is quite similar to the blackbird’s, as we can
see in the similar sharply sloped structures—for
McCartney, most prominently between 250 and
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1000 Hz, and for the blackbird, most prominently
between 1500 and 3000 Hz—whereas in other
places, there is a contrast between the longer
time-scale rhythm to McCartney’s vocals and the
shorter time-scale rhythms of the blackbird’s
chirps.

Example 8 (Do our ears play tricks on us?). In
fact, our ears can fool us sometimes. The most
famous auditory illusion is due to Shepard [85].
Shepard created electronic tones that seem to rise
endlessly in pitch, even though they in fact ascend
through just one octave. The tones can also be
arranged to create an illusion of endless descent.
The website [52] has a nice demonstration of
Shepard tones. To hear examples showing that an
illusion is actually occurring, go to the URL in (10)
and select the topic Example 8: Audio Illusions.

Figure 9. Spectrogram of Shepard’s illusion of
an endlessly rising series of tones, which in
fact stay within just one octave. The arrows

indicate where the illusion occurs. (A video for
this figure is at (10), a larger graphic is at

[101].)

Shepard’s illusion is easily explained using
spectrograms. Figure 9 practically speaks for it-
self. The illusion is due to our brain tracking the
pitch contour of the fundamentals for the tones
and expecting the next fundamental to be exactly
one octave higher than where it occurs. The over-
tones of the electronic tones are all designed in
an octave series—the fundamental multiplied by
two, four, eight, etc.—to hide the drop in pitch.

Shepard’s auditory illusion has been used sub-
sequently by composers in electronic music, the
most notable compositions being produced by Ris-
set [7, Chap. 13]. The endlessly rising illusion can
be used for expressing moments of infinite, tran-
scendent joy, while the endlessly descending illu-
sion can be used for invoking the opposite emo-
tion.

The special arrangement of only octave spac-
ings in the overtones does not lend itself well to
traditional instruments. It is natural to ask, how-
ever, whether composers in the past have used
illusions like the Shepard tones. Some examples
by Bach have been proposed [60, p. 719]. Another

Figure 10. Top: Extract from the score of
William Byrd’s motet, “Non vos relinquam

orphanos”. Bottom: Spectrogram of a
recording of the passage, with its structures

aligned with the vocals in the score above. An
ascending series of overtones lies within the

parallelogram. (A video for this figure is at
(10), a larger graphic is at [101].)

example is pointed out by Hodges in his delightful

article on geometry and music [47, Chap. 6]. The

illusion occurs in performances of a Renaissance

motet by William Byrd, “Non vos relinquam or-

phanos” (“I will not leave you comfortless”). To

describe the illusion, we quote from Hodges’s

article:

Jesus is foretelling his ascension

into heaven, Vado ‘I am going’.

The moment passes quick-

ly …The Vado motif seems to

move steadily upward through

the voices, pointing to Jesus’ own

movement upwards to heaven.

…In fact, the movement is not as

steady as it sounds; at two of the

repetitions there is no movement

upwards. …the ear is deceived.

In Figure 10, we show the score and a spectrogram

that illustrates the overtones of the voices at the

four vocalizations of Vado in a 2003 Cambridge

Singers recording of the motet [8]. There is clear-

ly a similarity to the Shepard tone arrangement

of overtones. As Hodges points out, the effect is

subtle. Undoubtedly it is more noticeable when lis-

tening to the motet in a locale with long reverber-

ation times contributing to the frequency tracking

process in our brains (such as the Great Hall of Uni-

versity College School, London, where this record-

ing was made). As a partial confirmation of this

idea, we will amplify the indicated overtones in the

38 Notices of the AMS Volume 57, Number 1



motet’s spectrogram in Example 10. This is an ex-
ample of audio synthesis with Gabor transforms,
which we discuss in the next section.

Summary. The musical examples we have dis-
cussed were chosen to illustrate that spectrograms
enhance our understanding of how great perform-
ing artists produce their music and to provide
ideas for using Gabor analysis as an aid to creat-
ing new music. Our discussion of these examples
produced at least these five ideas:

(1) Perfecting vibrato. Using spectrograms, ei-
ther recorded or in real time, to analyze
and perfect vibrato. This applies to vi-
brato in singing and also to vibrato in
instrumental music. More generally, this
applies to improvements in other musical
techniques, such as holding a constant
pitch.

(2) Convolution reverb. Spectrograms can be
used to compare the results, in a quantita-
tive way, of recordings made with different
convolution reverb methods.

(3) Analyzing dissonance. The beating effect
of dissonance can be quantified easily with
either spectrograms or scalograms (as we
describe in Example 14). This allows for
evaluation of creative efforts to employ
dissonance in music.

(4) Visualizing geometric transformations of
the time-frequency plane. Such transfor-
mations are regularly used in musical
compositions. Spectrograms provide an
effective tool for analyzing the patterns
of such transformations over longer time
scales than score analysis facilitates. Such
analyses are valuable for understanding
the connection between these patterns
and the music they reflect.

(5) Zoomusicology. Spectrograms provide a
generalized musical notation for captur-
ing the production of sonorities by other
species, such as birds. This can yield new
ideas for pitch alterations and rhythmic
alterations (analyzed with the percussion
scalogram method). Also, slowing down
the tempo of birdsong, which we discuss
later in Example 12, is an important tech-
nique (first applied by Messiaen). With
Gabor transforms, this slowing down can
be performed automatically (without te-
dious and complicated field transcriptions
to standard musical notation).

Discrete Gabor Transforms: Signal
Synthesis
The signal {f (tk)} can be reconstructed from its
Gabor transform {Cℓ,ν}. We shall briefly describe
this reconstruction and show how it can be ex-
pressed in terms of synthesis with a dual frame,

a frame dual to the Gabor frame {Gℓ,ν}. Fol-

lowing this discussion, we apply this synthesis

method to audio processing and the creation of

new electronic music.

First, we briefly sketch the reconstruction pro-

cess. The FFT in (2) is invertible, via the formula:

(12) am = 1√
N

N/2−1∑

ν=−N/2
Aν e

i2πmν/N .

Hence, by applying such FFT-inverses to the Gabor

transform in (1), we obtain a set of discrete signals:

{{f (tk)w(tk − τℓ)}}Mℓ=0.

For each ℓ, we then multiply the ℓth signal by

{w(tk − τℓ)} and sum over ℓ, obtaining

{
M∑

ℓ=0

f (tk)w
2(tk − τℓ)} = {f (tk)

M∑

ℓ=0

w2(tk − τℓ)}.

Multiplying the right side of this last equation by

the values 

M∑

ℓ=0

w2(tk − τℓ)


−1

,

which by (6) are no larger than A−1, we obtain our

original signal values {f (tk)}.

Synthesis Using Dual Frames
We now describe one way in which this reconstruc-

tion can be expressed via a dual frame. Alternative

ways are described in [23, 25, 57].

We apply inverse FFTs to the Gabor transform

values {Cℓ,ν} in (5), then multiply by {w([k −
jℓ]∆t)}, and sum over ℓ to obtain:

(13)

M∑

ℓ=0

N/2−1∑

ν=−N/2
Cℓ,ν

w([k− jℓ]∆t)√
N

ei2π(k−jℓ)ν/N .

We then divide by
∑M
m=0w

2([k−jm]∆t), obtaining

M∑

ℓ=0

N/2−1∑

ν=−N/2
Cℓ,ν

w[(k− jℓ)∆t] ei2π(k−jℓ)ν/N√
N
∑M
m=0w

2([k− jm]∆t) = f (tk).

Now, define the dual Gabor frame {Γℓ,ν} by

(14) Γℓ,ν(k) =
w([(k− jℓ]∆t) ei2π(k−jℓ)ν/N√
N
∑M
m=0w

2([k− jm]∆t) .

We leave it as an exercise for the reader to show

that {Γℓ,ν} is, in fact, a discrete frame. Using (14),

we obtain

(15) f (tk) =
M∑

ℓ=0

N/2−1∑

ν=−N/2
Cℓ,ν Γℓ,ν(k).

Equation (15) is our synthesis of {f (tk)} using the

dual frame {Γℓ,ν}.
We note that by combining (15) with (6) and

using the Cauchy-Schwarz inequality, we obtain

Inequality (8).
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Remark 3. When there is a high degree of overlap-

ping of windows, then
√
N
∑M
m=0w

2([k−jm]∆t) is
approximately a constant C, and we have Γℓ,ν(k) ≈
G∗
ℓ,ν(k)/C. Hence, the dual Gabor frame is, modu-

lo a constant factor and complex conjugation, ap-
proximately the same as the Gabor frame. In any
case, (15) shows that we can reconstruct the origi-
nal signal f as a linear combination of the vectors
in the dual Gabor frame, each of which is support-
ed within a single window of the form w([(k −
jℓ]∆t). These last two statements reveal why we
multiplied by the windowings before summing in
(13).

The synthesis on the right side of (15) can be
expressed independently of the Gabor transform.
We shall use S to denote the synthesis mapping

(16) {Bℓ,ν} S
---------------------→

{
σ(tk) =

M∑

ℓ=0

N/2−1∑

ν=−N/2
Bℓ,ν Γℓ,ν(k)

}

based on the right side of (15), but now applied to
an arbitrary matrix {Bℓ,ν}.

Musical Examples of Gabor Synthesis
We shall now illustrate Gabor synthesis with mu-
sical examples. There are two basic schemes. One
scheme, which is used for creating new music, is
to use the synthesis mapping S in (16). The input
matrix {Bℓ,ν} is specified by the composer, and
the output {σ(tk)} is the new, electronic audio.
There is software available for synthesizing music
in this way. A beautiful example is the MetaSynth
program [71].

Another scheme, which is used for processing
audio, can be diagrammed as follows (where P

denotes some processing step):

(17) {f (tk)} G
---------------------------→ {Cℓ,ν} P

-→ {Bℓ,ν} S
---------------------→ {σ(tk)}.

The end result {σ(tk)} is the processed audio.

Example 9 (Reversing figure and ground). In [38],
Dörfler mentions that one application of Gabor
transforms would be to select a single instru-
ment, say a horn, from a musical passage. We will
illustrate this idea by amplifying the structure
H shown in the spectrogram on the left of Fig-
ure 11, which is from a passage in a 1964 Boston
Symphony Orchestra recording of Stravinsky’s
Firebird Suite [93]. The sound corresponding to
this structure is a faint sequence of ascending
harp notes.

To amplify just this portion of the sound, we
multiply the Gabor transform values by a mask
of quadratically increasing values from 3.7 to
4.1 within a narrow parallelogram containing H

and value 1 outside the parallelogram4 (see the
right of Figure 11) and then perform the synthesis
mapping S. Notice that the amplified structure
A stands out more from the background of the

4The precise formula can be found at the website in (10).

remainder of the spectrogram (which is unal-
tered). Listening to the processed sound file, we
hear a much greater emphasis on the harp notes
than in the original, and the volume of the rest
of the passage is unchanged. We have altered the
figure-ground relationship of the music.

The modification we have performed in this
example is a joint time-frequency filtering of the
Gabor transform. With this example, we have
touched on an important field of mathematical
research known as Gabor multipliers. More details
can be found in [9, 41, 49, 82, 97].

Figure 11. Left: spectrogram of portion of
Firebird Suite. The structure to be selectively

amplified is labeled H. Right: spectrogram with
amplified structure labeled A. (A video for this

figure is at (10), a larger graphic is at [101].)

Figure 12. Selective amplification of a region in
the spectrogram of a passage from a William



reasons of space, we cannot do justice to this

vast field. Suffice it to mention that an excellent
description of the flexibility of Gabor transform
denoising, combining Gabor multipliers with so-
phisticated Bayesian methods, is given in Dörfler’s
thesis [37, Sec. 3.3]. An elementary introduction
is given in [96, Sec. 5.10]. One advantage of Gabor
transforms is that the compact support of the
windows allows for real-time denoising, including
adaptation to changing noise characteristics.

Example 12 (Slowing down sound). In Example 7
we raised the issue of slowing down the tempo
of birdsong. This could be done in two ways. The

first way is to simply increase the size of the in-
terval ∆t between successive signal values when
playing back the sound. This has the effect, how-
ever, of decreasing the frequencies of the pitches
in the sound. For example, if ∆t is doubled in size,
then the frequencies of all the pitches are halved,
and that lowers all the pitches by one octave. The
website [98] has examples of this type of slowing
down of birdsong.

Another approach to slowing down the bird-
song, while leaving the pitches unchanged, is to
make use of the Gabor transform {Cℓ,ν} of the
sound. For example, to decrease the sound tempo
by a factor of 2, we would first define a matrix
{Bℓ,ν} as follows. We set B2ℓ,ν = Cℓ,ν for each ℓ,
and then interpolate between successive values
B2ℓ,ν and B2ℓ+2,ν to define each value B2ℓ+1,ν . Final-

ly, we apply the synthesis mapping in (16) to the
matrix {Bℓ,ν}. The windows for this synthesis are
all shifts of the original window w , centered at
points spaced by the original increment ∆τ . Now,
however, twice as many windowings are done (so
as to extend twice as far in time). This method
keeps the pitches at the same levels as the original
sound, but they now last twice as long.

Slowing down by a factor of 2 is just the easiest

method to describe. This latter approach can also
be used to slow down (or speed up) the tempo
of the sound signal by other factors. Both these
methods can also be applied, either separately
or in combination, to other digital sound files
besides birdsong. For example, the MetaSynth
program [71] allows for this sort of morphing of
digital sound. It is interesting that the morph-

ing we have described—which via Gabor frames
can be done in a localized way on just parts of
the signal—requires the extensions of the Gabor
transform methodology described in Remark 2.

Example 13 (Granular synthesis of new music). As
mentioned above, composers can use the scheme
in (16) to create new music. Some good examples
can be found at the MetaSynth website [71]. How-

ever, we cannot resist showing two of our own
compositions, which are really just motifs that
still need to be set within larger compositions.

Figure 13. Spectrogram for the fractal music
“Fern”. (A video for this figure is at (10), a
larger graphic is at [101].)

In Figure 13 we show the spectrogram of a gran-

ularly synthesized musical passage, “Fern” [35].
The method used for generating the grains {Bℓ,ν}
was to use the iterated function system (IFS) cre-
ated by Michael Barnsley for drawing a fractal
image of a fern leaf [10, pp. 86–87]. Using the

probabilities p1 = 0.01, p2 = 0.85, p3 = 0.07, and
p4 = 0.07, one of the corresponding four affine
transformations,

Ai

[
t
ν

]
=
[
ai bi
ci di

] [
t
ν

]
+
[
ei
fi

]
, (i = 1,2,3,4),

is applied to a pair of time-frequency coordinates
(starting from an initial seed pair of coordinates).

We shall not list all of the four affine transforma-
tionsAi here. They can be found in [10, Table 3.8.3
on p. 87]. It will suffice to list just one of them:

A3

[
t
ν

]
=
[

0.2 −0.26
0.23 0.22

] [
t
ν

]
+
[

0
0.07

]
,

which is applied with probability p3 = 0.07. Notice
that A3 is not a member of the Euclidean group,
since the matrix used for it is not orthogonal.

This IFS is used to draw points of the fern
that begin the fundamentals of the notes. An
instrumental spectrum generator was then used
to generate overtones and time durations for the
notes and to generate the actual sound file. Our it-

erations were done 2500 times using John Rahn’s
Common Lisp Kernel for music synthesis [78],
which converts the generated fractal shape into a
file of instrumental tone parameters determining
initiation, duration, and pitch. This file of instru-

mental tone parameters was then converted into a
digital audio file using the software C-Sound [30].

An interesting feature of the type of music
shown in Figure 13 is that the notes contained
in the piece do not exhibit the classical note

symmetries (transpositions, reflections, etc.) that
are all members of the Euclidean group for the
time-frequency plane. That is because some of the
affine transformations Ai , such as A3, are not
members of the Euclidean group. Perhaps these

non-Euclidean operations on its notes are one
source of the eerie quality of its sound.
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Figure 14. Spectrogram for the granular
synthesis music, “Sierpinski Round”. (A video
for this figure is at (10), a larger graphic is at

[101].)

As a second instance of granular synthesis,

we applied Barnsley’s IFS for the Sierpinski trian-
gle [10, Table 3.8.1 on p. 86]. However, instead of

generating only the grains for tones from Sierpin-
ski’s triangle, we also superimposed two shiftings

in time of all such grains, thus producing three
Sierpinski triangles superimposed on each oth-

er at different time positions. The spectrogram
of the composition, “Sierpinski Round” [36], is
shown in Figure 14. Besides having visual artis-

tic value, it is interesting to listen to. It sounds
like a ghostly chorus, with a bit of the Shepard

rising-pitch-illusion effect.
We have only touched on the vast arena of gran-

ular synthesis, fractal music, and electronic music
in general. More work is described in [7, 47, 74,

77, 28]. Although electronic music has been devel-
oping for about half a century, it is perhaps still

in its infancy. Tonal music, based on harmony of
one form or another, has been with us for millen-

nia. In his masterful critical history of twentieth-
century music, Alex Ross provides a balanced, nu-
anced view of the development of all forms of new

music, including electronic music [79, Part III].

Summary. We have described several uses of

Gabor transform synthesis for creating new music.
These uses are (1) modifying the intensity of a

specific instrument or set of overtones in a musi-
cal passage, (2) removing noise, (3) slowing down
(or speeding up) the sound, (4) granular synthesis.

Although this only scratches the surface of the
use of Gabor transform synthesis, we did provide

additional references in all of our examples.

Continuous Wavelet Transforms
In this section we briefly review the method of
scalograms (continuous wavelet transforms) and

then discuss the method of percussion scalograms.
Both methods will be illustrated with musical

examples.

Scalograms
The theory of continuous wavelet transforms

(CWTs) is well established [31, 26, 68]. A CWT

differs from a spectrogram in that it does not
use translations of a window of fixed width;
instead it uses translations of differently sized
dilations of a window. These dilations induce a
logarithmic division of the frequency axis. The
discrete calculation of a CWT that we use is
described in detail in [4, Section 4]. We shall only
briefly review it here.

Given a function Ψ , called the wavelet, the
continuous wavelet transform WΨ[f ] of a sound
signal f is defined as

(18) WΨ[f ](τ, s) = 1√
s

∫∞

−∞
f (t)Ψ( t − τ

s
)dt

for scale s > 0 and time translation τ . For the
function Ψ in the integrand of (18), the variable s
produces a dilation and the variable τ produces a
translation.

We omit various technicalities concerning the
types of functions Ψ that are suitable as wavelets;
see [26, 31, 68]. In [26, 32], Equation (18) is derived
from a simple analogy with the logarithmically
structured response of our ear’s basilar membrane
to a sound stimulus f .

We now discretize Equation (18). First, we as-
sume that the sound signal f (t) is nonzero only
over the time interval [0, T]. Hence (18) becomes

WΨ[f ](τ, s) = 1√
s

∫ T

0
f (t)Ψ( t − τ

s
)dt.

We then make a Riemann sum approximation to
this last integral using tm = m∆t , with uniform
spacing∆t = T/N, and discretize the time variable
τ , using τk = k∆t . This yields

(19)

WΨ[f ](τk, s) ≈ T

N

1√
s

N−1∑

m=0

f (tm)Ψ ([tm − τk]s−1).

The sum in (19) is a correlation of two discrete
sequences. Given two N-point discrete sequences
{fk} and {Ψk}, their correlation {(f : Ψ)k} is defined
by

(20) (f : Ψ)k =
N−1∑

m=0

fmΨm−k .

[Note: For the sum in (20) to make sense, the
sequence {Ψk} is periodically extended, via Ψ−k :=
ΨN−k.]

Thus Equations (19) and (20) show that the
CWT, at each scale s, is approximated by a mul-
tiple of a discrete correlation of {fk = f (tk)} and
{Ψ sk = s−1/2Ψ(tks−1)}. These discrete correlations
are computed over a range of discrete values of s,
typically

(21) s = 2−r/J , r = 0,1,2, . . . , I · J,
where the positive integer I is called the number of
octaves and the positive integer J is called the num-
ber of voices per octave. For example, the choice
of 6 octaves and 12 voices corresponds—based
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on the relationship between scales and frequen-
cies described below—to the equal-tempered scale
used for pianos.

The CWTs that we use are based on Gabor
wavelets.5 A Gabor wavelet, with width parame-
ter ω and frequency parameter ν, is defined as
follows:

(22) Ψ(t) =ω−1/2e−π(t/ω)
2
ei2πνt/ω.

Notice that the complex exponential ei2πνt/ω has
frequency ν/ω. We call ν/ω the base frequency.
It corresponds to the largest scale s = 1. The bell-

shaped factor ω−1/2e−π(t/ω)
2

in (22) damps down
the oscillations of Ψ , so that their amplitude is
significant only within a finite region centered at
t = 0. (This point is discussed further, with graph-
ical illustrations, in [4, 20].) Because the scale
parameter s is used in a reciprocal fashion in
Equation (18), it follows that the reciprocal scale
1/s will control the frequency of oscillations of the
function s−1/2Ψ(t/s) used in Equation (18). Thus
frequency is described in terms of the parameter
1/s, which Equation (21) shows is logarithmically
scaled. This point is carefully discussed in [4] and
[96, Chap. 6], where Gabor scalograms are shown
to provide a method of zooming in on selected
regions of a spectrogram. Here we shall provide
just one new example.

Example 14 (Subtle dissonance in “Gymnopédie I”).
On the bottom of Figure 15, we show a spectro-
gram of the beginning of a 1983 Aldo Ciccolini
performance of Erik Satie’s “Gymnopédie I” [81].
There is a very subtle dissonance of some of the
overtones of the notes in the piece. To see this
dissonance we calculated a Gabor scalogram for
the first 5.944 seconds of the passage, using 1
octave and 256 voices, a width parameter of 0.1,
and frequency parameter 65. The base frequency
is therefore 650 Hz, and the maximum frequency
is 1300 Hz. This scalogram is shown on the top
of Figure 15. The scalogram has zoomed in on
the spectrogram enough that we can see several
regions where overtones are so closely spaced
that beating occurs. This subtle beating is barely
evident to our ears, contributing to the haunting
quality of the tones in the piece.

Besides Satie, other composers have used sub-
tle dissonance effects in overtones. Debussy was
a master of such techniques, including using dif-
ferent types of scales to enhance the interplay of
the overtones. The musical history of Ross [79,
pp. 43–49] contains a nice synopsis of Debussy’s
use of overtones, along with the pentatonic scale
of much Oriental music (Chinese, Vietnamese,
and Javanese gamelan music). The article [34]
explores the overtone structures of Debussy in
depth and also examines the question of whether

5A CWT with Gabor wavelet is closely related to the

Stockwell transform [91, 54, 43, 90].

a
b

c

a

b

c

Figure 15. Bottom: Spectrogram of the
beginning of “Gymnopédie I” by Erik Satie.
Top: A zooming in on the first six seconds for
frequencies between 650 Hz and 1300 Hz.
There is beating at three places, marked a, b, c
in both the scalogram and spectrogram. (A
video for this figure is at (10), a larger graphic
is at [101].)

the interplay of overtones would be enhanced if

the system of just intonation were employed.

What Figures 15 and 5 illustrate is that we can

use spectrograms and scalograms to produce a

quantitative measure of the amount of beating in

overtones. For example, beating frequencies can

be easily read off from the spectrogram in Figure 5

and the scalogram in Figure 15. Furthermore, the

intensity of the overtones that are “clashing” can

be measured from the numerical data that those

graphs are displaying. It is an interesting topic

for future study: to measure these effects in the

music of Debussy, for example, and compare the

use of alternative systems of intonation.

The theory that beating in overtones cre-

ates a dissonant sound in music originated with

Helmholtz [59], [47, Chap. 5]. Sethares’s book [84]

is an important reference relating Helmholtz’s

theory to a wide variety of different scales, includ-

ing the pentatonic scale and Javanese gamelan

music.

Percussion Scalograms
As described in [96, Chap. 6] and [20], scalograms

can be used in conjunction with spectrograms to

produce quantitative portraits of musical rhythm,

called percussion scalograms. The theory behind

percussion scalograms is described in detail in

[20]. It is related to work of Smith [86, 87, 88].

Here we will only state the method. It consists of

these two steps:
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Step 1. Let {|Cℓ,ν|2} be the spectrogram

image. Calculate the average µ[|C|2] over
all frequencies at each time index ℓ:

(23) µ[|C|2](ℓ) = 1

N/2

N/2−1∑

ν=0

|Cℓ,ν |2,

and denote the time average of µ[|C|2] by
A:

(24) A = 1

M + 1

M∑

ℓ=0

µ[|C|2](ℓ).

Then the pulse train {P(τℓ)} is defined by

(25) P(τℓ) = 1{τk :µ[|C|2](k)>A}(τℓ),

where 1S is the indicator function for a

set S (1S(t) = 1 when t ∈ S and 1S(t) = 0
when t ∉ S). The values {P(τℓ)} describe
a pulse train whose intervals of 1-values
mark off the position and duration of the
percussive strikes.

Step 2. Compute a Gabor CWT of the
pulse train signal {P(τℓ)} from Step 1.
This Gabor CWT provides an objective
picture of the varying rhythms within a
percussion performance.

When implementing this method, it is sometimes
necessary to process the spectrogram by limiting
its values to certain frequency bands (intervals of
ν values), setting values of the spectrogram to 0
outside of such bands. We now show an example
in which this leads to a precise analysis of the re-
lationship between melody and rhythm. (A second

example is discussed in [20, Example 6 on p. 355].)

Example 15 (Melody and rhythm in “Unsquare
Dance”). In the 1961 Dave Brubeck Quartet’s
recording of “Unsquare Dance” [94], there is an
amazing performance involving hand claps, piano

notes, and bass notes all played in the unusual
time signature of 7

4 . In Figure 16 we show our
analysis of the melody and rhythm in a passage
from “Unsquare Dance”. We used three different
frequency ranges from the spectrogram to isolate
the different instruments from the passage. The
passage begins with a transition from rapid drum-
stick strikings to hand clappings when the piano
enters. The rhythm of the hand clappings plus
piano notes has a 7

4 time signature. Notice that the
bass notes are playing with a simple repetition

of 4 beats that helps the other musicians play
within this unusual time signature. In sum, the
analysis shown in Figure 16 provides quantitative
evidence for the “tightness” (rhythmic coherence)
with which these musicians are performing.

Summary. We gave a couple of examples of the

use of scalograms and percussion scalograms in
quantitatively analyzing musical performance in
the work of Satie and Brubeck. These examples
show the value of these techniques for analyzing

0 4.096 sec 8.192
0.12

1.84 strikes
sec

29.5
1 2 3 4

0.17

0.94 strikes
sec

5.31
0.13

1.02 strikes
sec

8.12

1 2 3 4 5 6 7

P

0

500 Hz

1000

Figure 16. Melody and rhythm in a passage
from “Unsquare Dance”. Top: Spectrogram. P

aligns with the piano notes. Second from top:
Percussion scalogram of frequencies above

3000 Hz. Drumstick and hand clap percussion
are emphasized. Third from top: Percussion
scalogram of frequencies between 400 and

3000 Hz. Piano notes are emphasized. Bottom:
Percussion scalogram of frequencies below
400 Hz. Bass notes are emphasized. Notice
that the hand clapping interlaces with the

piano notes—7 beats to a measure of 4
(marked off by the bass notes). (A video for

this figure is at (10), a larger graphic is at
[101].)

pitch, rhythm, and overtone structure. We indi-

cated a topic of future research on the music of

Debussy, which we hope will yield techniques that

can be applied to composition in general.

Quantifying Rhythmic Complexity

Article [20] introduced sequences of rest lengths

between notes (percussive strikes). See Figure 17.

This was done because the rests between notes

are at least as important as the notes themselves.

As the classical pianist Artur Schnabel said: “The

notes I handle no better than many pianists. But

the pauses between the notes — ah, that is where

the art resides.”6

We will now attempt to quantify the com-

plexity of a sequence of rests, using ideas from

information theory, such as entropy. Ideas from

6To hear Artur Schnabel perform, go to the URL in

(10) and click on the link Artur Schnabel: Beethoven’s

Moonlight Sonata.
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information theory have been applied extensive-
ly to musical analysis. A major landmark in the
field is the book by Meyer [72], which, although
not providing explicit formulas and quantitative
methods, nevertheless set the stage for future
work. The field is now vast. One place to search
for more material is the online bibliography of
Downie [42], which, besides covering the impor-
tant practical application of using information
theory to retrieve musical works from databases,
also includes many papers on the general top-
ic of information theory and music. If there is
anything new in our approach, it would be the
use of percussion scalograms derived from spec-
trograms of recorded music of extemporaneous,
or improvisational, performances (as opposed to
score analysis). In any case, we felt this work to be
sufficiently interesting to include here, even if it is
only a brief introduction to the relations between
information theory and music.

Figure 17. Percussion scalograms. Left: From
“Dance Around”. Middle: From “Welela”. Right:



But it seems clear that the second sequence is

more complex rhythmically than the first.

To solve this problem, we introduce a second

notion of entropy. The entropy E is based on

one type of modeling of a stochastic source: the
memoryless or Markov-0 source model [29, 13]. We

now consider another model, the Markov-1 source

model. In the Markov-1 model, we assume that

the probabilities of emitting any given symbol will
depend on what the previous emitted symbol was.

These probabilities will be the transition probabil-

ities between states, a state being the value of a

symbol. The Markov-1 entropy, which we will de-

note by C, is then calculated by an expected value
over all states of the entropies for these transition

probabilities. Rather than give a precise formula,

it is probably easier to just give an example.

Consider the sequence (29). To do our calcu-

lation, we must assume an initial state. Because
0 is the most common rest value in rhythm, we

will always assume that the initial state is 0 (this

involves appending a dummy symbol 0 to the be-

ginning of the sequence). We then get probabilities
of p0 = 9/16 and p1 = 7/16 of being, respectively,

in state 0 and state 1 prior to emitting another

symbol. The transition probabilities are

State 0 (p0 = 9/16) State 1 (p1 = 7/16)

0 → 0:
8

9
1 → 0:

0

7

0 → 1:
1

9
1 → 1:

7

7

and we then calculate the Markov-1 entropy C by

C = p0E0 + p1E1,

where E0 and E1 are calculated from the transition
probabilities for state 0 and 1, respectively. This

yields C = (9/16)(.503258) + (7/16)(log2 1) =
0.28, whereas for the sequence (30), we obtain

C = 0.89. These Markov-1 entropy values are more

consistent with the apparent complexity of the
two sequences.

In Table 1 we show our calculations of the

Markov-1 entropy C for the 10 different rhyth-

mic passages. These results seem promising. The
African drumming sequences are measured as the

most complex. That includes the jazz sequence

from “Sing, Sing, Sing”, which imitates African

rhythm—and is one of the most famous drum

sequences in jazz history, perhaps because of its
complexity. The rock drumming sequences are

less complex using this measure.

Obviously we have worked with only a very

small sample of music. We intend to continue

assembling more data, but we do find the results
of interest and hope that this discussion will spur

some further work by others as well. Working on

other measures of complexity, such as contextual

entropy, is another research path. By contextu-

al entropy we mean the calculation of entropy

based on a non-Markov description of the source.

Symbols will be produced with probabilities that

depend on what context the symbol is in. One set

of contexts would be the levels of hierarchy of the

rhythm. As discussed in [20], there is a more com-

plete notation for rhythm sequences that includes

grouping the notes into hierarchies. The level of

hierarchy a symbol belongs to might then be used

as the context for that symbol. This idea has the

advantage that it may be able to incorporate the

fact that production of rhythm sequences is not a

Markov process.7

We have done a couple of preliminary calcula-

tions with the “Dance Around” and “Welela” rhyth-

mic hierarchies reported in [20, Examples 1 and 2].

We found that this new complexity measure, based

on single (memoryless) frequencies of the note

lengths as well as contextual (hierarchical) group-

ings, gives complexities of 1.12 for the “Dance

Around” sequence and 1.58 for the “Welela” se-

quence. The two sequences are now closer in

complexity value, and this may reflect the possi-

bility that this new measure may be taking into

account some of the speed variations in the “Dance

Around” drumming (as discussed in the caption

of Figure 5 in [20]). We mention these results only

to pique the reader’s interest. If our speculations

are borne out, then we shall describe our findings

in more detail in a subsequent paper.

Summary. We have described some complexity

measures for musical rhythm and done an initial

study of their value in quantifying the complex-

ity in different rhythmic styles. We will continue

working on the relation between entropy measures

of complexity and musical rhythm, as that work

has just begun.

Concluding Remarks

We have introduced some exciting aspects of

the relations between mathematics and music.

The methods of Gabor transforms and continu-

ous wavelet transforms were shown to provide

a wealth of quantitative methods for analyzing

music and creating new music. Readers who wish

to learn more can find ample resources in the

References.

7The reason is similar to what Chomsky describes for

phrase structure in language [22, p. 22]: “in English, we

can find a sequence a + S1 + b, where there is a depen-

dency between a and b, and we can select as S1 another

sequence containing c + S2 +d, where there is dependen-

cy between c and d, then select as S2 another sequence of

this form, etc.” The parallel between English phrases and

musical phrases (with S1, S2, . . . as bridges) is obvious.
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