robot
Our editors will review what you’ve submitted and determine whether to revise the article.
robot, any automatically operated machine that replaces human effort, though it may not resemble human beings in appearance or perform functions in a humanlike manner. By extension, robotics is the engineering discipline dealing with the design, construction, and operation of robots.
The concept of artificial humans predates recorded history (see automaton), but the modern term robot derives from the Czech word robota (“forced labor” or “serf”), used in Karel Čapek’s play R.U.R. (1920). The play’s robots were manufactured humans, heartlessly exploited by factory owners until they revolted and ultimately destroyed humanity. Whether they were biological, like the monster in Mary Shelley’s Frankenstein (1818), or mechanical was not specified, but the mechanical alternative inspired generations of inventors to build electrical humanoids.
- Key People:
- Rodney Brooks
The word robotics first appeared in Isaac Asimov’s science-fiction story Liar! (1941), in which a robot is mistakenly given the ability to read minds. Along with Asimov’s later robot stories, it set a new standard of plausibility about the likely difficulty of developing intelligent robots and the technical and social problems that might result. In his next work, Runaround (1942), Asimov introduced the famous Three Laws of Robotics:
- 1. A robot may not injure a human being, or, through inaction, allow a human being to come to harm.
- 2. A robot must obey the orders given it by human beings except where such orders would conflict with the First Law.
- 3. A robot must protect its own existence as long as such protection does not conflict with the First or Second Law.
In 1970, Japanese roboticist Masahiro Mori proposed that as human likeness increases in an object’s design, so does one’s affinity for the object, giving rise to the phenomenon called the "uncanny valley." According to this theory, when the artificial likeness nears total accuracy, affinity drops dramatically and is replaced by a feeling of eeriness or uncanniness. Affinity then rises again when true human likeness—resembling a living person—is reached. This sudden decrease and increase caused by the feeling of uncanniness creates a “valley” in the level of affinity.
This article traces the development of robots and robotics. For further information on industrial applications, see the article automation.
Industrial robots
Though not humanoid in form, machines with flexible behaviour and a few humanlike physical attributes have been developed for industry. The first stationary industrial robot was the programmable Unimate, an electronically controlled hydraulic heavy-lifting arm that could repeat arbitrary sequences of motions. It was invented in 1954 by the American engineer George Devol and was developed by Unimation Inc., a company founded in 1956 by American engineer Joseph Engelberger. In 1959 a prototype of the Unimate was introduced in a General Motors Corporation die-casting factory in Trenton, New Jersey. In 1961 Condec Corp. (after purchasing Unimation the preceding year) delivered the world’s first production-line robot to the GM factory; it had the unsavoury task (for humans) of removing and stacking hot metal parts from a die-casting machine. Unimate arms continue to be developed and sold by licensees around the world, with the automobile industry remaining the largest buyer.
(Read Sherry Turkle’s Britannica essay on robots.)
More advanced computer-controlled electric arms guided by sensors were developed in the late 1960s and 1970s at the Massachusetts Institute of Technology (MIT) and at Stanford University, where they were used with cameras in robotic hand-eye research. Stanford’s Victor Scheinman, working with Unimation for GM, designed the first such arm used in industry. Called PUMA (Programmable Universal Machine for Assembly), they have been used since 1978 to assemble automobile subcomponents such as dash panels and lights. PUMA was widely imitated, and its descendants, large and small, are still used for light assembly in electronics and other industries. Since the 1990s small electric arms have become important in molecular biology laboratories, precisely handling test-tube arrays and pipetting intricate sequences of reagents.
Mobile industrial robots also first appeared in 1954. In that year a driverless electric cart, made by Barrett Electronics Corporation, began pulling loads around a South Carolina grocery warehouse. Such machines, dubbed AGVs (Automatic Guided Vehicles), commonly navigate by following signal-emitting wires entrenched in concrete floors. In the 1980s AGVs acquired microprocessor controllers that allowed more complex behaviors than those afforded by simple electronic controls. In the 1990s a new navigation method became popular for use in warehouses: AGVs equipped with a scanning laser triangulate their position by measuring reflections from fixed retro-reflectors (at least three of which must be visible from any location).
Although industrial robots first appeared in the United States, the business did not thrive there. Unimation was acquired by Westinghouse Electric Corporation in 1983 and shut down a few years later. Cincinnati Milacron, Inc., the other major American hydraulic-arm manufacturer, sold its robotics division in 1990 to the Swedish firm of Asea Brown Boveri Ltd. Adept Technology, Inc., spun off from Stanford and Unimation to make electric arms, is the only remaining American firm. Foreign licensees of Unimation, notably in Japan and Sweden, continue to operate, and in the 1980s other companies in Japan and Europe began to vigorously enter the field. The prospect of an aging population and consequent worker shortage induced Japanese manufacturers to experiment with advanced automation even before it gave a clear return, opening a market for robot makers. By the late 1980s Japan—led by the robotics divisions of Fanuc Ltd., Matsushita Electric Industrial Company, Ltd., Mitsubishi Group, and Honda Motor Company, Ltd.—was the world leader in the manufacture and use of industrial robots. High labor costs in Europe similarly encouraged the adoption of robot substitutes, with industrial robot installations in the European Union exceeding Japanese installations for the first time in 2001.
Robot toys
Lack of reliable functionality has limited the market for industrial and service robots (built to work in office and home environments). Toy robots, on the other hand, can entertain without performing tasks very reliably, and mechanical varieties have existed for thousands of years. (See automaton.) In the 1980s microprocessor-controlled toys appeared that could speak or move in response to sounds or light. More advanced ones in the 1990s recognized voices and words. In 1999 the Sony Corporation introduced a doglike robot named AIBO, with two dozen motors to activate its legs, head, and tail, two microphones, and a color camera all coordinated by a powerful microprocessor. More lifelike than anything before, AIBOs chased colored balls and learned to recognize their owners and to explore and adapt. Although the first AIBOs cost $2,500, the initial run of 5,000 sold out immediately over the Internet.