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M
athematicians and scientists seldom
rest easy when the numbers are not
right. The search for understanding
is never far from mind. In many ways,
this is why mathematics is so much

fun. Similarly, conductors and musicians, who
immediately recognize wrong notes, are perplexed
by Beethoven’s metronome markings. Some of his
tempo markings, even on many of his most popular
classics, have been considered so fast as to be
impossible to play. What is the problem? Why?

The pianist and musicologist Peter Stadlen
(1910–1996), who devoted many years to studies
of Beethoven’s markings, regarded sixty-six out
of a total of 135 important markings as absurdly
fast and thus possibly wrong [1], [2]. Indeed, many
if not most of Beethoven’s markings have been
ignored by latter day conductors and recording
artists. This situation is all the more puzzling since
Beethoven himself was a strong proponent of the
metronome and took the instrument to heart when
it first came into his hands about 1816. He even
expressed satisfaction that finally his intentions as
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to the tempi in his more important compositions
would be made generally known.

The literature on the subject is enormous.
However, this article will focus on the salient
features of the early metronomes as seen through
the eyes of a scientist, engineer, or mathematician.
We investigate their early history, how they were
constructed, and their mechanical properties. We
investigate possible sources of error as to why
Beethoven may not have been able to correctly
note reliable and transferable time measures.
We hope to demonstrate that there are possible
mathematical explanations for the “curious” tempo
markings—explanations that hitherto have not
been considered except perhaps by Stadlen, who
even went so far as to locate Beethoven’s own
metronome.

Musical Notation and Tempo Indications in
Beethoven’s Lifetime
The musical notation used in European classical
music—the five-line staff indicating pitch and notes
of different appearance, whole notes, half notes,
quarter notes, etc., to indicate the relative length
of a tone within a time interval such as the “beat”
or the “bar”—was essentially in widespread use
by the end of the seventeenth century [3]. What
was lacking in these early days was a universal
way of indicating the tempo. Relative tempi could
be used. There was the Italian system, still in
use, with expressive words that run the gamut
from fast to slow, proceeding from prestissimo all
the way through vivace, allegro, to adagio and
the sluggish larghissimo. There was, and is, also
the German equivalent, again from fast to slow,
going from schnell, perhaps preceded with an
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amplifying sehr , towards sehr langsam. Of course
there is the French as well. The verbal way of
marking tempi gives considerable freedom to the
performing musician and thus a certain amount of
artistic latitude to adapt to the current moment.
Nevertheless, a number of composers, performing
artists, and conductors were not satisfied with
the lack of precision. In fact, already in the early
years of the seventeenth century, the human pulse
was used for timing. It is reported that the pulse
was taken as eighty beats/minute—which seems
somewhat high but may reflect the level of stress
of performing artists. Also, the use of clocks was
proposed by Henry Purcell in the late seventeenth
century, and then there were devices based on the
properties of simple pendulums.

The study of the period of a simple pendulum
is associated with the great Italian scientist Galileo.
In Pisa he is thought to have experimented with a
piece of string, fixed at one end and with a weight
at the other. First, a pendulum is independent of
the mass of the weight for a constant length of the
string, and secondly, the square of the period of
time varies directly with the length of the string.
Galileo’s results were eventually put into use for
musical timekeeping. Perhaps the first was the
French flutist and musicologist Etienne Louliè at
the end of the seventeenth century. His device
was rather unwieldy—it is reported to have been
nearly two meters (approximately six feet) tall and
obviously not very mobile. But his basic design
was gradually refined by others who equipped a
clockworks device to keep the pendulum swinging
and also added a graduated scale by which the
length of the string with the weight could be both
altered and measured. A drawing of a pendulum
instrument, i.e., the metromètre, designed ca.
1730 by Count D’Ons-en-Bray is reproduced in an
article by Thomas Y. Levin [4]. Unwieldy as they
must have been, the pendulum-based timekeeping
instruments seem to have been in use well into the
nineteenth century for want of a simpler alternative.
Readers may want to compare the metromètre
with Huygens’s-pendulum clock (1673) [5].

But a “quantum jump” in the history of musical
timekeeping was not far ahead. In Amsterdam
in 1812 Dietrich Nikolaus Winkel (1780–1826)
was experimenting with pendulums. He made the
discovery that a special variant of a pendulum, in
this case a thin wooden or metal beam some 15–20
cm in length and onto which weights could be
attached, behaved in an interesting way. If the beam
was able to swing freely around a pivot and two
weights were attached to the beam, one on either
side of the pivot, the pendulum would beat a steady
time. Furthermore, with proper adjustment of the
position and mass of the weights, it would beat
either slow tempi, which previously had required

very long single weight pendulums, or very fast
tempi if the weights were moved toward the pivot.
The principle of the metronome was born. Readers
may picture the new invention as an augmented
application of the Archimedean Law of the Lever.

Winkel must have realized the double pendulum
principle could be applied to musical timekeeping.
But there was obviously more to be done before
the idea could be transformed into an easy-
to-use instrument. Winkel spent a few years
experimenting with his ideas. Finally, in August of
1815 he described his new invention in the Reports
of the Netherlands Academy of Sciences where it
also received extensive praise in a commentary.
Though published, Winkel was soon to meet his
nemesis. Winkel was no businessman for he had not
patented his invention. He was soon approached
by an enterprising man from Vienna who was
something of a ruthless entrepreneur, a man
named Mälzel.

The Multitalented Herr Mälzel
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Johann Nepo-
muk Mälzel
(1772–1838) was
quite an interest-
ing character. He
was born in Re-
gensburg where
his father was
a skillful organ
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builder. Young Johann
turned out to have
considerable musical
talent. At the age of
fourteen he was al-
ready regarded as one
of the best piano play-
ers in the city. But
he was also a most
gifted mechanical en-
gineer. At the age of
twenty he established
himself in Vienna and
eventually gained ac-
cess to a mechanical
workshop in the fa-
mous Stein factory,
producer of one of
the pianoforte instru-
ments that Beethoven
favored. Mälzel was
seemingly not without
a well-developed taste
for publicity. Moreover, his talent was in construct-
ing musical automatons, devices that appealed
greatly to the public at that time. A recent inves-
tigation reveals that he may in fact have copied
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inventions by others, changing them slightly and
then claiming that they were his own. One of his
most famous mechanical constructions was the
remarkable panharmonicon that could imitate all
instruments in a military band—even gun shots! It
was actuated by a bellow. The notes played were
determined by pins attached to a large rotating
wooden cylinder, much like in old barrel-organs.
The amazing “device” was demonstrated not only
in Vienna but also in Paris where he sold his first
instrument in 1807. It caught the eye of Luigi
Cherubini who wrote a composition named Echo
for the panharmonicon. It is indeed sad that the
only copy of the panharmonicon, which for many
years was kept at the Landesgewerbemuseum in
Stuttgart, was destroyed in a bomb raid in 1942.

Mälzel’s reputation as somewhat of a mechani-
cal wizard grew and in 1808 he received the title
Hofkammermaschinist , a title that translates as
court or royal machinist. He came in contact with
Beethoven, who sought help for his increasing hear-
ing loss. Mälzel constructed several ear trumpets
for him, some still on display at the Beethoven
Haus in Bonn. During Beethoven’s visit to Mälzel’s
workshop, the problem of musical timekeeping was
almost certainly discussed, and Mälzel apparently
started working on the issue [6]. It appears that
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in 1813 he actually made
some kind of timekeeping
device, a “chronometer”, pos-
sibly based on an earlier
design by G. E. Stöckler. In
June of the same year Mälzel
also suggested to Beethoven
that he write a symphony
to celebrate the Duke of
Wellington’s recent victory
over Napoleon’s troops at Vi-
toria in Spain, and he added
that the composition should
be arranged for the panhar-
monicon. Beethoven agreed
and, as was his habit, out-
lined the composition. The
collaboration ended in a bit-
ter conflict between the two.
Mälzel considered himself
the rightful owner of the
final work although the pan-

harmonicon version was eventually abandoned
and the composition rewritten by Beethoven for a
symphony orchestra and first performed in this
form in December of 1813. Beethoven dismissed
Mälzel’s claims and instigated legal action against
him.

Chess players will be interested to know that
in later life Mälzel purchased a remarkable chess
playing automaton designed in 1770 by Baron

Wolfgang von Kampelen. This automaton was
generally known as “The Turk” after the dress of
the almost life-sized doll that moved the chess
pieces. Although seemingly run by an intricate
mechanical assembly of cog-wheels and rods,
it actually hid a human player in a way that
escaped even the most inquisitive skeptics. Mälzel
successfully toured with the Turk, who did beat
most opponents, Napoleon among them, all over
Europe. Later he toured the United States where,
however, the human involvement inside the Turk
was accidentally exposed. Mälzel, who became a
wealthy man, died in 1838 of an overdose of alcohol
on a ship in the harbor of LaGuaira, Venezuela.
The Turk eventually ended its days in 1854 when
it was destroyed by fire at the National Theater
in Philadelphia. Both Wikipedia and the magician
James Randi have described how the public was
fooled into accepting the idea that no human could
possibly be hidden inside [7].

But now back to the invention of the double
pendulum by Dietrich Winkel in Amsterdam. News
traveled fast even in the early part of the nineteenth
century. Mälzel had obtained some information
on Winkel’s invention as early as 1812. It is even
possible that the two had briefly met that year.
But after the publication of Winkel’s invention in
August of 1815, Mälzel hurried to Amsterdam, met
with Winkel, inspected the new “metronome” and
realized its superiority over his own timekeeping
devices. He offered Winkel money to buy the
right to sell the device under his own name. Not
surprisingly, Winkel refused.

Intellectual property rights were rarely enforced
in those days, so Mälzel went back to Vienna, made
a copy of Winkel’s instrument, added a graded
scale to the oscillating beam on the side of the
movable weight, took the copy to Paris, and saw
to it that “his”—Mälzel’s—invention was patented
there and later also in London and Vienna. He even
set up a small factory, Mälzel & Cie, in Paris for
the production of “his” metronomes.

In 1817 Winkel became fully aware of Mälzel’s
activities and he was understandably upset. He
instigated proceedings against Mälzel for the obvi-
ous theft. The Netherlands Academy of Sciences
was involved as arbitrator and ruled in Winkel’s
favor. To no avail, Winkel had been scooped. The
metronome factory in Paris was up and running.
Metronomes soon became very popular. Mälzel was
regarded as the true inventor and the abbreviation
“MM” for “Mälzel’s Metronome” was commonly
placed before metronome measures in printed
sheets of music.
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Beethoven and Mälzel’s Metronome
The first metronomes based on Winkel’s double
pendulum principles from Mälzel’s Paris factory
should have become available in early 1816. It is
thus possible that Beethoven was presented with
a copy around this time, perhaps as a gesture of
peace from Mälzel, who must have realized that
Beethoven’s approval of the instrument would be
good for business. Not much is mentioned about
the metronome in Beethoven’s letters in 1816,
perhaps due to the master’s preoccupation with
pressing family matters. His brother Caspar Carl
died of tuberculosis in November 1815, leaving
behind a nine-year-old son, Karl. Beethoven made
every effort to become the sole guardian of his
young nephew, to the point of taking the case
to court in opposition to Karl’s mother, Johanna.
The legal battle went on for more than four years,
causing considerable emotional strain on young
Karl [8].

It is reported that in 1816 Beethoven was so
preoccupied by these legal dealings that he stopped
composing. But from 1817 onward the metronome
was indeed on his mind. At that time he wrote
Hofrath von Mosel, “So far as I am myself concerned,
I have long purposed giving up those inconsistent
terms ‘allegro’, ‘andante’, ‘adagio’, and ‘presto’;
and Mälzel’s metronome furnishes us with the
best opportunity of doing so” [9]. Later, his ninth
symphony, in addition to his earlier symphonies,
was marked with metronome measures. After a
report from a performance of its popularity in
Berlin, he wrote to his publisher Schott, “I have
received letters from Berlin informing me that
the first performance of the ninth symphony
was received with enthusiastic applause, which
I attribute largely to the metronome markings”
[10]. Surprisingly, Beethoven only gave metronome
markings to one of his piano sonatas, Op. 106,
also called the Hammerklavier sonata. Here the
first movement, an allegro, is marked one hundred
thirty-eight beats per minute for the half note,
which is extraordinarily fast. The great pianist
Wilhelm Kempff made some rather harsh comments
on this marking in his set of recordings of the later
piano sonatas, “The erroneous (sic!) metronome
markings can easily lead to this regal movement
being robbed of its radiant majesty.”

Assuming Beethoven had one of Mälzel’s
metronomes in his possession by 1817, he probably
could not hear the “clicks” of the repetitive beat
as he was suffering from approaching deafness at
that time. But, of course, he could see the oscil-
lating beam. So what could possibly have caused
him to indicate the fast tempi throughout that
so puzzled subsequent generations of musicians?
Have present-day musicians tried to make his
compositions more “romantic” than the master

0
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r=10 cm
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R

BF (min−1)
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r = 10 or 5

m

Figure 1. The beat frequency, BF, of a
metronome as a function of the distance R of the
heavy weight (M=40 g) from the pivot axis at
two fixed positions of the movable weight: r= 5
cm and r= 10 cm. As is evident, the beat
frequency will be extremely sensitive to a small
change in the position of the heavy weight—in
particular for small values of r.

intended or else given up as being technically too
difficult?

The beat rate was indicated by gradations on the
oscillating beam. Beethoven’s eyesight was not the
best. He could have read the wrong numbers. On
the other hand, he often had help from his nephew
Karl, who may not have had vision problems. Then
there is the connection between the beat rate and
the note length: a beat rate of “60” could refer
to the length of a whole note, a half note, or a
quarter note, and the tempo of the music changes
accordingly. A beat rate of 60 for a whole note
becomes 120 for a half note. Accidentally removing
the stem from the sign of the half note would
seemingly double the tempo. Could copy errors
have been the culprit?

We should also consider psychological factors.
Different humans may have slightly different
“internal clocks”. A tempo regarded as fast for one
person may be less so for another. We suppose
that internal clocks have a tendency to run slower
with age in most humans, one notable exception
being Toscanini’s, whose clock seemed famously
to never lose time.

But one must also consider reports that
Beethoven’s metronome on occasion was out of
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Figure 2. The beat frequency, BF, of a
metronome as a function of the distance r from
the pivot axis of the movable weight (m = 8 g) .

The heavy weight (M= 40 g) is assumed to be at
the distance R= 5 cm from the pivot axis for the

correct, factory-calibrated metronome and at the
distance R= 7 cm for the damaged metronome.

The damaged metronome will beat slower than
indicated by the factory-engraved markings for a
calibrated and correct metronome when r is less

than 8 cm, while it will go faster than the
engraved markings at r larger than 8 cm. Thus
when r < 8 cm, BFdamaged < BFcorrect; when r = 8

cm, BFdamaged = BFcorrect; when r > 8 cm,
BFdamaged > BFcorrect.

order. In an April 1819 letter to his friend and
copyist Ferdinand Ries at the Fitzwilliam Museum
in Cambridge, Beethoven states that he cannot yet
send Ries the tempi for his sonata Op. 106 because
his metronome is broken [11]. Beethoven was very
irritated and upset, perhaps from symptoms of
lead poisoning, a condition he may have had
according to studies at the Argonne National
Laboratory [12]. Could Beethoven on occasion have
dropped the metronome on the floor or could he
have used more than one metronome in his last
ten years?

Peter Stadlen is reported to have found
Beethoven’s metronome after a long search. This
particular specimen was among the property
auctioned off by his surviving nephew Karl after
his uncle’s death. To Stadlen’s disappointment the
heavy weight was gone, perhaps an indication that
the early metronomes from Mälzel’s factory did
not have rugged, shock-proof construction.

Dynamical Properties of the Metronome
Finally, we take a closer look at the dynamical
properties of the mechanical double pendulum
metronome and, in particular, determine if its
performance is sensitive to the position of the
supposedly fixed heavy weight with respect to the
pivot. (See the text below on the derivation of the
equations of motion.)

The final result for the oscillation frequency Ω
of a Winkel-type double pendulum is as follows:

(1) Ω = [ g(MR−mr)
(MR2 +mr2)

]1/2

.

Here M is the mass of the heavier fixed weight
beneath the pivot along with its distance R to
the pivot axis. Correspondingly, m is the mass of
the movable weight at distance r above the pivot
point. The lighter weight and its distance are what
musicians can see, while the heavier weight is
usually hidden in the base of the cabinet. Also, g is
the acceleration due to gravity (9.81 m/sec2). ButΩ is not the same as the beat frequency in “clicks
per minute” of the metronome (BF). As can be seen
in the derivation, the beat frequency BF is related
to Ω by the ratio

(2) BF = 60Ω/π.
The equations are valid under the assumption
that there is no friction or drag, the masses are
point masses, and the amplitude of the oscillations
around the vertical position is small. The last
assumption is not severe as the beat frequency
would not deviate much from the above expression
for relatively large amplitudes; however, the correct
equations would be far more complex and nonlinear.
Please note that BF is the limit when r goes to
zero, and it is independent of the mass of the
two weights as determined by R, or rather 1/

√
R,

which is a consequence of m being located on the
pivot axis with the double pendulum beating like a
simple pendulum.

Equation (1) gives us an opportunity to investi-
gate the sensitivity of the metronome frequency
to a change in parameters. For any particular
metronome we can assume that both M andm are
fixed at the factory by the manufacturer. The value
of R for the heavy weight is also likely to be set at
the factory in order to make the metronome beat
at the correct frequency when the moving weight is
put at the corresponding grading on the oscillating
beam. But what if an error had been made? Perhaps
the heavy weight was attached to the beam in such
a way that it actually could slide—move—from its
original position. Suppose the metronome acciden-
tally fell to the floor or was otherwise damaged.
We could investigate what the consequences would
be. But first, just for curiosity’s sake, let us look at
how the beat frequency of a metronome in clicks
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per minute, BF, will depend on the position of the
heavy weight in relationship to the lighter weight
at a fixed distance. In other words, suppose only
the location of the heavy weight M is changed.

We now turn to numerical results. Although
we have searched extensively, we have not found
the actual values of the parameters M , m, and R
that Beethoven used to obtain his tempo markings.
Over a limited parametric space, however, the
results are not sensitive to the values picked. For
the sake of argument, let’s assume M = 40 grams
at distance R = 5 cm for the heavier weight and
m = 8 at distance r = 10 for the upper weight.
(See Figure 1.) We note that the beat frequency
BF of a metronome is extremely sensitive to the
position of the heavy weight if the distance R is
less than about 3–4 cm and BF goes to zero at
R = 1 cm and r = 5 cm. At the latter distances the
two weights exactly balance each other with the
cross product being (40)(1) = (8)(5). Under these
conditions the metronome beam would rotate
freely like a balanced propeller if there were no
physical constraints. For r =10 this condition is
met when R = 2; i.e., (40)(2) = (8)(10). As illustrated
in Figure 1, the heavy weight should not be placed
too close to the pivot as it is important to minimize
the effects of small changes in its position. But it
is also evident that, for R values larger than those
at the maxima in the arcs of the curves, shifts
in the position of the heavy weight toward larger
distances from the pivot will result in BF shifts to
smaller values. This effect is particularly striking
when the movable weight is close to the pivot, i.e.,
in the region of fast tempi of the metronome!

Finally, let us look at what would happen if the
metronome were somehow damaged by a shift
in the heavy weight from its calibrated factory
position. We consider two cases. First we will
assume that the heavy weight is moved such that
it is a longer distance (RBeethoven) from the pivot, a
situation that could occur if the metronome fell to
the floor in an upright position. (We hope that Herr
Ludwig, as he rests in heaven, will forgive us for the
notation (RBeethoven).) If we take (RBeethoven) to be
7 cm and assume that the original factory position
was 5 cm, the result is shown in Figure 2. For fast
tempi (BF axis), the damaged metronome will go
slower than indicated by the factory calibration.
At a medium value of r we reach a point where the
factory gradations happen to be correct, but for
slow tempi (see R) the damaged metronome always
will go faster than predicted by calibrations.

In the second case let us assume the heavy
weight is moved to a position closer to the pivot
than its original factory location, perhaps because
the metronome had accidentally fallen to the floor
with its top down. In Figure 3 the results are
displayed for a case in which the factory position

0
50

110

138

M = 40g
m =   8g

250

5 10 15

r2 r1 r

BFobserved

BFintended

BFpublished

correct metronome

damaged metronome

BF (min−1) Rg = 6cm; Rv
 = 4cm

x max = 17 cm

y min = 50; y max = 250

[cm]

ρ = 138

Figure 3. The beat frequency, BF, of a
metronome as a function of the distance r from
the pivot axis of the movable weight (m = 8 g).
The heavy weight (M(M(M = 40 g) is assumed to be at
the distance, R= 6 cm from the pivot axis for the
correct, factory-calibrated metronome and at the
distance R= 4 cm for the damaged metronome.
Beethoven puts the movable weight on his
metronome to correspond to the marking BF
=110 ( i.e., BFint in Figure 3) but, somewhat
puzzled perhaps, finds that the visibly observed
BF seems far too slow, around seventy to eighty
or so, i.e., the BF of the damaged metronome
curve at the setting r1r1r1 (the point indicated by
BFobs.]

of the heavy weight is 6 cm from the pivot (R = 6
cm) and the distance after an accident is R = 4 cm.
We note by looking at Figure 1 that, in the region of
small values of R, even a small change in position
will have a major effect on the metronome’s beat
frequency. Other sets of parameters produce even
greater changes.

Could these results explain Beethoven’s “ab-
surdly fast” metronome markings? We should note
that, if the same model is applied in the region of
slow tempi (see Figure 2), the printed markings
would result in somewhat slower beat frequencies
on the damaged metronome than intended by the
master.

Let’s envision the following hypothetical scenario
(cf. Figures 1–3). Unknown to him, the metronome
Beethoven is working with is damaged in the sense
that the heavy weight hidden by the wooden case
has been displaced. Assume Beethoven puts the
movable weight on his metronome to correspond
to the marking of approximately BF =110 (i.e.,
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BFintended in Figure 3). Somewhat puzzled perhaps,
he finds the visibly observed BF seems far too
slow, around 70 to 80, i.e., the BF of the damaged
metronome curve at the setting r1 (the point
indicated as BFobserved). The markings on the
metronome beam with the light movable weight
that he can clearly see do not correspond to his
desired BF. Beethoven, dissatisfied with the slow
movement of the visible metronome beam, then
moves the weight until he is satisfied with the
much higher BF.

Today we know very little about who actually
helped the master with the practical details of pro-
ceeding from his raw, hardly legible, handwritten
sheets of music, but we are very sure that a BF = 138
was published (p=138). (See Figure 3.) A latter day
pianist intending to perform the Hammerklavier
sonata looks at the printed sheet of music marked
a “half-note = 138,” sets a correctly calibrated
metronome, and mutters, “incredibly fast”—very
fast indeed! Our scenario provides an explanation
for Beethoven’s “fast tempi problem”, if indeed
there is one.

How could Beethoven not note the occasional
odd behavior of his metronome? A thorough
account by Peter Stadlen gives the impression
that the master was not entirely comfortable with
the new device, most especially in the process of
converting from beat frequencies to actual tempi
markings for half-notes, quarter-notes, etc. [13].
Obviously, it would be very helpful if we knew more
about the actual design of his metronome(s). We
suggest that one or more of the devices could have
been damaged, perhaps accidentally during one of
his well-known violent temper tantrums. Whatever
the case, our mathematical analysis shows that
a damaged double pendulum metronome could
indeed yield tempi consistent with Beethoven’s
markings.

Arguably this is a bold hypothesis. Perhaps
someone else was involved in the procedure—
Beethoven’s eyesight was not always the best.

Derivation: Equations of Motion for a Double
Pendulum for the Type Used in Mechanical
Metronomes.
Consider the following model of the double
pendulum:

We will assume that the beam oscillates around
the pivot without any friction and also that the
mass of the beam can be ignored in comparison
to that of the two weights. The total energy E of
the oscillating pendulum is a sum of its potential
energy V and its kinetic energy T .

The kinetic energy may be written

(3) T = 1
2
m(vm)2 +

1
2
M(vM)2

where vm and vM are the velocity of the light and
heavy masses, respectively, in the direction of their
motions. Now

vm =
d(Sm)
dt

where (sm) = r sinΘ,
vM =

d(SM)
dt

where (sM) = R sinΘ.
For small values of Θ we have sin Θ = Θ (in radians).
Thus

sm = rΘ and sM = RΘ.
The velocities v are then

vm = r
dΘ
dt
= rΘ̇ and (vm)2 = r2Θ̇2,

vM = R
dΘ
dt
= RΘ̇ and (vM)2 = R2Θ̇2.

The kinetic energy of the double pendulum is thus

(4) T = 1
2

[
mr2Θ̇2 +MR2Θ̇2

]
.

Now let us consider the potential energy V with
respect to the axis of the pivot:

(5) V = gmr cosΘ − gMR cosΘ,
where g is the acceleration due to gravity. Again
assuming small angles of oscillation when sin Θ
= Θ and since sin2Θ + cos2Θ = 1, we can replace

cos Θ with (1−Θ2)
1
2 . The potential energy V then

becomes

(6) V = g[mr−MR](1−Θ2)
1
2 .

But, if the double pendulum moves without friction,
then the total energy E is constant and the time
derivative will be zero:

dE
dt
= 0.

Let us for the sake of clarity take the time
derivatives of T and V separately:

dT
dt
= 1

2

[
mr22]Θ̇Θ̈ +MR22Θ̇Θ̈](7)

=
[
mr2 +MR2

] Θ̇Θ̈
where Θ̈ = d2Θ

dt2 .
Now consider the time derivative of the potential

energy for small oscillations:

dV
dt
= d
dt
[g[mr−MR](1−Θ2)

1
2 ].

Note that

d
√
(1−Θ2

dt
= 1

2

(
−2ΘΘ̇√
(1−Θ2)

)
≈ −ΘΘ̇ for small Θ.
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Continuing,

dV
dt
= g(MR−mr)ΘΘ̇,

and since
dE
dt
= d
dt
[T+V] = 0,

(8) (mr2 +MR2)Θ̇Θ̈ + g(MR−mr)ΘΘ̇ = 0.

We can eliminate Θ̇ since Θ̇ = 0 does not give
anything, and we are left with

(9) Θ̈ + g[ (MR−mr)
(mr2 +MR2)

]Θ = 0.

This is a differential equation of the type

d2x
dt2

+ a2x = 0

with the solution

x(t) = (x0) cos(ax+ a),
and if we introduce

Ω = [g(MR−mr)
MR2 +mr2)

] 1
2

,

the solution to equation (9) is

(Θ(t) = (Θ0) cos(Ωt +Ω).
Let us check to see if this expression yields the
same for a simple pendulum if we put m = 0. We
have

Ω = [g ( MR

MR2

)] 1
2

=
[
g
R

] 1
2

,

Θ(t) = cos[(g/R)t], and thus the oscillation fre-
quency is Ω = (g/R), or the correct equation for
small amplitude oscillations. We note that Ω is in
fact the oscillation also for our double pendulum!

How do we relate Ω to the beat frequency of the
metronome? The period of any type of pendulum
is the time it takes to swing from one starting
position and back to that position again. But this
corresponds to two “clicks” of the metronome—it
clicks at every turning point of the oscillating
beam! Therefore, to go from pendulum period
(P = 2π/Ω) to beat frequency “BF” in “clicks per
minute” we have

BF = 60Ω/π.
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Baltimore, MD, is the location of the 2014 Joint 
Mathematics Meetings. Pictured on the cover is 
a nighttime view of the Baltimore Inner Harbor.

One item of interest in Baltimore for math-
ematicians is that the Walters Museum was 
the site of work on the Archimedes Codex. In 
response to a query of ours, however, Nancy 
Zinn, deputy director at the Museum, reports 
that the codex is no longer there.  She says 
further:

“Since the completion of our analysis and 
conservation of the manuscript, the codex has 
been returned to its owner, and is no longer on 
deposit at the museum. However … the owner 
has agreed to our request for the palimpsest 
to be on view at the Huntington Library in San 
Marino, CA, from March 15 to June 8, 2014.  
This will be the third, and final, venue for the 
exhibition ‘Lost and Found: The Secrets of 
Archimedes’. It is unlikely that the codex will 
ever be displayed publicly again.” 

A complete report about the palimpsest 
can be found at 

http://archimedespalimpsest.org/
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